
VQS Study Guide  Instructor Edition

Introduction

Welcome to the Instructor Edition of the
JavaScript for the World Wide Web, Fifth
Edition: Visual QuickStart Guide, Student
Edition. This edition provides tools to
help you guide and evaluate your students
throughout your course on JavaScript.

Each chapter of the JavaScript for the World
Wide Web, Fifth Edition: Visual QuickStart
Guide has a corresponding study guide
chapter in both the Instructor and Student
Editions. (In the Student Edition the study
guide section is found at the end of each
chapter.) Each study guide chapter is divided
into four main sections:

 Learning Objectives list the main points
students should learn from the chapter.

 Get Up and Running Exercises are
projects that help students synthesize
and practice what they’ve learned. The
exercises are based on techniques intro-
duced in a chapter.

 Class Discussion Questions help you
review a chapter with your class. You can
also use this section to relate a chapter’s
points to workflow issues specific to the
students in your class.

 Review Questions help you evalu-
ate how well students have learned key
details from a chapter. Each chapter con-
tains a set of multiple choice and fill-in-
the-blank questions. Some chapters have
definition questions, and some include
an exercise called “Find the Errors,” where
students are given some code and they
are asked to find the errors in the code.
You can incorporate the questions into
your own tests.

The Instructor Edition includes additional
material that doesn’t appear in the Student
Edition. You’ll find instructor material in
several places:

 Throughout the Instructor Edition, the
instructor icon () marks instructor
notes and answers to class discussion
and definition questions. Paragraphs
marked with this icon don’t appear in the
Student Edition.

 Answers to multiple-choice questions
appear in boldface.

 Answers to fill-in-the-blank questions
are filled in.

We hope you find the Instructor and
Student Editions to be useful tools in your
classes. If you have any suggestions that
would make the Instructor and Student
Editions more effective, please send them to
studentedition@peachpit.com.

Stu
dy G

u
ide

 In
tro

du
ctio

n

Java Ins fm(B).indd 3/9/04, 9:32 AM1

Chapter 1: Getting Acquainted with JavaScript  Study Guide

Learning Objectives
 Review the history and uses of JavaScript.

 Understand the differences between
JavaScript and Java.

 Discuss when you would want to use
each language and why. Why are they
not interchangeable?

 Explore the differences between objects,
properties, and methods.

 Point out that properties are them-
selves objects.

 Understand the uses of values and variables.

 Note the differences between (for
example) cat, “cat”, Cat, and “Cat.”
Strings and variables are different, and
case sensitivity affects both.

 Understand assignments and comparisons.

 Note the differences between single
and double equals signs.

 Using dot syntax, how would you
describe a text box inside a form on a
Web page?

 The goal isn’t to get it exactly right,
but to see if the students understand
how dot syntax works in general.
Correct answers would be along the
lines of document.form.textarea.

 What tool would you choose to write
your JavaScript with?

 The goal here is to see if the students
understand the difference between
text editors, word processors, and
WYSIWYG editors. There’s no one cor-
rect answer, and it’s particularly depen-
dent on which platforms and tools
you have available for student use.
However, it’s important that the tool
creates plain text files, not a format
such as a Microsoft Word document.

continues on next page

Get Up and Running Exercises

Ch
apter 1: G

ettin
g

 A
cq

u
ain

ted w
ith

 JavaS
cript

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 01(D).indd 3/5/04, 2:25 PM1

Study Guide  Chapter 1: Getting Acquainted with JavaScript

 Give an example of when you would use
each of the event handlers from Table 1.1.

 There are no single right answers
here, but some examples are:

 onAbort, onError: to put up an error
message

 onMouseover, onMouseout: to handle
image rollovers

 onLoad, onUnload: to open secondary
windows

 onBlur, onFocus: to know when a user
has entered or left a form field

 onChange: to respond when a user has
changed a form field

 onClick: to respond when a user
clicks on a link or button

 onSelect: to store a value prior to the
user being able to change an entry

 onSubmit: to process JavaScript form
validation when the user has submit-
ted a form

 What is the difference between 5 + 5,
“5” + “5”, “5 + 5”, “5” + 5, and
5 + “5”?

 Discuss how they came up with the
answers. In order, the answers are
the number 10, the string “55”, the
string “5 + 5”, the string “55”, and the
string “55”.

 When would you want to use y = x + 1
vs. y = x++?

 Make sure the students understand
that these two are not equivalent. It’s
also worth discussing how y = ++x is
different, too.

 What is the difference between the
empty string (“”) and null?

 Using analogies helps here: for exam-
ple, talk about the difference between
an empty cup and having no cup at all.

Class Discussion Questions

Ch
ap

te
r

1:
 G

et
ti

n
g

 A
cq

u
ai

n
te

d
w

it
h

 Ja
va

S
cr

ip
t


 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

 a
n

d
D

is
cu

ss
io

n
 Q

u
es

ti
o

n
s

Java Ins ch 01(D).indd 3/5/04, 2:25 PM2

Study Guide  Chapter 1: Getting Acquainted with JavaScript

4. Which of the following would be an
appropriate use of JavaScript?

A. Validating form entries

B. A Web site hit counter

C. An online guest book

D. Multi-player online games

 The incorrect answers all require the
ability to read from and/or write to
files, which JavaScript cannot do.

5. Where would you find <script> tags?

A. In the <head> section of a Web page.

B. In the <body> section of a Web page.

C. Both.

D. Neither.

6. Variables contain:

A. Objects

B. Methods

C. Values

D. Events

Multiple choice

1. Which of the following would be a
poor tool for creating Web pages with
JavaScript?

A. Microsoft FrontPage.

B. Microsoft Word.

 Word doesn’t work, because it’s a
word processor, not a text editor.

C. Macromedia Dreamweaver.

D. Bare Bones BBEdit.

2. If a has been set to 5 and b has been set to
6, which of the following is not true?

A. a <= b

B. a != b

C. a < b

D. a == b

3. Which of the following is a valid
JavaScript variable name?

A. Date

B. 2day

C. today

D. today’sDate

 Note that the problem with D is the
apostrophe, not the use of “Date.”
A variable called todaysDate would
be perfectly valid. Knowing that
A is incorrect requires looking at
Appendix B, as mentioned in the
second Tip on page 10.

Review Questions

Ch
apter 1: G

ettin
g

 A
cq

u
ain

ted w
ith

 JavaS
cript

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 01(D).indd 3/5/04, 2:25 PM3

Study Guide  Chapter 1: Getting Acquainted with JavaScript

Fill-in-the-blank

1. a = 5
b = a + 1
After these lines:
What is the value of a? 5
What is the value of b? 6

2. a = 5
b = a++
After these lines:
What is the value of a? 6
What is the value of b? 5

 The ++ operator changes the value
of a, but because it’s after the vari-
able, that increment occurs after the
assignment.

3. a = 5
b = ++a
After these lines:
What is the value of a? 6
What is the value of b? 6

 Again, the ++ operator changes the
value of a, and because it’s before the
variable, that increment occurs before
the assignment, leaving both a and b
with the same value.

4. thisVar = 7
thisVar += 1
After these lines:
What is the value of thisVar? 8

5. thatVar = 6
thatvar *= 10
After these lines:
What is the value of thatVar? 6

 Note that this is a trick question; the
issue isn’t the multiplication, but the
fact that thatVar and thatvar are not
the same variable.

Definitions

1. What is LiveScript?

 LiveScript is what JavaScript was
called when Netscape first released it.

2. What is dot syntax?

 Dot syntax is the way JavaScript
puts objects together, from the most
generic object to the most specific.

3. What is a property?

 A property is both a characteristic
of an object and an object itself. For
instance, title is a property of docu-
ment, but document.title is an object
in its own right that can then have
properties and methods of its own.

4. What is a method?

 A method is something that an object
can do.

5. What is an event handler?

 An event handler is a command
JavaScript uses to deal with actions
the user performs while visiting your
Web page.

Ch
ap

te
r

1:
 G

et
ti

n
g

 A
cq

u
ai

n
te

d
w

it
h

 Ja
va

S
cr

ip
t


 S

tu
dy

 G
u

id
e


 R

ev
ie

w
 Q

u
es

ti
o

n
s

Java Ins ch 01(D).indd 3/5/04, 2:25 PM4

Chapter 2: Start Me Up!  Study Guide

Learning Objectives
 Learn which browsers and situations

require JavaScript code to be hidden
by comments, and how, when, and why
you’d want to use comments in your
JavaScript code.

 Understand and identify how and when
to use alerts, prompts, and confirma-
tions, and when and why you’d want to
use each.

 Learn how to control the flow of
JavaScript code using if/else constructs.

 Create a Web page that uses JavaScript to
display the user’s browser.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 2.1</title>
</head>
<body>
 <scriptlanguage=”Javascript”
  type=”text/javascript” >
 <!-- Hide scripts from old
  browsers
 document.write
  (navigator.appName)
 // End hiding scripts from old
  browsers -->
 </script>
</body>

</html>

 Note that (for this and all exercises in
this book) the student’s answer does
not have to match this exactly. What’s
important is that they (1) show that they
understand the material and (2) are able
to create a Web page that accomplishes
the desired task. It is perfectly acceptable,
though, to give more credit for concise-
ness, simplicity, and clarity.

 This exercise should be done by com-
bining Scripts 2.1, 2.2, and 2.9.

continues on next page

Get Up and Running Exercises

Ch
apter 2: Start M

e U
p!

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 02(E).indd 3/5/04, 2:25 PM1

Study Guide  Chapter 2: Start Me Up!

 Create a Web page that uses JavaScript to
ask a user their name, and then display
that name on the Web page.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 2.2</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide scripts from old
  browsers
 myName = prompt(“What is your
  name?”,””)
 // End hiding scripts from old
  browsers -->
 </script>
</head>
<body>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide scripts from old
  browsers
 document.write(myName)
 // End hiding scripts from old
  browsers -->
 </script>
</body>
</html>

 This exercise should be done by com-
bining Scripts 2.1, 2.2, and 2.6.

 Write the JavaScript code required to dis-
play a confirmation message when the user
clicks on a link. Only proceed with the link
if the user accepts the confirmation.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 2.3</title>
</head>
<body>
 <a href=”http://www.pixel.mu”
  onclick=”return confirm(‘Do
  you really want to see his
  page?’)”>This is my cat’s
  Web page
</body>
</html>

 This exercise should be done by com-
bining Scripts 2.5 and 2.8.

Ch
ap

te
r

2:
 S

ta
rt

 M
e

U
p!



 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 02(E).indd 3/5/04, 2:25 PM2

Study Guide  Chapter 2: Start Me Up!

 is just too much detail to describe one
simple line of code. If you really need
this much description, perhaps there
was a simpler way to write the code in
the first place.

 Discuss the differences between alerts,
prompts, and confirmations, and when
and why you’d want to use each.

 Use alerts to inform the site visitor,
prompts to get more information
from the site visitor, and confirma-
tions when you want the user to
approve or cancel something that’s
about to happen.

 Discuss the value of adding a DOCTYPE
declaration at the beginning of your
HTML documents.

 Discuss the use of comments in your
JavaScript code. When and why should
you use them?

 There’s a list of browsers on page 16
that support JavaScript, so any brows-
ers released prior to these versions
will have problems if they come across
uncommented JavaScript code. In
addition, Web browsers for newer
devices (especially consumer devices
such as phones, PDAs, WebTV) may
also have trouble if they come across
uncommented JavaScript code, so it’s
never going to be safe to say, “No one
uses those browsers anymore.”

 Regarding the use of comments:

 // add one to myCount
 myCount++

 is redundant, but

 // increment myCount so it is
in the range 1-10, not 0-9
 myCount++

 helps the next person who needs to
modify the code understand why this
code is there and what it is accom-
plishing. On the other hand,

 /* Add one to myCount so it is
  a number between 1 and 10
 Do this by incrementing
  myCount using the ++
  operator
 Not doing this will cause
  errors to occur when we’re
  later
 expecting it to be in the
  correct range.
 */
 myCount++

Class Discussion Questions

Ch
apter 2: Start M

e U
p!

 Stu
dy G

u
ide

 D
iscu

ssio
n

 Q
u

estio
n

s

Java Ins ch 02(E).indd 3/5/04, 2:25 PM3

Study Guide  Chapter 2: Start Me Up!

Multiple choice

1. If you want to write a script that puts the
current date and time on a Web page, the
code would go into:

A. A header script.

B. A body script.

C. A function.

D. An event handler.

2. If you want to write a script that stores
the user’s browser name, the code would
go into:

A. A header script.

B. A body script.

C. A function.

D. An event handler.

3. Which of the following sets myVar to 6?

A. if (true) {
 myVar = 6
}
else {
 myVar = 8
}

B. myVar = (true) ? 6 : 8

C. if (true) myVar = 6 else myVar = 8

D. All of the above.

Fill-in-the-blank

Referring to this code, answer the following
three questions:

ans = prompt(“Please answer this
 question: “,””)

1. If the user enters a response and clicks
the OK button, what is the value of ans?
Whatever the user entered

2. If the user enters a response and clicks
the Cancel button, what is the value of
ans? Null

3. If the user clicks the OK button without
entering a response, what is the value of
ans? The empty string

 Note that the answers to questions 2
and 3 are different. The students need
to understand that these are not the
same result.

Definitions

1. What is a conditional?

 A conditional is a situation where
the script poses a test, usually fol-
lowed by an action based on the
results of the test.

2. What is redirecting?

 Redirecting is automatically sending
the user to a different Web page based
on the results of a conditional test.

3. What is browser detection?

 Browser detection is the way you
determine the kind of browser that
the user has.

Ch
ap

te
r

2:
 S

ta
rt

 M
e

U
p!



 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Review Questions

Java Ins ch 02(E).indd 3/5/04, 2:25 PM4

Chapter 3: Language Essentials  Study Guide

Learning Objectives
 Learn how to control the flow of

JavaScript code using for loops.

 For loops are one of the basic building
blocks of any language.

 Learn how to use do loops.

 Virtually anything that can be done
with a do loop can be done with a for
loop, but it’s still useful for beginning
scripters to learn how to do both.

 Explore the use and purpose of JavaScript
functions.

 Functions are another basic build-
ing block. Students should learn that
functions should be in header (not
body) scripts, and that they’re prefer-
able to ever having to do the same
thing twice.

 Learn to combine two or more smaller
JavaScript fragments into one larger
piece.

 For example, students should never
need to have two script tags inside
the <head> of their Web page. Instead,
the code should be combined and put
into one script tag.

 Learn to use switch/case to handle con-
ditionals with more than two choices.

 The last of the basic ways of handling
flow control within JavaScript.

 Write the JavaScript code to ask a user
how many times they want to loop, and
then write the code to loop that many
times, each time displaying the message
“I’ve gone around x time(s) out of y”,
where x is the iteration count and y is the
number of times that the user entered.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 3.1</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide scripts from old
  browsers
 function loopAlert
  (thisIteration) {
 // Increment thisIteration so
  it displays starting at 1,
  not 0
 thisIteration++
 alert(“I’ve gone around “ +
  thisIteration + “ time(s)
  out of “ + loopCount)
 }
 // End hiding scripts from old
  browsers -->
 </script>
</head>
<body>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide scripts from old
  browsers

continues on next page

Get Up and Running Exercises

Ch
apter 3: Lan

g
u

ag
e Essen

tials
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 03(E).indd 3/5/04, 2:26 PM1

Study Guide  Chapter 3: Language Essentials

 loopCount = prompt(“How many
  times do you want to loop?”,
  “”)
 for (i=0;i<loopCount;i++) {
 loopAlert(i)
 }
 // End hiding scripts from old
  browsers -->
 </script>
</body>
</html>

 This exercise can be done by combin-
ing Scripts 2.4, 2.6, 3.2, and 3.7.

 Note that this example will do noth-
ing at all (no error message or loop
alert) if the user gave a non-numeric
response to the prompt. As check-
ing for data validity hasn’t yet been
covered (that’s in Chapter 8), consider
giving extra credit if a student figures
out how to do it.

 Script 3.12 creates a scrolling status bar
message that scrolls from right to left.
Revise it to scroll your own message in
the opposite direction.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>My JavaScript page</
  title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 myMsg = “Student’s message
  here “
 i = myMsg.length

 function scrollMsg() {
 window.status = myMsg.
  substring(i,myMsg.length)
  + myMsg.substring(0,i)
 if (i > 0) {
 i--
 }
 else {
 i = myMsg.length
 }
 setTimeout(“scrollMsg()”,
  50)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”
 onload=”scrollMsg()”>
<h2>I’m a kewl JavaScript dood
with a scrolling status bar!</h2>
</body>
</html>

 What’s being tested here is not the
ability to create scrolling status bars
(they’re not that common these days),
but the ability to modify and debug
code, along with an understanding of
string manipulation. Students should
realize that they don’t need to change
what window.status is set to—they
only need to change those lines involv-
ing setting and checking the value of i.

Ch
ap

te
r

3:
 L

an
g

u
ag

e
Es

se
n

ti
al

s
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 03(E).indd 3/5/04, 2:26 PM2

Study Guide  Chapter 3: Language Essentials

</noscript>
</body>
</html>

 This uses an alternate version of
switch/case than the one presented
in the book, so make sure that you
cover this approach in class. This ver-
sion is used when there isn’t a single
value that can be checked against, so
instead, switch is passed true, and
each individual case does its own
check. Of course, there are many dif-
ferent ways to approach this problem,
so students can come up with their
own unique answer, too, so long as
they end up with the same result.

  Re-write Script 3.10 (Handling Errors) to
use multi-level conditionals instead.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Square Root Calculator</
  title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 ans = prompt(“Enter a
  number”,””)

 switch(true) {
 case (!ans):
 alert(“You didn’t enter
  anything”)
 break
 case (isNaN(ans)):
 alert(“That isn’t a
  number”)
 break
 default:
 alert(“The square
  root of “ + ans + “ is “
  + Math.sqrt(ans))
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<noscript>
 <h2>This page requires
  JavaScript.</h2>

Ch
apter 3: Lan

g
u

ag
e Essen

tials
 Stu

dy G
u

ide
 Exercises

Java Ins ch 03(E).indd 3/5/04, 2:26 PM3

Study Guide  Chapter 3: Language Essentials

 What are the reasons for and against
using the plug-in detection method
described in the book?

 Pro: it’s simple, and it works with
JavaScript. Con: it doesn’t work with
Internet Explorer for Windows, the
most popular browser in use.

 What are the pros and cons of using a
zero-based system like JavaScript uses?

 This is covered in the sidebar on page
33, but it’s important to make sure
your students understand how this
works. Point out that while indexOf
is zero-based, length shows the
one-based number that you might or
might not expect.

 When is it right to use body scripts and
when is it right to use header scripts?

 Header scripts are for functions and
those variables that must be set when
the page first loads. Body scripts are
used for code that actually modifies the
appearance of the page itself. Whenever
possible, body scripts should call func-
tions that are in the head.

 What are the benefits of using functions,
instead of just repeating code as needed?

 You can call a function many times
during a script, saving much typing.
Changing the function changes the
way it works throughout the script,
which helps simplify debugging.

Multiple choice

1. If you want a loop to go around ten times,
which of the following is the correct
JavaScript syntax?

A. for (i=1;i<10;i++)

B. for (i=1;i=10;i++)

C. for (i=0;i<10;i++)

D. for (i=0;i<=10;i++)

2. A JavaScript function begins with the
word function followed by:

A. A parenthesis

B. The function name

C. A semicolon

D. Nothing

3. Giving information to a function is called:

A. Sending

B. Teleporting

C. Passing

D. Giving

4. NaN means:

A. Sodium Nitrate

B. Nary a Number

C. Non Activated Number

D. Not a Number

5. You can put how many scripts on a single
Web page?

A. Only one

B. Two; one head script and one body
script

C. As many as you want

Ch
ap

te
r

3:
 L

an
g

u
ag

e
Es

se
n

ti
al

s


 S
tu

dy
 G

u
id

e


 D
is

cu
ss

io
n

 a
n

d
R

ev
ie

w
 Q

u
es

ti
o

n
s

Review QuestionsClass Discussion Questions

Java Ins ch 03(E).indd 3/5/04, 2:26 PM4

Study Guide  Chapter 3: Language Essentials

6. The setTimeout command does what?

A. Tells the script to end

B. Pauses the script

C. Tells the script to go sit in the corner

D. Tells the script to execute faster

Fill-in-the-blank

Referring to this code, answer the following
three questions:

myString = “Hello World!”
worldFound = myString.indexOf(“world”)
WorldFound = myString.indexOf(“World”)

1. What is the value of worldFound? -1

2. What is the value of WorldFound? 6

3. What is the value of myString.length? 12

Find the Errors

This code should print out the numbers 1-
10, but it doesn’t. Find all the errors. Fill in as
many as you can find.

<!DOCTYPE html PUBLIC “-//W3C//DTD
 XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Display Integers</title>
</head>
<body>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide scripts from old
browsers
 for (i=0;i++;i<10) {
 i++
 documentWrite(i)
 // End hiding scripts from old
  browsers -->

 </script>
</body>
</html>

1. The method documentWrite(i) should
be written as document.write(i).

2. The code within the for loop is in the
wrong order: it should be the initializa-
tion step, then the limitation step, and
then the increment step. The code as
written will loop forever.

3. Incrementing i within the loop causes it
to be incremented twice: once by the ++,
and once by the loop itself. Either use a
temporary variable, or make the loop go
from 1 to 10 instead of 0 to 9.

4. The closing brace that ends the for loop
is missing.

5. One extra line is left blank just in case the
student decides to fix the bugs in some
other manner (which is perfectly valid).
There are any number of ways to write
any given example, and the students
should know that there’s no one right way
(as mentioned on page 21).

Ch
apter 3: Lan

g
u

ag
e Essen

tials
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 03(E).indd 3/5/04, 2:26 PM5

Chapter 4: Image Basics  Study Guide

Learning Objectives
 Learn the basics of adding rollovers to a

Web page.

 Rollovers are the most common usage
of JavaScript, and students should
have a solid grasp of how to do them
by the end of this chapter.

 Learn how to handle more complex roll-
overs, including multiple rollovers, how
to trigger rollovers from a link, and how
to use links to change both single and
multiple rollovers.

 This may not cover all permutations
of rollovers that exist, so discuss
with students other variations that
they’ve seen.

 Understand how to use functions to ease
coding multiple rollovers and rollovers
with multiple images.

 Any time code is repeated, it’s a
candidate for turning into a function,
so that’s been done here to remind
students of this principle.

 The tip on page 68 describes a travel site,
with three text links (Scotland, Tahiti,
and Cleveland) each changing a single
image to the desired destination when
rolled over. Create this page with your
own three destinations, using Script 4.4
as a starting point.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
<title>Exercise 4.1</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old
 browsers
 if (document.images) {
 scotland = new Image
 tahiti = new Image
 cleveland = new Image
 backgrnd = new Image

 scotland.src = “images/
  scotland1.jpg”
 tahiti.src = “images/
  tahiti1.jpg”
 cleveland.src = “images/
  cleveland1.jpg”
 backgrnd.src = “images/
  spacer.gif”
 }

 function chgImg(imgField,
  newImg) {
 if (document.images) {

continues on next page

Get Up and Running Exercises

Ch
apter 4: Im

ag
e B

asics
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 04(E).indd 3/5/04, 2:26 PM1

Study Guide  Chapter 4: Image Basics

 document[imgField].src=
  eval(newImg + “.src”)
 }
 }

 // End hiding script from old
  browsers -->
</script>
</head>
<body bgcolor=”#FFFFFF”>
<a href=”scotland.html”
 onmouseover=”chgImg(‘picField’,
 ’scotland’)” onmouseout=”chgImg
 (‘picField’,’backgrnd’)”
 >Scotland

<a href=”tahiti.html”
 onmouseover=”chgImg(‘picField’,
 ’tahiti’)” onmouseout=”chgImg
 (‘picField’,’backgrnd’)”>Tahiti


<a href=”cleveland.html”
 onmouseover=”chgImg(‘picField’,
 ’cleveland’)” onmouseout=
 ”chgImg(‘picField’,’backgrnd’)”
 >Cleveland

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField” vspace=”20”
 alt=”Picture field” />
</body>
</html>

 There are a number of ways to do
this one; this example combines the
rollovers from Scripts 4.4 and 4.5 with
the function from Script 4.7.

 Modify the previous exercise to change
multiple images (at least three) when one
of the destination links is rolled over.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
<title>Exercise 4.2</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old
 browsers
 if (document.images) {
 scotland1 = new Image
 tahiti1 = new Image
 cleveland1 = new Image

 scotland2 = new Image
 tahiti2 = new Image
 cleveland2 = new Image

 scotland3 = new Image
 tahiti3 = new Image
 cleveland3 = new Image

 scotland1.src = “images/
  scotland1.jpg”
 tahiti1.src = “images/
  tahiti1.jpg”
 cleveland1.src = “images/
  cleveland1.jpg”

 scotland2.src = “images/
  scotland2.jpg”
 tahiti2.src = “images/
  tahiti2.jpg”

continues on next page

Ch
ap

te
r

4:
 Im

ag
e

B
as

ic
s

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 04(E).indd 3/5/04, 2:26 PM2

Study Guide  Chapter 4: Image Basics

<a href=”tahiti.html”
 onmouseover=”chgImg(‘picField1’,
 ’tahiti1’);chgImg(‘picField2’,
 ’tahiti2’);chgImg(‘picField3’,
 ’tahiti3’)” onmouseout=”chgImg
 (‘picField1’,’backgrnd’);chgImg
 (‘picField2’,’backgrnd’);chgImg
 (‘picField3’,’backgrnd’)”
 >Tahiti

<a href=”cleveland.html”
 onmouseover=”chgImg
 (‘picField1’,’cleveland1’);
 chgImg(‘picField2’,
 ’cleveland2’);chgImg
 (‘picField3’,’cleveland3’)”
 onmouseout=”chgImg(‘picField1’,
 ’backgrnd’);chgImg(‘picField2’,
 ’backgrnd’);chgImg(‘picField3’,
 ’backgrnd’)”>Cleveland


<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField1” vspace=”20”
 alt=”Picture field” />

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField2” vspace=”20”
 alt=”Picture field” />

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField3” vspace=”20”
 alt=”Picture field” />
</body>
</html>

 If the previous exercise was done
correctly, all that should have been
added here was two more images and
two more calls to chgImg() for each
onmouseover and onmouseout.

continues on next page

 cleveland2.src = “images/
  cleveland2.jpg”

 scotland3.src = “images/
  scotland3.jpg”
 tahiti3.src = “images/
  tahiti3.jpg”
 cleveland3.src = “images/
  cleveland3.jpg”

 backgrnd = new Image
 backgrnd.src = “images/
  spacer.gif”
 }

 function chgImg
  (imgField,newImg) {
 if (document.images) {
 document[imgField].src=
  eval(newImg + “.src”)
 }
 }

 // End hiding script from old
  browsers -->
</script>
</head>
<body bgcolor=”#FFFFFF”>
<a href=”scotland.html” onmouse
 over=”chgImg(‘picField1’,
 ’scotland1’);chgImg(‘picField2’,
 ’scotland2’);chgImg(‘picField3’,
 ’scotland3’)” onmouseout=
 ”chgImg(‘picField1’,’backgrnd’);
 chgImg(‘picField2’,’backgrnd’);
 chgImg(‘picField3’,’backgrnd’)”
 >Scotland

Ch
apter 4: Im

ag
e B

asics
 Stu

dy G
u

ide
 Exercises

Java Ins ch 04(E).indd 3/5/04, 2:26 PM3

Study Guide  Chapter 4: Image Basics

 Modify the previous exercise to use
images instead of text links.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
<title>Exercise 4.3</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old
 browsers
 if (document.images) {
 scotland1 = new Image
 tahiti1 = new Image
 cleveland1 = new Image

 scotland2 = new Image
 tahiti2 = new Image
 cleveland2 = new Image

 scotland3 = new Image
 tahiti3 = new Image
 cleveland3 = new Image

 scotland1.src = “images/
  scotland1.jpg”
 tahiti1.src = “images/
  tahiti1.jpg”
 cleveland1.src = “images/
  cleveland1.jpg”

 scotland2.src = “images/
  scotland2.jpg”
 tahiti2.src = “images/
  tahiti2.jpg”
 cleveland2.src = “images/
  cleveland2.jpg”

 scotland3.src = “images/
  scotland3.jpg”

 tahiti3.src = “images/
  tahiti3.jpg”
 cleveland3.src = “images/
  cleveland3.jpg”

 backgrnd = new Image
 backgrnd.src = “images/
  spacer.gif”
 }

 function chgImg
  (imgField,newImg) {
 if (document.images) {
 document[imgField].src=
  eval(newImg + “.src”)
 }
 }

 // End hiding script from old
  browsers -->
</script>
</head>
<body bgcolor=”#FFFFFF”>
<a href=”scotland.html” onmouse
 over=”chgImg(‘picField1’,
 ’scotland1’);chgImg
 (‘picField2’,’scotland2’);
 chgImg(‘picField3’,
 ’scotland3’)” onmouseout=”
 chgImg(‘picField1’,’backgrnd’);
 chgImg(‘picField2’,
 ’backgrnd’);chgImg
 (‘picField3’,’backgrnd’)”>
 <img src=”images/scotland.jpg”
 width=”100” height=”100”
 alt=”Scotland Link” border=”0”
 />

continues on next page

Ch
ap

te
r

4:
 Im

ag
e

B
as

ic
s

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 04(E).indd 3/5/04, 2:26 PM4

Study Guide  Chapter 4: Image Basics

<a href=”tahiti.html”
 onmouseover=”chgImg
 (‘picField1’,’tahiti1’);
 chgImg(‘picField2’,’tahiti2’)
 ;chgImg(‘picField3’,’tahiti3’)”
 onmouseout=”chgImg(‘picField1’,
 ’backgrnd’);chgImg(‘picField2’,
 ’backgrnd’);chgImg(‘picField3’,
 ’backgrnd’)”><img src=”images/
 tahiti.jpg” width=”100”
 height=”100” alt=”Tahiti Link”
 border=”0” />

<a href=”cleveland.html”
 onmouseover=”chgImg
 (‘picField1’,’cleveland1’);
 chgImg(‘picField2’,
 ’cleveland2’);chgImg
 (‘picField3’,’cleveland3’)”
 onmouseout=”chgImg(‘picField1’,
 ’backgrnd’);chgImg(‘picField2’,
 ’backgrnd’);chgImg(‘picField3’,
 ’backgrnd’)”><img src=”images/
 cleveland.jpg” width=”100”
 height=”100” alt=”Cleveland
 Link” border=”0” />

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField1” vspace=”20”
 alt=”Picture field” />

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField2” vspace=”20”
 alt=”Picture field” />

<img src=”images/spacer.gif”
 width=”200” height=”200”
 name=”picField3” vspace=”20”
 alt=”Picture field” />
</body>
</html>

 If the previous examples were done
correctly, all that should have been
added here was changing the three
destinations from text to image tags.

Class Discussion Questions
 What are the pros and cons of using image

rollovers as part of your user interface?

 Pro: User interface design on the Web
has turned rollovers into a standard.
People expect that buttons will
change color when you mouse over
them, to the point where a button
that doesn’t change won’t even be
thought of as a possible link (despite
the cursor change). Con: Some Web
sites depend on having JavaScript
enabled to navigate a site. Good UI
design should always keep in mind
that some people might be visiting
with JavaScript disabled.

 Why is the image rollover placed in the
<a> tag, and not in the tag?

 This is the case primarily for historical
reasons, as Netscape started off doing it
this way in Navigator 2.0. Some brows-
ers allow onmouseover and onmouseout
in the tag, and students should
be encouraged to try them in as many
browsers as possible to learn which ones
do and don’t support this approach. In
general, they’ll find that that approach
works in IE 4+ and Netscape 6+. Discuss
when and why it’s feasible to ignore
browsers other than these.

 What are the benefits and drawbacks of
using functions to handle rollovers?

 Pro: Less code, no need to work
around Netscape 2 issues.

 Con: Slightly slower, as the func-
tion always (1) checks to see if
document.images exists, and (2) does
an eval() (always a particularly slow
call) on the new image name.

continues on next page

Ch
apter 4: Im

ag
e B

asics
 Stu

dy G
u

ide
 Exercises an

d D
iscu

ssio
n

 Q
u

estio
n

s

Java Ins ch 04(E).indd 3/5/04, 2:26 PM5

Study Guide  Chapter 4: Image Basics

 If you’re willing to limit the flexibility of
what your images and objects are named,
how much JavaScript can be cut out of
these examples?

 Many other places that teach how to
do image rollovers use approaches
that constrain what the images can
be called. If you set absolute naming
conventions, you should be able to
minimize the code drastically.

Review Questions

Multiple choice

1. Which of the following could happen if
you use the same name attribute for mul-
tiple images?

A. All of the images change when one is
moused over.

B. A random image changes when one is
moused over.

C. Both A and B.

D. No images change when one is
moused over.

2. Match the following image rollover errors
with their associated cause:

A. Nothing changes when you put the
cursor over the image. (3)

B. Part of the original image displays
behind the rolled-over image
(“ghosting”). (1)

C. There’s a long pause before the roll-
over version of the image displays. (4)

D. When using Netscape, the rolled-over
version of the image displays at the
wrong size, or when using Internet
Explorer, rolling over the image causes
the page layout to reflow. (2)

1. One or more of the images is a trans-
parent GIF.

2. The on and off versions of the image
have different dimensions.

3. The name attribute was put on the
<a> tag, not the tag, or the
onmouseover and onmouseout event
handlers were put on the tag,
not the <a> tag.

4. The onmouseover version of the image
is not being pre-loaded.

Ch
ap

te
r

4:
 Im

ag
e

B
as

ic
s


 S

tu
dy

 G
u

id
e


 D

is
cu

ss
io

n
 a

n
d

R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 04(E).indd 3/5/04, 2:26 PM6

Study Guide  Chapter 4: Image Basics

3. Which of the following is the correct
syntax for creating a new image object:

A. myPic = new Image

B. myPic = new image

C. myPic = new images

D. myPic = new Images

4. Which of the following will set the src
property of myPic to the src property of
redButton:

A. myPic.src = redButton

B. myPic.src = redButton.src

C. myPic = redButton

D. myPic.src = eval(redButton +
“.src”)

5. The onmouseover and onmouseout event
handlers go:

A. Inside the script tag

B. In the img tag

C. In the a tag

D. You can put them anywhere in the
script

6. The name attribute goes in:

A. In the img tag

B. In the a tag

C. In the header script

D. You can put it anywhere in the script

Fill-in-the-Blank

1. Making images change when the user
mouses over the image is called a rollover.

2. You use the onmouseover event handler
to make the rollover happen.

3. Each image object and img tag must have
a unique name.

4. You can call multiple functions in
the same line by putting a semicolon
between commands.

5. The original and replacement images for a
rollover must have identical dimensions.

6. GIF images used in rollovers should not
be transparent.

7. To check to see if a rollover script is run-
ning in a modern browser, you need to
use the code if (document.images).

Find the Errors

This code should work identically to Script
4.3, but it doesn’t. Find all the errors:

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Image Errors</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old browsers
 if (document.images) {
 button1Red = new image
 button1Blue = new image
 button2Red = new image
 button2Blue = new image
 button1Red.src = “images/
  redButton1.gif”
 button1Blue.src = “images/
  blueButton1.gif”
 button2Red.src = “images/
  redButton2.gif”
 button2Blue.src = “images/
blueButton2.gif”
}

continues on next page

Ch
apter 4: Im

ag
e B

asics
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 04(E).indd 3/5/04, 2:26 PM7

Study Guide  Chapter 4: Image Basics

 function chgImg(currButton,newImg) {
 thisButton = “button” + currButton
 document[thisButton].src = eval
  (thisButton + newImg + “.src”)
}
 // End hiding script from old
  browsers -->
</script>
</head>
<body bgcolor=”white”>
<a href=”next1.html” onmouseover=
 ”chgImg(1,’Red’)” onmouseout=
 ”chgImg(1,’Blue’)”><img src=
 ”blueButton1.gif” width=”113”
 height=”33” border=”0” name=”button1”
 alt=”button1” />
 <a href=”next2.html” onmouseover=
 ”chgImg(2,’Red’)” onmouseout=
 ”chgImg(2,’Blue’)”><img src=
 ”blueButton2.gif” width=”113”
 height=”33” border=”0” name=”button1”
 alt=”button1” />
</body>
</html>

1. JavaScript doesn’t have an object
image—the first four lines under the
document.images check should use Image.

2. The code inside the chgImg()
function should be inside an if
(document.images) {} check.

3. Both buttons have the same name. The
second tag should have the name
attribute set to button2.

4. The src attribute of the tags has
incorrect paths for the images. They’re in
the images subdirectory, not in the same
directory as the HTML file.

5. An extra line is left blank in case the
student finds a different way to fix the
above errors.

Ch
ap

te
r

4:
 Im

ag
e

B
as

ic
s


 S

tu
dy

 G
u

id
e


 R

ev
ie

w
 Q

u
es

ti
o

n
s

Java Ins ch 04(E).indd 3/5/04, 2:26 PM8

Chapter 5: More Fun with Images  Study Guide

Learning Objectives
 Add both auto-running and user-driven

slideshows and banners to a Web page.

 Note that auto-running slideshows and
cycling banners are the same thing.

 Add individual and multiple random
images to a Web page.

 This can be used to make a page look
different each time it’s loaded, but the
random images all need to have the
same dimensions.

 Combine image rollovers with image
maps to create menu effects.

 This can be a simple way to add
menus to a page without having to
get into the hard-core DHTML that
they’ll learn later in the book.

 Modify Script 5.5 so that the slideshow
only goes forward and warns the user
when they’ve reached the end of the
slideshow.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 5.1</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old
 browsers
 myPix = new Array(“images/
  pathfinder.gif”,”images/
  surveyor.gif”, “images/
  surveyor98.gif”)
thisPic = 0
imgCt = myPix.length - 1
 function processNext() {
 if (document.images) {
 if (thisPic == imgCt) {
 alert(“You’ve reached the
  end of the slideshow”)
 }
 else {
 thisPic++
 document.myPicture.src=
  myPix[thisPic]
 }
 }
}
// End hiding script from old
 browsers -->
</script>
</head>

continues on next page

Get Up and Running Exercises

Ch
apter 5: M

o
re Fu

n
 w

ith
 Im

ag
es

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 05(E).indd 3/5/04, 2:26 PM1

Study Guide  Chapter 5: More Fun with Images

<body bgcolor=”white”>
<h1 align=”center”>US Missions to
 Mars

 <img src=”images/
  pathfinder.gif” name=
  ”myPicture” width=”201”
  height=”155”
  alt=”Slideshow”
  align=”middle” /><a
  href=”javascript:
processNext()”>Next >>
</h1>
</body>
</html>

 As always, there are many possible
ways for the students to successfully
complete this task. This example
combines Script 5.5 with an alert mes-
sage (from Chapter 2).

 Write an auto-running slideshow (one that
runs without input from the user) that can
run either forwards or backwards if/when
the user chooses to switch direction.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
<title>Exercise 5.2</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old
 browsers
 myPix = new Array(“images/
  callisto.jpg”,”images/
  europa.jpg”,”images/io.jpg”,
  “images/ganymede.jpg”)
thisPic = 0
imgCt = myPix.length – 1
direction = 1

 function chgSlide() {
 if (document.images) {
 thisPic = thisPic + direction
 if (thisPic > imgCt) {
 thisPic = 0
 }
 if (thisPic < 0) {
 thisPic = imgCt
 }
 document.myPicture.src=
  myPix[thisPic]
 setTimeout(“chgSlide()”,
  3 * 1000)
 }
}
 // End hiding script from old
  browsers -->
</script>
</head>
<body bgcolor=”white” onload=
 ”chgSlide()”>
<h1 align=”center”>Jupiter’s
 Moons

<img src=”images/callisto.jpg”
 name=”myPicture” width=”262”
 height=”262” alt=”Slideshow”
 />

<a href=”javascript:direction=
 -1”><< Backwards</
 a> <a href=
 ”javascript:direction=
 1”>Forwards >></h1>
</body>
</html>

 This example combines Scripts 5.1
and 5.6. The key to this for students is
that they need to understand that the
user can change the value of direc-
tion at any time, and because direc-
tion has a numeric value, the script
can run either forwards or backwards
just by being based on its value. This is
covered in the description of Script 5.6.

Ch
ap

te
r

5:
 M

o
re

 F
u

n
 w

it
h

 Im
ag

es
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 05(E).indd 3/5/04, 2:26 PM2

Study Guide  Chapter 5: More Fun with Images

 img5.src =
  “images/nav_01_on.gif”
 img6.src =
  “images/nav_01_off.gif”
 img7.src =
  “images/nav_02_01.gif”
 img8.src =
  “images/nav_02_02.gif”
 img9.src =
  “images/nav_02_03.gif”
 img10.src =
  “images/nav_02_04.gif”
 img11.src =
  “images/nav_02_on.gif”
 img12.src =
  “images/nav_02_off.gif”
 }

 function chgImg
  (imgField,newImg) {
 if (document.images) {
 document[imgField].src =
  eval(newImg + “.src”)
 }
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <map name=”menu01” id=”menu01”>
 <area shape=”rect” coords=
  ”14,3,105,15” href=
  ”company/index.html”
  onmouseover=”chgImg
  (‘menu1’,’img5’)”
  alt=”company” />

continues on next page

 Using Script 5.10 as a model, design a
Web page with at least two menus, each
of which contains at least four items. For
example, you could design a site for your
Web design business, with the first menu
displaying services you offer and the
second displaying examples from your
portfolio.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
 <head>
 <title>Example 5.3</title>
 <script language=”javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 if (document.images) {
 img1 = new Image
 img2 = new Image
 img3 = new Image
 img4 = new Image
 img5 = new Image
 img6 = new Image
 img7 = new Image
 img8 = new Image
 img9 = new Image
 img10 = new Image
 img11 = new Image
 img12 = new Image

 img1.src =
  “images/nav_01_01.gif”
 img2.src =
  “images/nav_01_02.gif”
 img3.src =
  “images/nav_01_03.gif”
 img4.src = “images/nav_01_
  04.gif”

Ch
apter 5: M

o
re Fu

n
 w

ith
 Im

ag
es

 Stu
dy G

u
ide

 Exercises

Java Ins ch 05(E).indd 3/5/04, 2:27 PM3

Study Guide  Chapter 5: More Fun with Images

 <area shape=”rect” coords=
  ”13,18,78,27” href=
  ”company/background.html”
  onmouseover=”chgImg
  (‘menu1’,’img1’)”
  alt=”background” />
 <area shape=”rect” coords=
  ”13,28,45,36” href=
  ”company/press.html”
  onmouseover=”chgImg
  (‘menu1’,’img2’)”
  alt=”press” />
 <area shape=”rect” coords=
  ”13,37,40,45” href=
  ”company/staff.html”
  onmouseover=”chgImg
  (‘menu1’,’img3’)”
  alt=”staff” />
 <area shape=”rect” coords=
  ”13,46,38,55” href=
  ”company/jobs.html”
  onmouseover=”chgImg
  (‘menu1’,’img4’)”
  alt=”jobs” />
 </map>
 <map name=”menu02” id=”menu02”>
 <area shape=”rect” coords=
  ”14,3,105,15” href=
  ”portfolio/index.html”
  onmouseover=”chgImg
  (‘menu2’,’img11’)”
  alt=”portfolio” />
 <area shape=”rect” coords=
  ”13,18,78,27” href=
  ”portfolio/clients.html”
  onmouseover=”chgImg
  (‘menu2’,’img7’)”
  alt=”clients” />

 <area shape=”rect” coords=
  ”13,28,45,36” href=
  ”portfolio/projects.html”
  onmouseover=”chgImg
  (‘menu2’,’img8’)”
  alt=”projects” />
 <area shape=”rect” coords=
  ”13,37,40,45” href=
  ”portfolio/awards.html”
  onmouseover=”chgImg
  (‘menu2’,’img9’)”
  alt=”awards” />
 <area shape=”rect” coords=
  ”13,46,38,55” href=
  ”portfolio/pro_bono.html”
  onmouseover=”chgImg
  (‘menu2’,’img10’)”
  alt=”pro bono” />
 </map>
 <a href=”company/index.html”
  onmouseout=”chgImg(‘menu1’,
  ’img6’)”><img usemap=
  ”#menu01” src=”images/nav_01_
  off.gif” width=”114”
  height=”61” border=”0”
  name=”menu1” alt=”company
  menu” />
 <a href=”portfolio/index.html”
  onmouseout=”chgImg(‘menu2’,
  ’img12’)”><img usemap=
  ”#menu02” src=”images/nav_02_
  off.gif” width=”110”
  height=”61” border=”0”
  name=”menu2” alt=”portfolio
  menu” />
</body>
</html>

Ch
ap

te
r

5:
 M

o
re

 F
u

n
 w

it
h

 Im
ag

es
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 05(E).indd 3/5/04, 2:27 PM4

Study Guide  Chapter 5: More Fun with Images

 If you’re providing graphics for the
students to work with, design them so
that the “off ” versions of the images
are just empty white space except
for the top-most rollover area. This
approach will give the impression of
a pull-down menu. Also, note that
for each item on a given menu, you’ll
need that many image files plus one
(the latter for the “off ” version). The
above example has two menus, each
of which have five choices, so there’s
two times six or twelve total images.

 The effect of Script 5.10, “Combining a
Rollover with an Image Map,” can be dupli-
cated by using multiple images that touch
each other, and then changing each image
individually when one is rolled over. What
are the pros and cons of using image map
rollovers vs. using multiple rollover images
placed precisely with a table?

 Pro: With image maps, you know
that your images are going to always
be precisely where you want them.
Forcing multiple images to butt up
against each other by placing them
within a table is prone to errors unless
you test with every possible browser.

 Con: The entire image has to be
redisplayed every time one part of the
image map is rolled over. If any part of
the image needs to change, all of the
images in the image map may need to
be recreated.

 What are the benefits of using JavaScript
to create animated banners, rather than
using an animated GIF?

 With a JavaScript banner, you can use
higher-quality images, such as JPEG
or PNG.

continues on next page

Class Discussion Questions

Ch
apter 5: M

o
re Fu

n
 w

ith
 Im

ag
es

 Stu
dy G

u
ide

 D
iscu

ssio
n

 Q
u

estio
n

s

Java Ins ch 05(E).indd 3/5/04, 2:27 PM5

Study Guide  Chapter 5: More Fun with Images

 You could use a CGI to create a slideshow,
instead of JavaScript. What are the pros
and cons of the JavaScript approach?

 Pro: A new page doesn’t have to be
loaded for every image when you use
JavaScript (as it would if CGI was
used). The JavaScript approach also
puts less stress on the server, as it
doesn’t require the server to generate
an entirely new page every time the
user wants to see a new slide. Lastly,
using JavaScript the Web developer
doesn’t need to have access to the
server or an account with CGI privi-
leges in order to write a slideshow.

 Con: The person viewing the Web
page needs to have JavaScript enabled.

Multiple choice

1. Which of the following lines of code will
cause the rotate() function to be called
every three seconds:

A. setTimeout(“rotate()”, 3)

B. setTimeout(3, “rotate()”)

C. setTimeout(3000, “rotate()”)

D. setTimeout(“rotate()”, 3000)

2. Which of the following is a valid line of
JavaScript?

A. bigPix = new Array
 (“planes.jpg”, “trains.jpg”,
  “automobiles.jpg”)

B. bigPix = new Array
 (“planes.jpg,” “trains.jpg,”
  “automobiles.jpg”)

C. bigPix = new Array
 (planes.jpg, trains.jpg,
  automobiles.jpg)

D. bigPix = new Array
 (“planes.jpg”; “trains.jpg”;
  “automobiles.jpg”)

E. Array bigPix = new
 (“planes.jpg”, “trains.jpg”,
  “automobiles.jpg”)

3. You can use an array to:

A. Contain the names of image files in a
cycling banner.

B. List multiple variables for later use.

C. Contain the caption text for each
image in a slideshow.

D. All of the above.

Review Questions

Ch
ap

te
r

5:
 M

o
re

 F
u

n
 w

it
h

 Im
ag

es
 

 S
tu

dy
 G

u
id

e


 D
is

cu
ss

io
n

 a
n

d
R

ev
ie

w
 Q

u
es

ti
o

n
s

Java Ins ch 05(E).indd 3/5/04, 2:27 PM6

Study Guide  Chapter 5: More Fun with Images

4. If your page is XHTML, you should make
sure that your JavaScript is marked as:

A. PCDATA

B. MSDATA

C. CDATA

D. XML Text

5. If there are six images in the ban-
nerImages array, what is the value of
bannerImages.length?

A. 0

B. 5

C. 6

D. 7

Fill-in-the-blank

Referring to this code, answer the following
set of questions:

 myImages = new Array(“image1.gif”,
  ”image2.gif”,”image3.gif”)
imgCt = myImages.length
randomNum = Math.floor(Math.random() *
 imgCt)
document.myPicture.src =
 myImages[randomNum]

1. What is the value of myImages[1]?
“image2.gif”

2. What type of object is
myImages[randomNum]? A text string

3. What is the value of imgCt? 3

4. What is the lowest possible value of ran-
domNum? 0

5. What is the highest possible value of
randomNum? 2

Find the Errors

This attempt to answer the first “Get Up and
Running” exercise, above, has a number of
errors. Find them all.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 5.1</title>
<script language=”Javascript”
 type=”text/javascript”>
<!-- Hide script from old browsers
 myPix = new Array(pathfinder.gif,
 surveyor.gif, surveyor98.gif)
thisPic = 0
imgCt = myPix.length
 function processNext() {
 if (document.images) {
 if (thisPic = imgCt) {
 alert(“You’ve reached the end of
  the slideshow”)
 }
 else {
 thisPic++
 document.myPicture.src=
  myPix[thisPic]
 }
 }
}
// End hiding script from old
 browsers -->
</script>
</head>
<body bgcolor=”white”>
<h1 align=”center”>US Missions to
 Mars

continues on next page

Ch
apter 5: M

o
re Fu

n
 w

ith
 Im

ag
es

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 05(E).indd 3/5/04, 2:27 PM7

Study Guide  Chapter 5: More Fun with Images

 <img src=”pathfinder.gif” width=”201”
  height=”155” alt=”Slideshow”
  align=”middle” /><a href=
  ”javascript:processNext()”>Next
  >>
</h1>
</body>
</html>

1. The variable imgCt is set to myPix.length,
where it should be myPix.length–1.

2. The names of the images stored in
the myPix array should each be enclosed
in quotes.

3. The variable thisPic is being set to imgCt
when it should be compared to
it instead.

4. The name attribute of the slideshow
image has been left off.

5. One extra line is here in case the student
finds different errors.

Ch
ap

te
r

5:
 M

o
re

 F
u

n
 w

it
h

 Im
ag

es
 

 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 05(E).indd 3/5/04, 2:27 PM8

Chapter 6: Frames, Frames, and More Frames  Study Guide

Learning Objectives
 Learn how to use JavaScript to control

how your pages appear in framesets.

 Framed sites are less common than
they once were, but some sites still
use frames, and other sites still try to
put others inside their own frames.
Consequently, it’s worth learning how
JavaScript can control framed sites.

 Use JavaScript to share functions and
store information in frames.

 For example, you could use a com-
bination of JavaScript and frames to
create an online quiz that would store
information about how the student
has done on the quiz so far in one of
the frames.

 Learn how to work with multiple frames.

 HTML can’t change multiple frames
with a single click, so JavaScript is
required to do this.

 Find one or more sites on the Web
that use frames. Analyze why the site’s
designer chose to use frames, and
whether this was the best approach
to designing the site. If the site uses
JavaScript to handle its frames, describe
what the scripts do. Come to class pre-
pared to report on your research.

 Create a site with three frames: one navi-
gation bar and two content areas. Write
a script that uses links in the navigation
bar to change the content in one of the
two content areas, using Scripts 6.14–6.16
as a starting point.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Frameset//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 6.2</title>
</head>
<frameset cols=”30%,70%”>
 <frame src=”navbar.html”
  name=”left” />
 <frameset rows=”50%,50%”>
 <frame src=”content1.html”
  name=”content1” />
 <frame src=”content2.html”
  name=”content2” />
 </frameset>
</frameset>
</html>
<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>

continues on next page

Get Up and Running Exercises

Ch
apter 6: Fram

es, Fram
es, an

d M
o

re Fram
es

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 06(E).indd 3/5/04, 2:27 PM1

Study Guide  Chapter 6: Frames, Frames, and More Frames

<head>
 <title>Nav Bar</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function writeContent
  (frameNo,thisPage) {
 thisFrame = eval(“parent.
  content” + frameNo)
 thisFrame.document.write
  (“<html><head>
  <\/head><body bgcolor=
  ’#FFFFFF’><h1>”)
 thisFrame.document.
  write(“You are now
  looking at page “
  +thisPage+” in frame
  “+frameNo+”.”)
 thisFrame.document.write
  (“<\/h1><\/body>
  <\/html>”)
 thisFrame.document.close()
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<h1>Navigation Bar</h1>
<h2>
 <a href=”javascript:
  writeContent(1,1)”>Frame 1,
  Page 1

 <a href=”javascript:
  writeContent(1,2)”>Frame 1,
  Page 2

 <a href=”javascript:
  writeContent(1,3)”>Frame 1,
  Page 3

 <a href=”javascript:
  writeContent(2,1)”>Frame 2,
  Page 1

 <a href=”javascript:
  writeContent(2,2)”>Frame 2,
  Page 2

 <a href=”javascript:
  writeContent(2,3)”>Frame 2,
  Page 3
</h2>
</body>
</html>
<!DOCTYPE html PUBLIC “-//W3C//
  DTD XHTML 1.0 Transitional//
  EN”>
<html xmlns=”http://www.w3.org/
  1999/xhtml”>
<head>
 <title>Content frame 1</title>
</head>
<body bgcolor=”#FFFFFF”>
</body>
</html>
<!DOCTYPE html PUBLIC “-//W3C//
  DTD XHTML 1.0 Transitional//
  EN”>
<html xmlns=”http://www.w3.org/
  1999/xhtml”>
<head>
 <title>Content frame 2</title>
</head>
<body bgcolor=”#FFFFFF”>
</body>
</html>

 Note that there are four pages here
(one frameset, one navigation page,
and two content pages); by this point,
the students should know how to
figure out which is which.

Ch
ap

te
r

6:
 F

ra
m

es
, F

ra
m

es
, a

n
d

M
o

re
 F

ra
m

es
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 06(E).indd 3/5/04, 2:27 PM2

Study Guide  Chapter 6: Frames, Frames, and More Frames

<body bgcolor=”#FFFFFF”>
<h1>Navigation Bar</h1>
<h2>
 <a href=”javascript:
  writePages(1)”>Page 1
 

 <a href=”javascript:
  writePages(2)”>Page 2
 

 <a href=”javascript:
  writePages(3)”>Page 3
</h2>
</body>
</html>

 This exercise lists only the navigation
bar frame, as it’s the only one that
should have to change. Keep in mind,
though, that there are many ways that
students can do this exercise, so any
approach that updates both content
frames with one click should be con-
sidered acceptable.

 Modify the previous exercise to have each
link in the navigation bar update both
content areas simultaneously.

<!DOCTYPE html PUBLIC “-//W3C//
  DTD XHTML 1.0 Transitional//
  EN”>
<html xmlns=”http://www.w3.org/
  1999/xhtml”>
<head>
 <title>Nav Bar</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function writeContent
  (frameNo,thisPage) {
 thisFrame = eval(“parent.
  content” + frameNo)
 thisFrame.document.write
  (“<html><head>
  <\/head><body
bgcolor=’#FFFFFF’><h1>”)
 thisFrame.document.write
  (“You are now looking at
  page “+thisPage+” in
  frame “+frameNo+”.”)
 thisFrame.document.write
  (“<\/h1><\/body>
  <\/html>”)
 thisFrame.document.close()
 }

 function writePages(pageNo) {
 writeContent(1,pageNo)
 writeContent(2,pageNo)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>

Ch
apter 6: Fram

es, Fram
es, an

d M
o

re Fram
es

 Stu
dy G

u
ide

 Exercises

Java Ins ch 06(E).indd 3/5/04, 2:27 PM3

Study Guide  Chapter 6: Frames, Frames, and More Frames

 Why would you want to keep a page out
of a frame?

 If your site doesn’t have frames, and
someone else is putting your site
inside their site (making it appear as if
your content is theirs), you’ll need to
break your page out of their frame.

 Why would you want to force a page into
a frame?

 If your site does have frames, you’ll
still want it to be search engine
friendly. That means that people will
come into a random page on the site,
and the page will have to be reloaded
inside its proper frameset, which puts
the page into its proper context.

 When would you want to store informa-
tion in a frame? Are there better ways to
store information?

 There are many ways to store infor-
mation about a user’s travels through
a site, but if you don’t have access to
server-side utilities, your only client-
side options are cookies and frames.

 Are there situations where you should
not use frames?

 Frames are not as popular as they once
were, so you’ll want to discuss how
styles of sites go in and out of fashion.

Multiple choice

1. Which of the following is not an attribute
of the frameset tag?

A. border

B. columns

C. rows

D. frameborder

2. What is the minimum number of HTML
pages you need for a framed site?

A. One

B. Two

C. Three

D. Four

3. What is the usual number of HTML
pages in a frameset?

A. One

B. Two

C. Three

D. Four

4. To escape an HTML ending tag that you
are writing with JavaScript:

A. Enclose the forward slash character in
single quote marks.

B. Enclose the forward slash character in
double quote marks.

C. Precede the forward slash
character with a backslash.

D. Do nothing; JavaScript will know what
you want to do.

Ch
ap

te
r

6:
 F

ra
m

es
, F

ra
m

es
, a

n
d

M
o

re
 F

ra
m

es
 

 S
tu

dy
 G

u
id

e


 D
is

cu
ss

io
n

 a
n

d
R

ev
ie

w
 Q

u
es

ti
o

n
s Class Discussion Questions Review Questions

Java Ins ch 06(E).indd 3/5/04, 2:27 PM4

Study Guide  Chapter 6: Frames, Frames, and More Frames

5. The URL object:

A. Is supported in every JavaScript-
capable browser.

B. Is supported only in pre-JavaScript 1.1
browsers.

C. Is supported in JavaScript 1.1
and later.

D. Both A and C.

6. The topmost frameset page can be
referred to (by itself and other pages) as:

A. top

B. parent

C. self

D. All of the above.

E. None of the above.

Fill-in-the-blank

1. When someone hijacks a page from your
web site, they are displaying it as a child
frame to their parent window.

2. In the JavaScript hierarchy, the parent
window is at the top.

3. When you have a frameset with a naviga-
tion bar and one or more content frames,
it’s more efficient to put shared functions
into the page with the navigation bar.

4. To change the content of a frame, you only
need a single link with a target attribute.

5. An iframe is an inline frame.

Definitions

1. What is a frame?

 A frame is a Web page within a
frameset.

2. What is a frameset?

 A frameset is a Web page that defines
how subsections of a browser window
will be split up into frames.

3. What is an iframe?

 An iframe is an inline frame, which is
to say, a frame that has the external
appearance of a regular frame but (1)
doesn’t require a frameset page (it can
just be defined within a normal HTML
page) and (2) can be positioned any-
where inside a browser window.

Ch
apter 6: Fram

es, Fram
es, an

d M
o

re Fram
es

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 06(E).indd 3/5/04, 2:27 PM5

Chapter 7: Working with Browser Windows  Study Guide

Learning Objectives
 Open and close windows with JavaScript.

 Put varying contents into a window
based on the link a user clicked.

 Use clicked images to open a new window.

 Open multiple windows at the same time.

 Open and scroll a window to a desired spot.

 As noted in the text, this only works in
certain browsers, so use it with care.

 Create a new window and then write
information into it with a script.

 Use a window as a control panel to
change the contents of another window.

 Position a window on the screen under
script control.

 Write four scripts similar to Script 7.1.
Have each script create a window with
one of the following four parameters
showing: toolbar, status bar, scrollbars,
and location.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.1</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function newWindow() {
 catWindow =
window.open(“images/pixel.jpg”,
 “catWin”, “width=330,
 height=250,toolbar=yes”)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House
  </h1>
 <h2>Click on His name to behold
  He Who Must Be Adored
 

 <a href=”javascript:
  newWindow()”>Pixel</h2>
</body>
</html>

continues on next page

Get Up and Running Exercises

Ch
apter 7: W

o
rkin

g
 w

ith
 B

ro
w

ser W
in

do
w

s
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 07(E).indd 3/5/04, 2:28 PM1

Study Guide  Chapter 7: Working with Browser Windows

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.2</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function newWindow() {
 catWindow = window.open
  (“images/pixel.jpg”,
  “catWin”, “width=330,
  height=250,status=yes”)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House
  </h1>
 <h2>Click on His name to behold
  He Who Must Be Adored
 

 <a href=”javascript:
  newWindow()”>Pixel</h2>
</body>
</html>
<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.3</title>
 <script language=”Javascript”
  type=”text/javascript”>

 <!-- Hide script from old
  browsers

 function newWindow() {
 catWindow = window.open
  (“images/pixel.jpg”,
  “catWin”, “width=330,
  height=250,scrollbars=yes”)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House
  </h1>
 <h2>Click on His name to behold
  He Who Must Be Adored
 

 <a href=”javascript:
  newWindow()”>Pixel</h2>
</body>
</html>
<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.4</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function newWindow() {
 catWindow = window.open
  (“images/pixel.jpg”,
  “catWin”, “width=330,
  height=250,location=yes”)

continues on next page

Ch
ap

te
r

7:
 W

o
rk

in
g

 w
it

h
 B

ro
w

se
r

W
in

do
w

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 07(E).indd 3/5/04, 2:28 PM2

Study Guide  Chapter 7: Working with Browser Windows

 destWindow = window.open
  (destjpg, “destWin”,
  “width=500,height=650”)
 destWindow.focus()
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<h1>Best Travel</h1>
<h3>Click on a location to see
 the full-size image</h3>
<table cellpadding=”10”>
 <tr>
 <td>
 <a href=”javascript:
  newWindow(‘images/
  scotland-big.jpg’)”>
  <img src=”images/
  scotland-sm.jpg”
  width=”125” height=”161”
  vspace=”10” border=”0”
  alt=”Scotland”
  />

 Scotland
 </td>
 <td>
 <a href=”javascript:
  newWindow(‘images/
  tahiti-big.jpg’)”>
  <img src=”images/
  tahiti-sm.jpg”
  width=”125” height=”161”
  vspace=”10” border=”0”
  alt=”Tahiti” />

 Tahiti
 </td>
 <td>

continues on next page

 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House
  </h1>
 <h2>Click on His name to behold
  He Who Must Be Adored
 

 <a href=”javascript:
  newWindow()”>Pixel</h2>
</body>
</html>

 Something the students should note
by the time they’ve completed this
exercise: you never need to set any
element to no. Just leaving it off will
have the same effect.

 Modify Script 7.3 to use your own images
for a travel agency site, with thumbnails
of destinations opening up larger pictures
of that destination. Use five images
instead of the three used in the script.
Use different variable names than those
in the book.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.5</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 function newWindow(destjpg) {

Ch
apter 7: W

o
rkin

g
 w

ith
 B

ro
w

ser W
in

do
w

s
 Stu

dy G
u

ide
 Exercises

Java Ins ch 07(E).indd 3/5/04, 2:28 PM3

Study Guide  Chapter 7: Working with Browser Windows

 <a href=”javascript:
  newWindow(‘images/
  cleveland-big.jpg’)”>
  <img src=”images/
  cleveland-sm.jpg”
  width=”125” height=”161”
  vspace=”10” border=”0”
  alt=”Cleveland”
  />

 Cleveland
 </td>
 <td>
 <a href=”javascript:
  newWindow(‘images/
  alaska-big.jpg’)”>
  <img src=”images/
  alaska-sm.jpg”
  width=”125” height=”161”
  vspace=”10” border=”0”
  alt=”Alaska” />

 Alaska
 </td>
 <td>
 <a href=”javascript:
  newWindow(‘images/
  hawaii-big.jpg’)”>
  <img src=”images/
  hawaii-sm.jpg”
  width=”125” height=”161”
  vspace=”10” border=”0”
  alt=”Hawaii” />

 Hawaii
 </td>
 </tr>
</table>
</body>
</html>

 Make sure that when students change
the variable names, they change them
to be something meaningful, and that
they don’t, for instance, change book-
Win to be named one thing on one line
and something else on a different line.

 The second tip on Page 154 refers to
using alert boxes as debugging aids.
Create a page with a loop that increments
a counter, and use an alert box to let you
know the value of the loop variable every
time it increments.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 7.6</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 for (i=0;i<10;i++) {
 alert(i)
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>A drab web page</h1>
</body>
</html>

 Stress to the students that while this
particular script doesn’t do a whole
lot, this approach can be incred-
ibly helpful when debugging future
problems. Encourage discussion of
where this approach would have been
helpful to solve problems that they’ve
already encountered.

Ch
ap

te
r

7:
 W

o
rk

in
g

 w
it

h
 B

ro
w

se
r

W
in

do
w

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 07(E).indd 3/5/04, 2:28 PM4

Study Guide  Chapter 7: Working with Browser Windows

 Discuss the advantages and disadvan-
tages of opening windows for the user
with JavaScript. What are some examples
of sites that use such pop-up windows for
good or for evil?

 Good: Captive portals like T-Mobile,
where you’re required to have a child
window open while you’re connected
using their wireless service. Bad:
Advertising windows.

 When would you want to open multiple
windows?

 You might want to open multiple
windows when browsing an artist’s or
photographer’s portfolio site.

 What are focus() and blur() used for?

 Bringing a primary or secondary
window to the front or back. focus()
brings the window to the front, and
blur() sends it to the back.

 What are the benefits and disadvantages
of using a separate window as a control
panel, instead of putting the information
on every page?

 Overall, both control panels and
frames are less popular now than they
used to be. The advantages are primar-
ily on the designer’s side: only one page
to update vs. an entire site if changes
need to be made, for instance. On the
user’s side, they’ve frequently got their
main window open large enough that
control panels get hidden. Or worse,
they’ve got pop-up blockers enabled so
that your control panel never appears
in the first place.

 Discuss how some but not all browsers
allow users to change which elements
are displayed, whether or not JavaScript
set those elements to be shown when the
window was first opened.

 For instance, if you set a child window
to open with its location hidden, some
browsers allow the user to change the
window to display that information.
Consequently, you shouldn’t expect to
dependably use this approach to hide
an address from a visitor.

Class Discussion Questions

Ch
apter 7: W

o
rkin

g
 w

ith
 B

ro
w

ser W
in

do
w

s
 Stu

dy G
u

ide
 D

iscu
ssio

n
 Q

u
estio

n
s

Java Ins ch 07(E).indd 3/5/04, 2:28 PM5

Study Guide  Chapter 7: Working with Browser Windows

Multiple choice

1. Which method is used to bring a window
to the front?

A. front()

B. focus()

C. blur()

D. windowfront()

2. When opening a window, how many
spaces must exist after each comma in
the parameters?

A. One

B. Two

C. Zero

D. It doesn’t matter

3. When opening a new window, the width
and height elements are:

A. Required

B. Optional

C. Forbidden

D. Irrelevant

4. Which of the following is a valid window
element?

A. scrollbar

B. statusbar

C. toolbar

D. All of the above

E. None of the above

Review Questions
5. Which of these is how a child window

should refer to its parent?

A. opener

B. parent

C. top

D. None of the above

6. Attempting to open a window when
there’s already a window open with that
name will cause:

A. The browser to crash

B. It depends on the browser

C. Two windows to open with the same
name

D. The window to redraw

E. The window to come to the front

 You may consider giving partial credit
for answer B. D is what browsers are
supposed to do, but not all browsers
always do exactly what they’re sup-
posed to.

Fill-in-the-blank

1. The window is the most important inter-
face element in a Web browser.

2. The opener property references the par-
ent window.

3. The opposite of the focus() method is
blur().

4. You must declare the name of a window
in JavaScript.

5. Your script can take action when a
window comes to the front by using the
onfocus event handler.

Ch
ap

te
r

7:
 W

o
rk

in
g

 w
it

h
 B

ro
w

se
r

W
in

do
w

s


 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 07(E).indd 3/5/04, 2:28 PM6

Study Guide  Chapter 7: Working with Browser Windows

6. To open a window or an alert dialog when
the page is loaded, you use the onload
event handler.

Definitions

1. What are the elements of a window?

 toolbar, status, menubar, location,
scrollbars, resizable

2. Explain the difference between a parent
window and a child window.

 A child window is opened by its par-
ent window.

3. Explain how you would position a new
window at the top left of the screen.

 The top-left corner of the screen is
position 0,0—so set both left and top
to zero in the parameter list.

4. What is a modal window?

 A modal window is a window that
forces the user to complete an action
before it can be closed or blurred.

Ch
apter 7: W

o
rkin

g
 w

ith
 B

ro
w

ser W
in

do
w

s
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 07(E).indd 3/5/04, 2:28 PM7

Chapter 8: Form Handling  Study Guide

Learning Objectives
 Understand how to verify a password

with JavaScript.

 Checking that users entered the same
password twice is one of the most
common and useful applications
of JavaScript. Be sure that students
understand that this just verifies the
string against itself—it doesn’t actually
check against or write to a database.

 Learn how to use an image as a Submit
button.

 By using images, rather than the
browser’s native interface widgets, the
Web designer has much better control
over the look of the site.

 Create select-and-go menus.

 Using Go buttons for menus requires a
needless step for the site’s users. Select-
and-go menus solve this problem.

 Understand how to change menus
dynamically.

 Dynamic menus are often used on
sites to improve the user experience.
For example, a site can have a menu
with names of U.S. states, and when
the user chooses a state, another menu
is automatically populated with the
names of the counties in that state.

 Learn how to validate data entered in forms.

 Data validation is a vital application
of JavaScript.

 Modify Script 8.3. Add a Cancel button
with a rollover to the page.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 8.1</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 if (document.images) {
 submitOn = new Image
 submitOff = new Image
 cancelOn = new Image
 cancelOff = new Image

 submitOn.src =
  “images/submitOn.jpg”
 submitOff.src =
  “images/submitOff.jpg”
 cancelOn.src =
  “images/cancelOn.jpg”
 cancelOff.src =
  “images/cancelOff.jpg”
 }

 function chgImg
  (imgField,newImg) {
 if (document.images) {
 document[imgField].src=
  eval(newImg + “.src”)
 }

continues on next page

Get Up and Running Exercises

Ch
apter 8: Fo

rm
 H

an
dlin

g

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 08(E).indd 3/5/04, 2:29 PM1

Study Guide  Chapter 8: Form Handling

 }

 function validForm(passForm) {
 if (passForm.passwd1.value
  == “”) {
 alert(“You must enter a
  password”)
 passForm.passwd1.focus()
 return false
 }
 if (passForm.passwd1.value !=
  passForm.passwd2.value) {
 alert(“Entered passwords
  did not match”)
 passForm.passwd1.focus()
 passForm.passwd1.select()
 return false
 }
 return true
 }

 function subForm() {
 if (validForm(document.
  myForm)) {
 document.myForm.submit()
 }
 }

 // End hiding script -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<form onsubmit=”return
 validForm(this)”
action=”someAction.cgi”
 name=”myForm”>
 Your name: <input type=”text”
  size=”30” />
 <p>Choose a password: <input
  type=”password” name=
  ”passwd1” /></p>

 <p>Verify password: <input
  type=”password” name=
  ”passwd2” /></p>
 <p><a href=”javascript:
  document.myForm.reset()”
  onmouseover=”chgImg
  (canButton,cancelOn)”
  onmouseout=”chgImg
  (canButton,cancelOff)”>
  <img src=”images/
  cancelOff.jpg” alt=”cancel”
  height=”21” width=”61”
  name=”canButton” border=”0”
  /> <a href=”javascript:
  subForm()” onmouseover=
  ”chgImg(subButton,submitOn)”
  onmouseout=”chgImg(subButton,
  submitOff)”><img src=”images/
  submitOff.jpg” alt=”submit”
  height=”21” width=”61”
  name=”subButton” border=”0”
  /></p>
</form>
</body>
</html>

 The students may need some guid-
ance to know what they need to
link the Cancel button to, but they
should be able to find the answer (the
reset() method) in Appendix A.

Ch
ap

te
r

8:
 F

o
rm

 H
an

dl
in

g
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 08(E).indd 3/5/04, 2:29 PM2

Study Guide  Chapter 8: Form Handling

 document.myForm.days.
  options[i] =
  new Option(i+1)
 }
 }
 }

 // End hiding script from
  older browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF” onload=”
 document.myForm.months.
 selectedIndex=0”>
<form action=”#” name=”myForm”>
<select name=”months” onchange=
 ”populateDays(this)”>
 <option value=””>Month</option>
 <option value=
  ”0”>January</option>
 <option value=
  ”1”>February</option>
 <option value=
  ”2”>March</option>
 <option value=
  ”3”>April</option>
 <option value=
  ”4”>May</option>
 <option value=
  ”5”>June</option>
 <option value=
  ”6”>July</option>
 <option value=
  ”7”>August</option>
 <option value=
  ”8”>September</option>
 <option value=
  ”9”>October</option>
 <option value=
  ”10”>November</option>

continues on next page

 2004 is a leap year. Change Script 8.5 to
account for the extra day in February.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 8.2</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 monthDays = new Array(31,28,
  31,30,31,30,31,31,30,31,30,
  31)
 now = new Date
 calcYr = now.getFullYear()
 if (now.getMonth() > 1) {
 calcYr++
 }

 if (calcYr % 4 == 0 &&
  (calcYr % 100 > 0 ||
  calcYr % 400 == 0)) {
 monthDays[1] = 29
 }

 function populateDays
  (monthChosen) {
 monthStr = monthChosen.
  options[monthChosen.
  selectedIndex].value
 if (monthStr != “”) {
 theMonth=parseInt
  (monthStr)

 document.myForm.days.
  options.length = 0
 for(i=0;i<monthDays
  [theMonth];i++) {

Ch
apter 8: Fo

rm
 H

an
dlin

g

 Stu
dy G

u
ide

 Exercises

Java Ins ch 08(E).indd 3/5/04, 2:29 PM3

Study Guide  Chapter 8: Form Handling

 <option value=
  ”11”>December</option>
</select>

<select name=”days”>
 <option>Day</option>
</select>
</form>

</body>
</html>

 There’s any number of ways to do this;
this one actually uses some coding
concepts that aren’t introduced until
Chapter 10. The minimum the student
should be required to do is reset month-
Days[1] based on a calculation—they
shouldn’t just change the value within
the array. In addition, they shouldn’t
have modified any code inside popu-
lateDays(). Give extra credit:
 If they figure out how to use the

Date methods (as shown above).
 If they know the correct rule for

deciding whether or not a year has
a leap day (only if it’s divisible by 4,
and it’s not divisible by 100, unless
it’s also divisible by 400—in other
words, 2000 was a leap year, but
1900 wasn’t and 2100 won’t be).

 If they figure out that the script
should be checking for the
upcoming February, not one
that’s already past. So, November
2003 should show the upcom-
ing February with a leap day, but
November 2004 should not.

 If they can remember modulo (%)
from chapter 1 and understand
that it’s the simplest way to do an
every-four-years check.

 Modify Script 8.9 to also include a check
that the Zip Code is exactly five numbers
in length. We’ll ignore the existence of
9-digit Zip Codes for now.

 function validZip(inZip) {
 if (inZip == “”) {
 return true
 }
 if (inZip.length ==
  5 && isNum(inZip)) {
 return true
 }
 return false
 }

 Rather than include the entire
script, we’ve only included the single
function that needs to be changed.
What’s important here is to make
sure that the length check is not
added after the return from isNum(),
as that wouldn’t catch some invalid
entries (such as “1234”). While we’ve
combined the two checks here, it’s
acceptable for students to do it as two
separate steps (so long as they’re in
the correct order).

Ch
ap

te
r

8:
 F

o
rm

 H
an

dl
in

g
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 08(E).indd 3/5/04, 2:29 PM4

Study Guide  Chapter 8: Form Handling

 Why would you want to use images as
Submit buttons, rather than a browser’s
native button?

 There are two reasons: to be able to
use rollovers, and to be able to create
web pages that look the same (or
mostly the same) cross-browser and
cross-platform.

 What are the benefits of using select-
and-go menus? Any drawbacks?

 They’re simple ways of managing
what could otherwise take up a good
deal of screen real estate. In addi-
tion, if they’re coded as shown in
the book, it’s simple for someone
with just a WYSIWYG editor to keep
them updated versus having to hire a
JavaScript expert if you’re using com-
plex DHTML menus.

 Why should you use JavaScript, rather
than a CGI, to validate data in forms?
When is JavaScript not the best choice
for validation?

 You should use JavaScript to validate
user input because it is faster and
more efficient to do the checks on the
client side, rather than the server side.
JavaScript is not a good choice when
you need to, for example, check a user
entry against a database of some kind.
To check against a database, you need
to use a CGI.

 Discuss how you can use parts of Script
8.11 in other scripts that you will write
in the future. For example, you can reuse
the part of the script that validates email
addresses in other forms.

 It’s a good idea at this point to discuss
reusability in general. Many scripters
maintain libraries of code fragments
that they’ve tested thoroughly that they
combine and reuse on future projects.

Class Discussion Questions

Ch
apter 8: Fo

rm
 H

an
dlin

g

 Stu
dy G

u
ide

 D
iscu

ssio
n

 Q
u

estio
n

s

Java Ins ch 08(E).indd 3/5/04, 2:29 PM5

Study Guide  Chapter 8: Form Handling

Multiple choice

1. Validating user input with JavaScript,
rather than using a CGI, is:

A. Slower

B. Faster

C. More efficient

D. Both B and C

2. The term CGI stands for:

A. Computer Gateway Interface

B. Commonly Generated Instructions

C. Common Gateway Interface

D. Computer Generated Instructions

3. The comparison x == “” checks to see if:

A. The value of x is null.

B. The value of x is empty.

C. The value of x is equal to zero.

D. The value of x is not equal to zero.

4. The email.indexOf(“@”,1) expression
checks for the @ sign, starting at which
character?

A. The first.

B. The last.

C. The second.

D. It does not check at all.

5. A Select-and-Go menu should display a
“Go” button:

A. Always

B. Never

C. Only when the user has JavaScript
disabled

D. Only when the user has a non–Web
standards compliant browser.

6. JavaScript can validate passwords against
a database:

A. Always

B. Never

C. Only if the database is written in
JavaScript

D. Only for users with Internet Explorer
for Windows.

Fill-in-the-blank

1. The JavaScript keyword this allows a
script to pass a value to a function based
on the context in which this is used.

2. Checking a user’s entries in a form with
JavaScript is called form validation.

3. The onsubmit event handler is called
when the user clicks on a submit button.

4. A function called via the submit handler
tells the browser that the form data is
valid by returning a value of true.

5. Dynamic menus populate the choices in
one menu based on the choice the user
makes in another.

6. Checking email addresses with JavaScript
validates them, but does not verify them.

Review Questions

Ch
ap

te
r

8:
 F

o
rm

 H
an

dl
in

g
 

 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 08(E).indd 3/5/04, 2:29 PM6

Study Guide  Chapter 8: Form Handling

Find the Error

This code has a number of errors.
Find them all.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Find the errors</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 function validEmail(email) {
 invalidChars = “ /:,;”

 for (i=0; i<invalidChars.length;
  i++) {
 badChar = invalidChars.
  charAt(0)
 if (email.indexOf(badChar,0)
  > -1) {
 return false
 }
 }
 charPos = email.indexOf(“@”,1)
 if (charPos == -1) {
 return false
 }
 if (email.indexOf(“@”,
  charPos +1) != -1) {
 return false
 }
 charPos = email.indexOf(“.”,
  charPos)
 if (charPos == -1) {
 return false
 }
 if (charPos+3 > email.length) {
 return false

 }
 return true
 }

 function submitIt(theForm) {
 if (!validEmail(theForm.
  emailAddr)) {
 alert(“Invalid email
  address”)
 theForm.emailAddr.focus()
 theForm.emailAddr.select()
 return false
 }
 }

 // End hiding script -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<form onsubmit=”submitIt()”
 action=”someAction.cgi”>
 Email Address: <input
  name=”emailAddr” type=”text”
  size=”30” />

 <input type=”submit” value=”Submit”
  /> <input type=”reset” />
</form>
</body>
</html>

1. The line if (!validEmail(theForm.emai
lAddr)) { should be if (!validEmail(th
eForm.emailAddr.value)) {

2. The line <form onsubmit=”submitIt()”
action=”someAction.cgi”>. should be
<form onsubmit=”return submitIt()”
action=”someAction.cgi”>.

3. There’s no return true at the end of the
submitIt() function, and it’s required in
order for the validation to work properly.

continues on next page

Ch
apter 8: Fo

rm
 H

an
dlin

g

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 08(E).indd 3/5/04, 2:29 PM7

Study Guide  Chapter 8: Form Handling

4. The line badChar =
invalidChars.charAt(0) should be bad-
Char = invalidChars.charAt(i).

5. One extra line here in case the student
decides to fix the errors in some other
fashion. There are several places, though,
where the above code differs from that in
the book, so be careful they don’t just do
a strict comparison.

Ch
ap

te
r

8:
 F

o
rm

 H
an

dl
in

g
 

 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 08(E).indd 3/5/04, 2:29 PM8

Chapter 9: Forms and Regular Expressions  Study Guide

Learning Objectives
 Understand what a regular expression is.

 As mentioned in the sidebar on
page 198, many people happily write
JavaScript for years without ever going
near regular expressions. Nothing in the
later chapters will refer back to this one,
so if there’s one chapter in this book
that you need to skip, it may as well be
this one. On the other hand, REs are a
powerful way to express complex con-
cepts in a minimum of lines of code, so
learning about them will add a powerful
tool to a student’s toolbox.

 Learn how to validate an email address
using regular expressions.

 O’Reilly and Associates has a book
that covers nothing but regular
expressions, and that book has seri-
ous coverage of using REs to validate
email addresses. And in the end, their
conclusion is that there’s no way for
REs to validate every possible valid
email address, so don’t worry if there’s
some odd, rarely used combination
(did you know that it’s valid to have
comments in email addresses?) that
your student’s code doesn’t properly
catch. And even given that, there’s no
way to use JavaScript to verify that it’s
a working email address.

 Validate file names using regular
expressions.

 Regular expressions can be used to
validate any kind of data; file names
are just a single example.

 Use regular expressions to extract,
format, and sort strings.

 String manipulation is one of the
main uses of regular expressions.

Ch
apter 9: Fo

rm
s an

d R
eg

u
lar Expressio

n
s

 Stu
dy G

u
ide

 O
bjectives

Java Ins ch 09(E).indd 3/5/04, 2:29 PM1

Study Guide  Chapter 9: Forms and Regular Expressions

 Extend Script 9.2 to also handle FTP
URLs, and PNG graphic files (.png).

 re = /^(file|http|ftp):\/\/\
  S+\/\S+\.(gif|jpg|png)$/i

 This is the only line of code that
students should have to change.
Deduct points or point out to them if
they change any other lines, or if they
remove any existing functionality
(allowing file and http URLs, and .gif
and .jpg files).

 Modify Script 9.3 to handle middle
names, as suggested in the first Tip on
page 205.

 re = /((\S+\s)+)(\S+)/
 lastNames = new Array
 newNameField = “”

 for (i=0;i<nameList.length;
  i++) {
 lastNames[i] = nameList[i].
  replace(re, “$3, $1”)
 }

 With regular expressions, even more
than most JavaScript code, there are a
multitude of ways to write any given
exercise. The goal here is to see if the
student is using their new knowledge
of REs to make the change. In this
variant, re has been changed to grab
everything before the last string and
store it in $1. $2 will now contain
whatever happens to be in the second
to last string, and $3 will contain
the last string. Consequently, when
lastNames[i] is being initialized, all
that matters is $1 and $3.

 Modify Script 9.6 to format and validate
Social Security numbers, in the form
###-##-####.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 9.3</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers
 re = /^(\d{3})[\-]?(\d{2})
  [\-]?(\d{4})$/

 function submitIt(myForm) {
 validSSN = re.exec
  (myForm.SSN.value)
 if (validSSN) {
 myForm.SSN.value =
  validSSN[1] + “-” +
  validSSN[2] + “-” +
  validSSN[3]
 }
 else {
 alert(myForm.SSN.value +
  “ isn’t a valid SSN
  number”)
 myForm.SSN.focus()
 myForm.SSN.select()
 }
 return false
 }

 // End hiding script -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>

continues on next page

Ch
ap

te
r

9:
 F

o
rm

s
an

d
R

eg
u

la
r

Ex
pr

es
si

o
n

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Get Up and Running Exercises

Java Ins ch 09(E).indd 3/5/04, 2:29 PM2

Study Guide  Chapter 9: Forms and Regular Expressions

 What are the benefits and disadvantages of
using regular expressions in your scripts?

 The benefit is being able to do a
maximum of processing in a minimal
amount of code. The drawbacks are it
are that it can be difficult for one coder
to understand another coder’s writing
style, and that some programmers
don’t like to use REs because they’re
difficult to understand and remember.

 Can you do things using regular expres-
sions that would be too difficult or
impossible using other methods? If so,
what are some examples?

 Anything you can do with REs you
can do without them—it’s just that
it could (for example) take hundreds
of lines of RE-less code to do what a
student could do with one RE line.

 Use of the RegExp object is essential in
several of this chapter’s examples. Discuss
the characteristics and uses of the object,
and its properties and methods.

 Along with this, touch on the use
of the RegExp.exec() method to
use the object as a string. It’s also
worth pointing out that RegExp has
the properties RegExp.$1 through
RegExp.$9, and because REs are
one-based, not zero-based as with
many JavaScript numbers, there’s no
RegExp.$0.

<h2 align=”center”>Validate a SSN
 number</h2>
<form onsubmit=”return
 submitIt(this)”
action=”someAction.cgi”>
 <table border=”0”
  cellspacing=”8”
  cellpadding=”8”>
 <tr>
 <td align=”right”
  valign=”top”>
 Enter your SSN number:
 </td>
 <td>
 <input name=”SSN”
  type=”text” size=”20” />
 <p><input type=”reset”
  /> <input type=
  ”submit” value=
  ”Submit” /></p>
 </td>
 </tr>
 </table>
</form>
</body>
</html>

 Students should understand that
the only line of code that needs real
changes is the initialization of re. Be
careful that they’ve removed the code
that allows parentheses, spaces, and
periods, and that it now looks for the
correct 3 digits-2 digits-4 digits format.
If the user enters anything other than
9 digits, it shouldn’t be allowed, and
neither should any dashes anywhere
other than the two approved locations.

Ch
apter 9: Fo

rm
s an

d R
eg

u
lar Expressio

n
s

 Stu
dy G

u
ide

 Exercises an
d D

iscu
ssio

n
 Q

u
estio

n
s

Class Discussion Questions

Java Ins ch 09(E).indd 3/5/04, 2:29 PM3

Study Guide  Chapter 9: Forms and Regular Expressions

Multiple choice

1. The variable re is required when you use
regular expressions:

A. Always.

B. Never.

C. Only when used as part of a
comparison.

D. Whenever you need to reuse a regular
expression variable.

 Some variable is required, but any other
valid JavaScript variable can be used
where the book uses the re variable.

2. You can use the result of a regular expres-
sion as:

A. A variable.

B. An object.

C. A property of the RegExp object.

D. All of the above.

E. None of the above.

3. Special characters in regular expressions
are case sensitive.

A. True.

B. False.

C. Only if the rest of the script is
lowercase.

D. Only in a header script.

4. JavaScript’s RegExp object:

A. Contains the results of a regular
expression method.

B. Contains the pattern described by
a regular expression.

C. All of the above.

D. None of the above.

5. Which of these is not a property of the
RegExp object?

A. $3

B. lastMatch

C. exec(re)

D. $&

6. If you wanted to search for a return
character, you would use which special
character?

A. /r

B. \r

C. \R

D. /\c

7. If you wanted to search for zero or one
instance of the letter B, you would use
which construction?

A. [B]?

B. (b)?

C. [^b]

D. [b?]

Ch
ap

te
r

9:
 F

o
rm

s
an

d
R

eg
u

la
r

Ex
pr

es
si

o
n

s


 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Review Questions

Java Ins ch 09(E).indd 3/5/04, 2:29 PM4

Study Guide  Chapter 9: Forms and Regular Expressions

Fill-in-the-blank

1. Typing a backslash \ before a special
character escapes that character.

2. To denote the beginning of a string, you
use the caret character.

3. To denote the end of a string, you use the
dollar sign character.

4. In a regular expression, a period means
any character except newline.

5. The exec() method is a method of the
RegExp object.

6. You read regular expressions from left
to right.

7. In the regular expression /^(\S)(\S+)\
s(\S)(\S+)$/ the (\S+) means any non-
white space character.

8. To search for either of the strings “choco-
late” or “candy” you would write it as
(chocolate|candy).

Definitions

1. What is the difference between s and S
when using regular expressions?

 The lower-case s is any single white
space character, and the upper-case
S is any single character that isn’t a
white space character.

2. What is a white space character?

 It’s a form feed, carriage return, new-
line, tab, or vertical tab character.

3. What characters are being searched for
in [aeiou]?

 Any single vowel will match.

4. What’s the difference between \D
and [0-9]?

 They’re opposites—the former is any
non-digit character, and the latter is
any digit.

5. What’s the difference between a* and
a{0,}? Give a string this check won’t
match.

 They’re equivalent, in that they both
search for zero or more instances of
the character “a” in a string. All strings
have zero or more a’s, so any string
will match this criterion.

Ch
apter 9: Fo

rm
s an

d R
eg

u
lar Expressio

n
s

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 09(E).indd 3/5/04, 2:30 PM5

Chapter 10: Making Your Pages Dynamic  Study Guide

Learning Objectives
 Understand how to write and format

dates on Web pages.

 Some of the zero-based vs. one-based
methods may be a little confusing, so
make sure that students know to refer
to the chart on pages 233-234.

 Learn to work with dates and adjust
them in relation to time zones.

 Also note their limitations: anything
regarding time and dates can only
work correctly if the end user has the
correct date, time, and time zone set
on their computer.

 Understand how to create date and time-
based countdowns.

 The exercises below include two
examples of this; one on a static page
and one on a dynamic page.

 Understand how to use JavaScript to
write text into Web pages in response to
user actions.

 At this point in the book, writing text
that changes while the page is up
requires the new information to be
written into form fields.

 Modify Script 10.1 to include the current
year in the Web page the script writes.

document.write(“<h1>Today is
 “ + dayName[now.getDay()] +
 “, “ + monName[now.getMonth()]
 + “ “ + now.getDate() + “, “ +
 now.getFullYear() + “.<\/h1>”)

 Make sure that students use
getFullYear() and understand why
it’s important that they do so. You can
best get this across by showing them
what the results of getYear() look
like in a number of browsers—during
2004 (for example), some will show
it as 2004, while others will display it
as 104. Using getFullYear() works
around this issue. Additionally, make
sure that they add the comma and
the space before the year so that it’s
displayed appropriately.

 Write a page to produce a countdown
that includes days, hours, minutes, and
seconds before an event in the form
dd:hh:mm:ss. You can do this by rewriting
Script 10.6. This countdown is static, mean-
ing that it will not update continually.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 10.2</title>
 <script language=”Javascript”
  type=”text/javascript”>

continues on next page

Get Up and Running Exercises Ch
apter 10: M

akin
g

 Yo
u

r Pag
es D

yn
am

ic
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 10(E).indd 3/5/04, 2:30 PM1

Study Guide  Chapter 10: Making Your Pages Dynamic

 <!-- Hide script from old
  browsers

 now = new Date
 xmasEve = new Date
  (now.getFullYear(),11,24)
 if (xmasEve.getTime()  <
  now.getTime()) {
 xmasEve.setYear
  (now.getFullYear()+1)
 }

 function timeTill(inDate) {
 daysTill = Math.ceil
  (dayToDays(inDate) -
  dayToDays(now))
 hoursTill = 23 -
  now.getHours()
 minTill = 59 -
  now.getMinutes()
 secTill = 59 -
  now.getSeconds()
 return (daysTill +
  showZeroFilled
  (hoursTill) +
  showZeroFilled(minTill) +
  showZeroFilled(secTill))
 }

 function dayToDays(inTime) {
 return (inTime.getTime() /
  (1000 * 60 * 60 * 24))
 }

 function showZeroFilled
  (inValue) {
 if (inValue > 9) {
 return “:” + inValue
 }
 return “:0” + inValue

 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<h1>It’s only
<script language=”Javascript”
 type=”text/javascript”>
 <!-- Hide script from old
  browsers

 document.write(timeTill
  (xmasEve))

 // End hiding script from old
  browsers -->
</script>
 until Christmas so you’d
 better start your shopping
 now!</h1>
</body>
</html>

 For this script, students should know
that as minutes and seconds have
values from 0 to 59, calculations should
not be based on them having a value
of 1-60 (and ditto for hours going from
0 to 23, not 1 to 24). Give extra credit
to students who figure out that they
need to calculate the time until the
midnight that starts the day, not until
the end of the day (i.e., the above script
figures out when Christmas Eve is, not
Christmas Day), as midnight that night
is the start of the day you’re counting
down to. More extra credit should be
given for students who correctly figure
out how to zero fill the result, which
can be found in Script 10.5.

Ch
ap

te
r

10
: M

ak
in

g
 Y

o
u

r
Pa

g
es

 D
yn

am
ic

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 10(E).indd 3/5/04, 2:30 PM2

Study Guide  Chapter 10: Making Your Pages Dynamic

 minTill = 59 -
  now.getMinutes()
 secTill = 59 -
  now.getSeconds()
 return (daysTill +
  showZeroFilled
  (hoursTill) +
  showZeroFilled(minTill) +
  showZeroFilled(secTill))
 }

 function dayToDays(inTime) {
 return (inTime.getTime() /
  (1000 * 60 * 60 * 24))
 }

 function showZeroFilled
  (inValue) {
 if (inValue > 9) {
 return “:” + inValue
 }
 return “:0” + inValue
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”
 onload=”showTheTime()”>
<form name=”theForm” action=”#”>
 <h1>It’s only
 <input type=”text”
  name=”showTime” size=”10” />
 until Christmas so you’d better
  start your shopping now!</h1>
</form>
</body>
</html>

continues on next page

 Combine Scripts 10.5 and Exercise 10.2
(above) to create a continually updating
countdown, using a form field that can
be updated once a second instead of a
static page.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 10.3</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 now = new Date
 xmasEve = new Date
  (now.getFullYear(),11,24)
 if (xmasEve.getTime() <
  now.getTime()) {
 xmasEve.setYear
  (now.getFullYear()+1)
 }

 function showTheTime() {
 document.theForm.showTime.
  value = timeTill(xmasEve)
 setTimeout(“showTheTime()”,
  1000)
 }

 function timeTill(inDate) {
 now = new Date
 daysTill = Math.ceil
  (dayToDays(inDate) -
  dayToDays(now))
 hoursTill = 23 -
  now.getHours()

Ch
apter 10: M

akin
g

 Yo
u

r Pag
es D

yn
am

ic
 Stu

dy G
u

ide
 Exercises

Java Ins ch 10(E).indd 3/5/04, 2:30 PM3

Study Guide  Chapter 10: Making Your Pages Dynamic

 The only place where students are
likely to run into trouble in modifying
their Exercise 10.2 script is having to
update now to be the current time every
iteration of timeTill(). If the student
puts that code into showTheTime()
instead, that’s fine too, but if it’s left off
entirely the script won’t update.

 Create a mock e-commerce page that
uses the document.referrer object to
display a special welcoming page for
visitors coming from a domain that you
choose, as suggested in the Tip on page
229. You can use Script 10.7 as a begin-
ning, but you will need to add to it.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 10.4</title>
<script language=”Javascript”
 type=”text/javascript”>
 <!-- Hide script from old
  browsers

 switch(document.referrer) {
 case “http://www.amazon.com”:
 referCode = “amazon”
 break
 case “http://www.
  peachpit.com”:
 referCode = “peachpit”
 break
 case “http://www.
  javascriptworld.com”:
 referCode =
  “javascriptworld”
 break
 default:
 referCode = “”

 }

 // End hiding script from old
  browsers -->
</script>

</head>
<body bgcolor=”#FFFFFF”>
<h1>Welcome to Bob’s Discount
 House of Widgets!
<script language=”Javascript”
 type=”text/javascript”>
 <!-- Hide script from old
  browsers

 if (referCode != “”) {
 document.write(“
Thanks
  for visiting! Here’s your
  special discount code: “ +
  referCode + “. Just enter
  it at checkout for your
  fabulous savings.”)
 }

 // End hiding script from old
  browsers -->
</script>

Here are today’s specials:
 </h1>
</body>
</html>

 The way to approach this exercise
is to use the switch/case statement
(also called multi-level conditionals)
introduced in Chapter 3. While it’s not
a requirement for students to use it
here, it’s a good idea for them to get
used to using it. What they do need to
be sure to do is have different results
occurring based on what site the user
arrived from, including handling what
will happen if the user arrives from
somewhere else entirely.

Ch
ap

te
r

10
: M

ak
in

g
 Y

o
u

r
Pa

g
es

 D
yn

am
ic

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 10(E).indd 3/5/04, 2:30 PM4

Study Guide  Chapter 10: Making Your Pages Dynamic

 Rewrite Script 10.8. Instead of the cal-
endar, use a list of at least ten text links
of some items (things, people, bands,
you make the choice). In the text box,
add detailed descriptions of each item.
Combine this with concepts you learned
in Chapter 4 to make text links rollovers.
If you click the links, rather than roll over
them, the description should “stick” in
the text box.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 10.5</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 clicked = false
 infoList = new Array
 infoList[0] = “”
 infoList[1] = “JavaScript
  for the World Wide Web:
  Visual QuickStart Guide,
  5th Edition, by Tom Negrino
  and Dori Smith, is an
  introductory text for
  learning JavaScript the
  fast and easy way.”
 infoList[2] = “Java 2 for the
  World Wide Web: Visual
  QuickStart Guide, by Dori
  Smith”
 infoList[3] = “Keynote for
  Mac OS X: Visual QuickStart
  Guide, by Tom Negrino”

 infoList[4] = “Macromedia
  Contribute 2 for Windows
  and Macintosh: Visual
  QuickStart Guide, by Tom
  Negrino”
 infoList[5] = “Quicken 2003
  for Macintosh: Visual
  QuickStart Guide, by Tom
  Negrino”

 function showInfo(thisItem) {
 document.infoForm.infoBox.
  value = infoList
  [thisItem]
 }

 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
<p><a href=”javascript:showIn
 fo(1);clicked=true”
 onmouseover=”showInfo(1);
 clicked=false” onmouseout=”if
 (!clicked)showInfo(0)”>
 JavaScript: Visual QuickStart
 Guide</p>
<p><a href=”javascript:showIn
 fo(2);clicked=true”
 onmouseover=”showInfo(2);
 clicked=false” onmouseout=”if
 (!clicked)showInfo(0)”>Java 2:
 Visual QuickStart Guide</p>
<p><a href=”javascript:showIn
 fo(3);clicked=true”
 onmouseover=”showInfo(3);
 clicked=false” onmouseout=”if
 (!clicked)showInfo(0)”>Keynote:
 Visual QuickStart Guide</p>

continues on next page

Ch
apter 10: M

akin
g

 Yo
u

r Pag
es D

yn
am

ic
 Stu

dy G
u

ide
 Exercises

Java Ins ch 10(E).indd 3/5/04, 2:30 PM5

Study Guide  Chapter 10: Making Your Pages Dynamic

<p><a href=”javascript:showIn
 fo(4);clicked=true”
 onmouseover=”showInfo(4);
 clicked=false” onmouseout=”if
 (!clicked)showInfo(0)”>
 Contribute 2: Visual QuickStart
 Guide</p>
<p><a href=”javascript:showIn
 fo(5);clicked=true”
 onmouseover=”showInfo(5);
 clicked=false” onmouseout=”if
 (!clicked)showInfo(0)”>Quicken:
 Visual QuickStart Guide</p>
<form name=”infoForm” action=”#”>
 <textarea rows=”7” cols=”30”
  name=”infoBox” readonly=
  ”readonly”>Click or rollover
  any link for more
  information</textarea>
</form>
</body>
</html>

 This example only has five links for
brevity’s sake, but the student’s should
(as mentioned above) have at least ten.
The information should display in the
text box both when the link is clicked
on and when it’s rolled over, but the
information should be cleared onmouse-
out only if the user has not clicked on
the link. That requires that some sort
of flag be set; give students less credit if
their code doesn’t reflect this.

 Sites abound that display personal-
ized pages that are written dynamically
for each user. Search the Web to find
examples of at least three sites that do
this, and be prepared to talk about them
in class.

 Some examples include Amazon.com,
most travel sites, such as Travelocity
and Expedia, and features of sites
such as the My Yahoo! Pages.

Ch
ap

te
r

10
: M

ak
in

g
 Y

o
u

r
Pa

g
es

 D
yn

am
ic

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 10(E).indd 3/5/04, 2:30 PM6

Study Guide  Chapter 10: Making Your Pages Dynamic

 Discuss the reasons why it’s useful to use
JavaScript to make dynamic events occur
in the user’s browser.

 If a site looks the same every time a
user visits it, why should a visitor ever
come back? JavaScript is the simplest
way to add dynamic elements to a
previously static Web page.

 Dynamic elements can be provided
with JavaScript, but some users have
JavaScript turned off, for a variety of rea-
sons. Discuss how you should deal with
users who have JavaScript turned off in
their browsers.

 Stress to students that they should
always test their pages without
JavaScript and verify that, while the
visitors may not get all the bells and
whistles, they should always be able to
navigate through the site and access
all the content.

 As mentioned in the sidebars on pages
217 and 228, JavaScript handles time in
sometimes-unexpected ways. Discuss
how numbering of hours, days, dates, and
months are done in JavaScript.

 The easiest way to keep track of what
works how and where is to keep
a cheat sheet handy, which is why
there’s one provided on pages 233-234.
Students should learn to keep this
handy when working with date and
time values in JavaScript.

 You can use JavaScript to timestamp a
page that the user sees. What are the
pros and cons of using JavaScript for
this, rather than a CGI? Are there situa-
tions where you would not want to use
JavaScript?

 The positive side of this is that the
Web page developer doesn’t need to
have access to server-side function-
ality. The downside, unfortunately,
is that this means that the time
is dependent on the user setting
the time and location on their PC
correctly. As this is undependable,
students won’t want to use it in a
financial transaction where the
correct date and time are legally
important.

Class Discussion Questions

Ch
apter 10: M

akin
g

 Yo
u

r Pag
es D

yn
am

ic
 Stu

dy G
u

ide
 D

iscu
ssio

n
 Q

u
estio

n
s

Java Ins ch 10(E).indd 3/5/04, 2:30 PM7

Study Guide  Chapter 10: Making Your Pages Dynamic

Multiple choice

1. The JavaScript method getDay():

A. Gets the integer value of the day of
the week.

B. Gets the date, including the year.

C. Gets the day’s Julian date, starting
from 0. For example, January 30 would
have the value 29.

D. Gets today’s numeric date, e.g.,
08/07/04.

2. JavaScript dates and times are:

A. Synchronized automatically to UTC
(Coordinated Universal Time).

B. Identical to GMT (Greenwich
Mean Time).

C. Dependent on correct time and
time zone settings of the user’s
computer.

D. All of the above.

3. Military time is:

A. 12-hour format.

B. 24-hour format.

C. Correct, sir!

D. Unnecessary; give peace a chance.

4. The getTime() method returns the num-
ber of milliseconds since:

A. January 1, 1968

B. January 1, 1970

C. January 1, 2000

D. January 1, 1904

E. January 1, 1900

5. JavaScript’s Date methods are methods
of the:

A. document object.

B. date property.

C. date object.

D. document.referrer object.

Fill-in-the-blank

1. Pages with scripts that write the
page’s contents on the fly are called
dynamic pages.

2. The page the user clicked through to
visit the current page is called the
referrer page.

3. To JavaScript, the numeric value of the
month November is 10.

4. The expression new Date(thisYr,9,27)
refers to what date? October 27th of the
current year.

For the next two questions, refer to the fol-
lowing code fragment:

now = new Date
dayVal = (now.getTime() / (1000 *
 60 * 60 * 24))

5. What is the value of now.getTime()?
The number of milliseconds since
January 1, 1970.

6. What is the value of dayVal? The number
of days since January 1, 1970.

Review Questions

Ch
ap

te
r

10
: M

ak
in

g
 Y

o
u

r
Pa

g
es

 D
yn

am
ic

 
 S

tu
dy

 G
u

id
e


 R

ev
ie

w
 Q

u
es

ti
o

n
s

Java Ins ch 10(E).indd 3/5/04, 2:30 PM8

Study Guide  Chapter 10: Making Your Pages Dynamic

Find the Errors

The following code contains a number of
errors. Find them all.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 10.5</title>
</head>
<body bgcolor=”#FFFFFF”>
<h1>Today is:
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old browsers

 now = new Date
 document.write(now.getMonth() +
  “/” + now.getDay() + “/” +
  now.getYear() + “ “ +
  (now.getHours() % 12) + “:” +
  now.setMinutes() + “:” +
  now.getSeconds())

 // End hiding script from old
  browsers -->
 </script>
</h1>
</body>
</html>

1. The value of now.getMonth() goes from
zero to 11, and so, needs to be incre-
mented in order for it to actually display
the correct month.

2. The value of now.getDay() should not
be used here; it’s actually the day of
the week, not the day of the month.
The correct object would have been
now.getDate().

3. The value of now.getYear() var-
ies from browser to browser post
2000. For dependable results, use
now.getFullYear() instead.

4. For the minutes, the above uses
now.setMinutes(), but now.getMinutes()
should have been used instead.

5. One extra line here in case students come
up with alternate ideas for how to fix the
above code.

Ch
apter 10: M

akin
g

 Yo
u

r Pag
es D

yn
am

ic
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 10(E).indd 3/5/04, 2:30 PM9

Chapter 11: Handling Events  Study Guide

Learning Objectives
 Understand event handling.

 Make sure that students understand
the basic concepts behind how
JavaScript handles events, as this is a
key to most of the JavaScript they’ll
ever write.

 Understand JavaScript’s window event
handlers.

 Make sure that the students are famil-
iar with all of the different window
event handlers and how they are used.

 Learn how to use JavaScript to handle the
user’s mouse events.

 Use form event handling to both help
validate forms and manage the user’s
interaction with forms.

 Use key event handling to capture user
key events.

 Read the discussion of the onunload
event handler on page 237. Write a
description of how you could use this
handler for good, rather than evil, i.e.,
figure out a useful way to implement this
handler that won’t annoy the user.

 Virtually all uses of the onunload
event handler are nasty and unpleas-
ant. An example of one that’s only
minimally intrusive would be a school
site, where some links go to school-
run sites and some don’t, and an
onunload handler is triggered when
the latter are clicked, warning that
user that they’re going to content that
isn’t controlled by the school.

 Read the first Tip on page 241, then write
and open two windows that each con-
tains Script 11.4 (or a similar script that
you write). Describe the result, including
which browser version you used, and
explain how you solved the problem (if
any). Then repeat the test using at least
one different browser and report on the
result. Draw comparisons to how differ-
ent browsers handle coding errors such
as these.

 Depending on the browsers, chances
are good that they’ll crash, and hard.
There are two goals for this exercise:
(1) learn how different browsers can
give widely varying results for the
same code, and (2) learn why they
should be very careful using blur and
focus commands, so that they don’t
cause problems for users.

continues on next page

Get Up and Running Exercises

Ch
apter 11: H

an
dlin

g
 Even

ts
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 11(E).indd 3/5/04, 2:30 PM1

Study Guide  Chapter 11: Handling Events

 Modify Script 11.10 so that it displays
the value of a pressed key, as described
in the Tip on page 254. Run the script in
as many browsers as possible, and report
back what the values are for up arrow,
down arrow, left arrow, and right arrow.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 11.3</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 document.onkeydown = keyHit
 if (document.layers) {
 document.captureEvents
  (Event.KEYDOWN)
 }

 function keyHit(evt) {
 if (evt) {
 thisKey = evt.which
 }
 else {
 thisKey = window.event.
  keyCode
 }
 alert(thisKey)
 }
 // End hiding script from old
  browsers -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
</body>
</html>

 As just a few examples, Internet
Explorer and more recent versions of
Netscape 6 showed left arrow as 37,
up arrow as 38, right arrow as 39, and
down arrow as 40. Netscape 4 showed
left arrow as 28, right arrow as 29, and
up arrow as 30. Safari for Mac OS X
doesn’t understand the onkeydown
handler at all as of this writing.

 Based on Exercise 11.3 (above), enhance
Script 11.10 so that pressing the up arrow
starts the slideshow from the beginning.
Use your own graphics (at least 6).

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 11.4</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from old
  browsers

 myPix = new Array(“images/
  callisto.jpg”,”images/
  europa.jpg”,”images/
  io.jpg”,”images/
  ganymede.jpg”)
 thisPic = 0
 imgCt = myPix.length - 1

 document.onkeydown = keyHit
 if (document.layers) {
 document.captureEvents
  (Event.KEYDOWN)
 ltArrow = 28
 rtArrow = 29
 upArrow = 30

continues on next page

Ch
ap

te
r

11
: H

an
dl

in
g

 E
ve

n
ts

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 11(E).indd 3/5/04, 2:30 PM2

Study Guide  Chapter 11: Handling Events

 }
 // End hiding script from old
  browsers -->

 </script>
</head>
<body bgcolor=”#FFFFFF”>
<h3 align=”center”><img
 src=”images/callisto.jpg”
 name=”myPicture” width=”262”
 height=”262” alt=”Slideshow”
 />

 Use the right and left arrows
  on your keyboard to view the
  slideshow, or up arrow to
  start at the beginning.</h3>
</body>
</html>

 Students should be able to figure out
how to reset direction with a minimal
amount of code, as in the example
above. What’s most important is that
the script handles the largest possible
number of browsers.

 Use the object table in Appendix A to
review the event handlers associated
with the JavaScript objects mentioned
in this chapter.

 }
 else {
 ltArrow = 37
 rtArrow = 39
 upArrow = 38
 }

 function keyHit(evt) {
 if (evt) {
 thisKey = evt.which
 }
 else {
 thisKey = window.event.
  keyCode
 }

 switch (thisKey) {
 case (ltArrow):
 chgSlide(-1)
 break
 case (rtArrow):
 chgSlide(1)
 break
 case (upArrow):
 chgSlide(-thisPic)
 break
 default:
 }
 }

 function chgSlide(direction) {
 if (document.images) {
 thisPic = thisPic +
  direction
 if (thisPic > imgCt) {
 thisPic = 0
 }
 if (thisPic < 0) {
 thisPic = imgCt
 }
 document.myPicture.src=myPi
x[thisPic]
 }

Ch
apter 11: H

an
dlin

g
 Even

ts
 Stu

dy G
u

ide
 Exercises

Java Ins ch 11(E).indd 3/5/04, 2:30 PM3

Study Guide  Chapter 11: Handling Events

 Discuss why event handling is important.

 Much of the entire point of JavaScript
is making pages that are responsive to
user actions. Handling events is how
that’s done; consequently, event han-
dling is at the core of most real world
usage of JavaScript.

 Discuss the different window event han-
dlers listed in the book. Talk about the
different uses for each handler in pages
you would create.

 It’s absolutely the case that some of
the handlers are more common/more
useful than others, so don’t expect stu-
dents to give an equal weight to each.

 One of the values of the mouse event
handlers is to make Web pages act more
like operating systems such as Windows
or Mac OS X. What are some specific
examples of how you can use mouse
event handlers to provide users with a
more familiar user experience?

 One possible example for you to
discuss is how ondblclick is an
extremely common way of working
with applications and documents, but
it is rarely if ever used on the Web.

 How are the onfocus and onselect event
handlers similar and different? Where
would you want to use each one?

 The onfocus handler is useful for
many things other than just the abil-
ity to keep the user out of a field (the
example given in the book). It’s trig-
gered any time that user clicks or tabs
into a field. The onselect handler, on
the other hand, is triggered when the
user selects the contents of a text box
or text area. So, if the user both clicks
into and selects the contents of a text
area, both the onfocus and the onse-
lect event handlers will be triggered.

 Does key event handling differ depend-
ing on the platform of the user? Should
you add special cases to your code if the
user is browsing from, say, a Mac or a
Windows machine?

 Platform matters (as mentioned
above, for instance, Safari doesn’t
handle onkey events), but not as much
as browser and version.

Ch
ap

te
r

11
: H

an
dl

in
g

 E
ve

n
ts

 
 S

tu
dy

 G
u

id
e


 D

is
cu

ss
io

n
 Q

u
es

ti
o

n
s

Class Discussion Questions

Java Ins ch 11(E).indd 3/5/04, 2:30 PM4

Study Guide  Chapter 11: Handling Events

Multiple choice

1. Clicking twice on an object will trigger
which event handler:

A. onmousedown

B. onmouseup

C. onclick

D. ondblclick

E. All of the above.

2. If you want to capture an event when the
user hits a particular key, you would use
which event handler?

A. onclick

B. onpress

C. onkeydown

D. onkeypress

E. All of the above.

3. Using the onunload event handler:

A. Is tasteless.

B. Annoys the heck out of users.

C. Makes your site look like a
porn site.

D. All of the above.

4. Hiding your JavaScript code from visitors:

A. Is easy.

B. Is totally secure.

C. Is rarely possible.

D. Is the default in most browsers.

5. The onclick handler triggers when the user:

A. Clicks and releases the mouse
button.

B. Clicks and holds the mouse button.

C. Moves the mouse.

D. All of the above.

6. The onabort handler:

A. Triggers when the user cancels an
image loading on the Web page.

B. Is unsupported in some browsers.

C. Is rarely used.

D. All of the above.

Fill-in-the-blank

1. Actions the user performs while visiting
your Web page are called events.

2. The onresize event triggers when the
user changes the size of the Web page.

3. You would use the onunload event to take
action when a window is closed.

4. To take more than one action when a win-
dow opens, the onload handler should call
a function that contains all the actions.

5. To make windows always come to the front,
you can use the onfocus event handler.

6. The onmouseout event triggers when the
user moves the mouse out of a defined
area.

7. To refill a form’s default values when the
user clicks the Cancel button, you would
use the onreset event handler.

8. You would use the onkeydown event to
take action when a key is hit.

Review Questions

Ch
apter 11: H

an
dlin

g
 Even

ts
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 11(E).indd 3/5/04, 2:30 PM5

Study Guide  Chapter 11: Handling Events

Definitions

1. What is an event handler?

 An event handler is the way that
JavaScript handles user-controlled
actions on a Web page.

2. What is a window event? Give an exam-
ple of a window event.

 Window events are those JavaScript
events that involve the window:
onload, onunload, onresize, onmove,
onabort, onerror, onfocus, and onblur.

3. What is a mouse event? Give an example
of a mouse event.

 Mouse events are those JavaScript
events that involve mouse movement:
onmousedown, onmouseup, onmousemove,
onmouseover, onmouseout, ondblclick,
and onclick.

4. What is a key event? Give an example of a
key event.

 Key events are those JavaScript events
that involve keyboard actions: onkey-
down, onkeyup, and onkeypress.

5. What is a form event? Give an example of
a form event.

 Form events are those JavaScript
events that involve interactions with
Web page forms: onsubmit, onreset,
onchange, onselect, onclick, onblur,
and onfocus.Ch

ap
te

r
11

: H
an

dl
in

g
 E

ve
n

ts
 

 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 11(E).indd 3/5/04, 2:30 PM6

Chapter 12: JavaScript and Cookies  Study Guide

Learning Objectives
 Create a cookie and write it to the user’s

machine.

 Read and display cookie contents.

 Just writing cookies doesn’t do much if
you can’t read them back in again later.

 Use cookies as counters.

 Make sure that students understand
the limitations of this. By no means
can this be used as a count of how
many people have visited a site, just
how many times this particular user
at this particular machine using this
particular browser has visited.

 Learn how to delete cookies.

 Deletion is the same as addition, but
with a date in the past.

 Learn how to read and write more than a
single cookie.

 Multiple cookies are slightly more
complex, but significantly more power-
ful. For example, if you have a site that
offers user registration, you might
want to set one cookie with a user-
name, another one with a password,
and others that keep track of which
pages on the site the user has visited.

 Find the cookie file on your computer,
and open it up in a text editor. Try to
understand the different kinds of infor-
mation that is being stored, and give
specific examples of how three different
sites are using cookies.

 Based on the browser, version, and
platform, the file can be named and
stored in any one of a number of
places—there’s no standard. If students
have trouble finding it, one method for
detecting the file is searching the hard
drive for the word “cookie.”

 Combine Scripts 12.3 and 12.5 to display
the name and value of each cookie before
it’s deleted.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 12.2</title>
</head>
<body bgcolor=”#FFFFFF”>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 if (document.cookie != “”) {
 if (confirm(“Do you want to
  delete the cookies?”)) {
 thisCookie = document.
  cookie.split(“; “)
 expireDate = new Date

continues on next page

Get Up and Running Exercises Ch
apter 12: JavaS

cript an
d Co

o
kies

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 12(D).indd 3/5/04, 2:30 PM1

Study Guide  Chapter 12: JavaScript and Cookies

 expireDate.setDate
  (expireDate.getDate()-1)

 for (i=0; i<thisCookie.
  length; i++) {
 cookieName = thisCookie
  [i].split(“=”)[0]
 document.write(“Cookie
  name was ‘”+cookieName)
 document.write(“’, and
  the value was ‘”+
  thisCookie[i].split
  (“=”)[1]+”’
”)
 document.cookie =
  cookieName +
  “=;expires=” +
  expireDate.toGMTString()
 }
 document.write(“Number
  of cookies deleted: “ +
  thisCookie.length)
 }
 }
 else {
 document.write(“No cookies
  were found”)
 }
 // End hiding script -->
 </script>
</body>
</html>

 Make sure that the students are doing
the display and the deletion within
the same loop. If they’re looping more
than once (separately for the display
and the deletion, for instance), they’re
making their code more complex than
it needs to be.

 Combine Scripts 12.6 and 12.7 to read
and write the date to a cookie, then put
up an alert message if it has been more
than a month since the user last visited
the site.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 12.3</title>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 now = new Date
 expireDate = new Date
 expireDate.setMonth(expire
  Date.getMonth()+6)
 lastVisit = new Date(cookie
  Val(“pageVisit”))
 tooOld = new Date
 tooOld.setMonth(tooOld.
  getMonth()-1)
 document.cookie =
  “pageVisit=”+now+
  ”;expires=” +
  expireDate.toGMTString()

 if (tooOld.getTime() >
  lastVisit.getTime()) {
 alert(“It’s been more
  than a month since you
  were last here”)

continues on next page

Ch
ap

te
r

12
: J

av
aS

cr
ip

t
an

d
Co

o
ki

es
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 12(D).indd 3/5/04, 2:30 PM2

Study Guide  Chapter 12: JavaScript and Cookies

 What are the security implications of
cookies? How much concern should the
user have about sites that set cookies?

 While there are occasional security
warnings about cookies, most of the
bugs concerning them were tracked
down and fixed years ago. At this
point, cookies should simply be con-
sidered a way of saving a user’s prefer-
ences on the user’s own machine.

 Why can’t you use JavaScript to create
page counters for a Web site?

 Students need to remember that
JavaScript can neither read from nor
write to files on the server. So JavaScript
can’t write information about user visits
to a counter on the server. Page coun-
ters are a job for a CGI.

 Why might a single site need to write
multiple cookies to your machine?

 Different parts of a site might need to
keep track of different information. For
instance, one area might need to keep
track of the visitor’s display prefer-
ences, and another might need to keep
track of a visitor’s subscription status.

 Script 12.7 uses cookies to keep track
of a user’s last visit, and then creates
“New to You” messages as an image next
to items on the page. How else could a
site designer let users know about new
content? Discuss the different interface
choices, and give examples of least intru-
sive and most intrusive methods.

 Least: A single text message some-
where on the page—a user can ignore
this if they choose to. Most: A modal
alert—a user has no choice but to
interact with it.

 }

 function cookieVal
  (cookieName) {
 thisCookie = document.
  cookie.split(“; “)
 for (i=0; i<thisCookie.
  length; i++) {
 if (cookieName ==
  thisCookie[i].split
  (“=”)[0]) {
 return thisCookie[i].
  split(“=”)[1]
 }
 }
 return “1 January 1970”
 }

 // End hiding script -->
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h2>Welcome to my Web site</h2>
</body>
</html>

Ch
apter 12: JavaS

cript an
d Co

o
kies

 Stu
dy G

u
ide

 D
iscu

ssio
n

 Q
u

estio
n

s

Class Discussion Questions

Java Ins ch 12(D).indd 3/5/04, 2:31 PM3

Study Guide  Chapter 12: JavaScript and Cookies

Multiple choice

1. Cookies can get the following informa-
tion from the user’s machine:

A. Their mailing address

B. Their email address

C. The computer’s serial number

D. All of the above

E. None of the above

2. The split() method:

A. Divides a text string in half.

B. Terminates the script’s execution.

C. Divides a text string into an array.

D. Scans the cookie object for information.

3. Which of these cookie fields is not
optional?

A. expires

B. value

C. path

D. domain

4. Cookies are:

A. Plain text information.

B. Executable code.

C. Binary file information.

D. MIME information.

5. Cookies on your machine can be read by:

A. Anyone who sends you email.

B. The server that originally wrote
the cookie.

C. Only your browser.

D. The Cookie Monster.

6. After document.cookie.split(“; “):

A. The contents of the cookie will
be stored in the Web browser’s
database.

B. The contents of the cookie will be
displayed in your browser.

C. The contents of the cookie will be
stored in your attic.

D. The contents of the cookie will be
stored in an array.

Fill-in-the-blank

1. The cookie file is a plain text file on the
user’s hard disk.

2. Cookies always include the address of the
server that sent it.

3. One way to delete a cookie is to set its
expiration date to the past.

4. If there is only one cookie, after
cookieValue = document.cookie.
 split(“=”)[0], cookieValue
contains the cookie’s name.

5. Cookie fields are separated by a semicolon.

Ch
ap

te
r

12
: J

av
aS

cr
ip

t
an

d
Co

o
ki

es
 

 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Review Questions

Java Ins ch 12(D).indd 3/5/04, 2:31 PM4

Study Guide  Chapter 12: JavaScript and Cookies

Find the Errors

The following code contains several errors.
Find them all.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Cookie Check</title>
</head>
<body bgcolor=”#FFFFFF”>
<h2>
 <script language=”Javascript”
  type=”text/javascript”>
 <!-- Hide script from older
  browsers

 if (document.cookies == “”) {
 document.write(“There are no
  cookies here”)
 }
 else {
 thisCookie = document.cookie.
  split(“=”)

 for (i=0; i<document.cookie.
  length; i++) {
 document.write(“Cookie name
  is ‘”+thisCookie[i].split
  (“=”)[1])
 document.write(“’, and the
  value is ‘”+thisCookie[i].
  split(“=”)[2]+”’
”)
 }
 }

 // End hiding script -->
 </script>
</h2>
</body>
</html>

Ch
apter 12: JavaS

cript an
d Co

o
kies

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

1. The thisCookie array indices should be 0
and 1, not 1 and 2.

2. The variable thisCookie is set incor-
rectly; it should be split based on “; “,
not “=”.

3. The initial check for if (document.
 cookies == “”) is incorrect—it’s
looking at cookies, not a cookie.

4. The for loop is checking against
document.cookie.length, but it should
be checking thisCookie.length instead.

5. One additional blank in case the students
find a different way to fix the problems.

Java Ins ch 12(D).indd 3/5/04, 2:31 PM5

Chapter 13: Introducing CSS  Study Guide

Learning Objectives
 Understand CSS rules.

 This chapter is just the briefest of
introductions to CSS, as you’ll need
this information for the following
DHTML chapters. Ideally, the stu-
dents will already have covered this
topic in a previous HTML class; if so,
this chapter can be skipped or just
used as a simple refresher.

 Write CSS rules.

 Students should be able to work with
CSS, including writing rules and figur-
ing out which rules take precedence.

 Understand how to set font styles with CSS.

 Understand how to write CSS rules using
tag, class, and id selectors.

 Create style rules for links.

 Write a style rule that creates a class called
headlinetext that makes any text that it is
applied to 24 points and boldface.

.headlinetext {font-size: 24pt;
 font-weight: bold}

 This is all that’s required here.

 Write a style rule that creates an ID selector
called headlinetext that makes any text
that it is applied to 24 points and boldface.

#headlinetext {font-size: 24pt;
 font-weight: bold}

 All that should be changed from the
previous exercise is to substitute a #
for the period. This changes the rule
from a class selector to an ID selector.

 Write a style rule that eliminates the
underlining from text links, and turns the
link red when you put the cursor over it.

.redLink {text-decoration: none}

.redLink:hover {color: #FF0000}

 Modify Script 13.8 to position four items on
a page. Use your own images and ID names.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 13.4</title>
 <style type=”text/css”>
 #him {position: absolute;
  top: 120px; left: 200px}
 #her {position: absolute;
  top: 70px; left: 350px}

continues on next page

Get Up and Running Exercises

Ch
apter 13: In

tro
du

cin
g

 CS
S

 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 13(E).indd 3/5/04, 2:31 PM1

Study Guide  Chapter 13: Introducing CSS

 #table {position: absolute;
  top: 75px; left: 250px}
 #stage {position: absolute;
  top: 100px; left: 100px}
 </style>
</head>
<body bgcolor=”#FFFFFF”>
<div id=”stage”>
 <img src=”images/stage.gif”
  alt=”stage” width=”431”
height=”94” />
</div>
<div id=”her”>
 <img src=”images/kate.gif”
  alt=”Kate” width=”37”
  height=”70” />
</div>
<div id=”him”>
 <img src=”images/petruchio.gif”
  alt=”Petruchio” width=”37”
  height=”70” />
</div>
<div id=”table”>
 <img src=”images/tableProp.gif”
  alt=”table” width=”50”
  height=”50” />
</div>
</body>
</html>

 Obviously, each student’s example will
differ from this one, but they should
include enough to make it clear that
they understand the concepts behind
positioning.

 What are the benefits of using CSS with
your Web sites?

 Entire books have been written on
this topic. At a minimum, make sure
students understand how CSS allows
changes made in one place to affect
an entire site, thus providing huge
time and (often) cost savings when a
site needs to be updated.

 When would you want to use ID selectors
on your pages?

 Make sure that students understand
that the big difference between ids and
classes is ids signify something unique.
This is an important foundation con-
cept for Chapter 14, in which JavaScript
will need to be able to uniquely identify
specific elements on a page so that they
can then be modified.

 What are the differences between the
<div> and tags? Give examples of
when you would want to use each one.

 A div is a text block; a span is for inline
text. One example of how each would
be used is if this text was changed
into a Web page: the code in exercises
would be inside a <div class=”code”>,
whereas the words themselves in this
paragraph that are in code style would
be inside .

 What is the difference between relative
sizes and absolute sizes? Is it preferable
to use one or the other?

 This is a matter of some controversy,
mainly because older browsers don’t
properly support some of the units
of measurement. There’s more detail
in the sidebar on page 281. As noted
there, the W3C strongly recommends
the use of relative sizes on Web pages.

Ch
ap

te
r

13
: I

n
tr

o
du

ci
n

g
 C

S
S

 
 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

 a
n

d
D

is
cu

ss
io

n
 Q

u
es

ti
o

n
s

Class Discussion Questions

Java Ins ch 13(E).indd 3/5/04, 2:31 PM2

Study Guide  Chapter 13: Introducing CSS

2. If an element has both a class and an
ID selector applied to it, the ID takes
precedence.

3. The <div> tag is a container tag.

4. Class names must be preceded by
a period.

5. An id selector must be preceded by a #.

6. The tag applies a style to part of a
text block.

7. Absolute positioning begins at the upper-
left corner of the page.

8. The <div> tag produces a line break
before and after the tag.

Definitions

1. What does CSS stand for?

 CSS stands for Cascading Style Sheets.

2. What are “cascading” styles?

 The same rule can be defined differ-
ently in different areas of your Web
site and Web page. The “cascade”
effect is how the browser decides
which of the conflicting rules to apply.

3. What is an em?

 An em is a measurement of relative
size, equivalent to the width of the
letter M in the chosen font.

4. What is the difference between CSS1,
CSS2, and CSS-P?

 CSS1 (from December 1996) was
the original specification for apply-
ing styles to Web pages. CSS-P (from
January 1997) added positioning
elements. CSS2 (from May 1998) com-
bined the two into one specification
and added more features.

Multiple choice

1. The <style> tag requires which attribute?

A. text/css

B. type

C. css

D. text

2. Which is a style rule for a class?

A. .widget {color: #0000FF;
 background: #00FF00;}

B. div:widget {color: #0000FF;
 background: #00FF00;}

C. #widget {color: #0000FF;
 background: #00FF00;}

D. p widget {color: #0000FF;
 background: #00FF00;}

3. Which would make an h1 red?

A. h1 {color:#FF0000}

B. h1 {style=”color:#FF0000”}

C. .h1 {color:#FF0000}

D. h1 [style:#FF0000]

4. You can apply which selectors simultane-
ously to a page element?

A. Tag selectors.

B. Class selectors.

C. ID selectors.

D. All of the above.

E. B and C.

Fill-in-the-blank

1. A CSS selector indicates which page
elements will be formatted.

Ch
apter 13: In

tro
du

cin
g

 CS
S

 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Review Questions

Java Ins ch 13(E).indd 3/5/04, 2:31 PM3

Chapter 14: Working with DHTML  Study Guide

Learning Objectives
 Understand what DHTML is.

 While the book says that DHTML
consists of JavaScript, CSS, and
HTML, it’s also correct to include the
DOM in that list.

 Learn how the DOMs (Document Object
Models) differ in various browsers.

 Different DOMs implemented in dif-
ferent browsers are one of the largest
drawbacks to implementing DHTML
solutions, because each DOM has its
own way of doing things.

 Learn to manipulate objects in various
browsers.

 While the book shows how to move
both text and images, these examples
are used to demonstrate how the
DOM handles each, not because
moving text and images is a recom-
mended idea.

 Understand how to manipulate text
effects in Internet Explorer for Windows.

 Stress to students that, while Internet
Explorer for Windows is the most popu-
lar browser, creating a site that only
works in a single browser is a bad idea.

 Visit the Web Standards Project Website
at http://www.webstandards.org. Browse
the site, especially the “Learn” section.
Come to class prepared to discuss the
benefits of creating sites that support
Web standards.

 This site (especially Learn) should
be added to students’ bookmarks
for their future use, as it’s frequently
updated with new information.

 Modify Script 14.4 to move two objects
around the screen. Use your own images.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 14.2</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide script from older
  browsers

 firstTime = true
 if (document.getElementById)
{
 stdBrowser = true
 }
 else {
 stdBrowser = false
 }

 function moveIt() {
 if (firstTime) {
 if (stdBrowser) {

continues on next page

Get Up and Running Exercises

Ch
apter 14: W

o
rkin

g
 w

ith
 D

H
TM

L
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 14(E).indd 3/5/04, 2:31 PM1

Study Guide  Chapter 14: Working with DHTML

 mover1Obj = document.
  getElementById
  (“mover1”).style
 mover2Obj = document.
  getElementById
  (“mover2”).style

 mover1Obj.top = “5px”
 mover1Obj.left = “5px”

 mover2Obj.top = “50px”
 mover2Obj.left = “50px”
 }

 if (document.all) {
 maxHeight = document.
  body.clientHeight-40
 maxWidth = document.
  body.clientWidth-40
 }
 else {
 maxHeight = window.
  innerHeight-40
 maxWidth = window.
  innerWidth-40
 }
 firstTime = false
 }

 moveTheObject(“mover1”)
 moveTheObject(“mover2”)
 setTimeout(“moveIt()”,20)
 }

 function moveTheObject
  (thisObj) {
 if (stdBrowser) {
 moverObj = document.
  getElementById
  (thisObj).style
 topPos = parseInt
  (moverObj.top)

 leftPos = parseInt
  (moverObj.left)
 }
 else {
 document.mover = eval
  (“document.”+thisObj)
 topPos = document.
  mover.top
 leftPos = document.
  mover.left
 }

 chgXBy = Math.floor
  (Math.random() * 10)
 if ((halfChance() || topPos
  >= maxHeight) && topPos
  > 5) {
 topPos -= chgXBy
 }
 else {
 topPos += chgXBy
 }

 chgYBy = Math.floor
  (Math.random() * 10)
 if ((halfChance() ||
  leftPos >= maxWidth) &&
  leftPos > 5) {
 leftPos -= chgYBy
 }
 else {
 leftPos += chgYBy
 }

 if (stdBrowser) {
 moverObj.top = topPos
  + “px”
 moverObj.left = leftPos
  + “px”
 }
 else {

continues on next page

Ch
ap

te
r

14
: W

o
rk

in
g

 w
it

h
 D

H
TM

L


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 14(E).indd 3/5/04, 2:31 PM2

Study Guide  Chapter 14: Working with DHTML

 Students should only have a minimal
amount of duplicated code—as in the
above sample answer, they should be
able to figure out how to use a func-
tion instead. You also might consider
requiring them to prove that it works in
multiple browsers, including (at least)
some version of Netscape 4 and some
current standards-compliant browser.

 Modify Script 14.7 to move around
two objects, where one of the objects
is always displayed behind the other
(referred to in the text as three dimen-
sions) when the two overlap. Use your
own images.

 #mover1 {position: absolute;
  left: 5px; top: 5px;
  z-index: 1}
 #mover2 {position: absolute;
  left: 50px; top: 50px;
  z-index: 2}

 The only lines that should have to
change from the previous example
are ones that set the z-index for the
two objects.

 If you are using Internet Explorer for
Windows, experiment with different
filters, as listed in Table 14.1. You can
modify Script 14.10, 14.11, or 14.12.

 Designers who want their effects to
be seen by all site visitors may want
to shun the use of these filters, but if
you are targeting Internet Explorer for
Windows users, the filters can provide
some interesting effects. There’s no
code here because students should be
given the option of which filters they
want to play with.

 document.mover.top =
  topPos
 document.mover.left =
  leftPos
 }
 }

 function halfChance() {
 if (Math.random() < .5) {
 return true
 }
 return false
 }

 // End hiding script -->
 </script>
 <style type=”text/css”>
 <!--

 #mover1 {position: absolute;
  left: 5px; top: 5px;}
 #mover2 {position: absolute;
  left: 50px; top: 50px;}

 -->
 </style>
</head>
<body bgcolor=”#FFFFFF” onload=
 ”moveIt()”>
<div id=”mover1”>
 <img src=”images/redImage.gif”
  width=”32” height=”32”
  alt=”red image” />
</div>
<div id=”mover2”>
 <img src=”images/blueImage.gif”
  width=”32” height=”32”
  alt=”blue image” />
</div>
</body>
</html>

Ch
apter 14: W

o
rkin

g
 w

ith
 D

H
TM

L
 Stu

dy G
u

ide
 Exercises

Java Ins ch 14(E).indd 3/5/04, 2:31 PM3

Study Guide  Chapter 14: Working with DHTML

 Why are Web standards important?
Which standards are most valuable for
the Web site creator to know? Are there
standards that can be safely ignored?

 If your students are likely to work
on government or education-related
sites in the future, this would be a
good time to talk about Section 508
compatibility, which requires that
federal agencies’ electronic and
information technology is accessible
to people with disabilities. You’ll
find more information at
http://www.section508.gov.

 If you want to include animation on your
site, you can use DHTML or Macromedia
Flash. What are some of the pros and
cons of each approach?

 Using DHTML doesn’t require costly
tools. With Flash you have more
control over how objects appear. Both
DHTML and Flash work well in most
current browsers.

 Discuss the differences between the older
Document Object Models (DOMs) and
the W3C DOM. What changes should
you have to make to your pages to take
advantage of the W3C DOM?

 If you like, point students to online
resources where they can learn
more about the W3C DOM, such as
http://www.webstandards.org/
 learn/resources/dom/index.html
or http://www.dmoz.org/Computers/
 Programming/Internet/W3C_DOM/

Multiple choice

1. In different DOMs, the objects
document.all.airplane.style.pixelTop
and document.airplane.top are:

A. Properties of each other.

B. Mirror images.

C. Equivalent.

D. W3C standards-compliant.

2. Which of the following units should not
be used in Web development?

A. Points

B. Pixels

C. Ems

D. All of the above.

E. A and B.

3. In the W3C DOM, you use which method
to select objects?

A. document.getElementById()

B. document.all

C. document.id

D. document.element

4. If more than one page element is placed
in the same position, how do you specify
which element will be on top?

A. setVerticalPos=top

B. align: top

C. z-index

D. None of the above.

Ch
ap

te
r

14
: W

o
rk

in
g

 w
it

h
 D

H
TM

L


 S
tu

dy
 G

u
id

e


 D
is

cu
ss

io
n

 a
n

d
R

ev
ie

w
 Q

u
es

ti
o

n
s

Class Discussion Questions Review Questions

Java Ins ch 14(E).indd 3/5/04, 2:31 PM4

Study Guide  Chapter 14: Working with DHTML

5. In the W3C DOM, you can specify an
object ID with:

A. <div>

B.

C. <p>

D. Any of the above.

6. The test if (document.getElementById)
can be used to:

A. Check that the document is
formatted correctly.

B. Check if the browser is standards-
compliant.

C. Check that the document has all
required elements.

D. None of the above.

Fill-in-the-blank

1. DHTML is a combination of HTML,
Cascading Style Sheets, and JavaScript.

2. The standards body responsible for Web
standards is the W3C or World Wide
Web Consortium.

3. The best way to discover if a particular
browser supports a particular measure-
ment unit is to test that unit with the
browser.

4. The Web would be a better place if people
would stop using Netscape 4.x.

5. In standards-compliant browsers, you
should use the getElementById() method
to select objects.

6. You can use Internet Explorer 6+’s
document.compatMode object to see if the
browser is set to be standards-compliant.

7. The filters in Internet Explorer are not
HTML or standard JavaScript.

 ‘Proprietary’ or ‘non-standards-
compliant’ would also be acceptable
here.

8. When using getElementById(), the ID
goes inside the parenthesis.

 ‘Inside quotes inside the parenthesis’
would also be acceptable here.

Definitions

1. What is DHTML?

 DHTML is the combination of HTML,
CSS, JavaScript, and the DOM.

2. Describe how you use getElementById.

 There are two ways to use getElement
 ById: (1) as an object, to check to
see if the browser can handle stan-
dards-compliant code, and (2) as a
method, so that JavaScript can find
and manipulate objects on a page.

3. Define z-index.

 The z-index of an object is how
JavaScript decides which of two
objects will display when they overlap
on a Web page. The object with the
higher numbered z-index will display
over the one with the lower number.

4. What is an Internet Explorer filter?

 Internet Explorer filters are a non-stan-
dard but powerful way to bring graph-
ics capabilities to the Web browser.

Ch
apter 14: W

o
rkin

g
 w

ith
 D

H
TM

L
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 14(E).indd 3/5/04, 2:32 PM5

Chapter 15: User Interface Design with JavaScript  Study Guide

Learning Objectives
 Learn how you can use JavaScript to

improve the user experience.

 A good user experience is all about
interacting with the user, and
JavaScript is the only way to make
Web sites interactive.

 Understand how to simulate pull-down
menus on your pages.

 One drawback of creating pull-down
menus in this way is that it, like the
menus used by operating systems, are
tied to the top of the window. Make
sure students understand that the
way the script works is to move the
unseen menu parts offscreen.

 Learn to implement sliding menus.

 Students should understand how
this one script is handling two sets
of users (those with current browsers
versus those with older browsers) at
the same time.

 Explore how to add pop-up messages
(“tool tips”) over regions of your Web page.

 Note that these are not the type of pop-
up windows that pop-up blockers block.

 Learn how to make form fields on Web
pages act more like their equivalents in
Windows or Mac OS.

 Write a short essay discussing the differ-
ences between the ways users interact
with operating systems and applications
as compared to the way they interact
with Web pages.

 The content of this is up to the
student, but one point they should
include is that Web pages are cross-
platform, and therefore, must straddle
the differences between how different
operating systems accomplish the
same tasks.

 Modify Script 15.1 to add a third pull-
down menu. Let the menu you add have
at least four items on it.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 15.2</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide from older browsers

 if (document.getElementById) {
 stdBrowser = true
 }
 else {
 stdBrowser = false
 }

 function toggleMenu(currElem,
  nextPos) {
 if (stdBrowser) {

continues on next page

Get Up and Running Exercises

Ch
apter 15: U

ser In
terface D

esig
n

 w
ith

 JavaS
cript

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 15(E).indd 3/5/04, 2:32 PM1

Study Guide  Chapter 15: User Interface Design with JavaScript

 menuObj = document.
  getElementById
  (currElem).style
 }
 else {
 menuObj = eval
  (“document.” + currElem)
 }
 if (toggleMenu.arguments.
  length == 1) {
 if (parseInt(menuObj.top)
  == -5) {
 nextPos = -90
 }
 else {
 nextPos = -5
 }
 }
 if (stdBrowser) {
 menuObj.top = nextPos
  + “px”
 }
 else {
 menuObj.top = nextPos
 }
 }

 // End hiding -->
 </script>
 <style type=”text/css”>
 <!--

 .menu {position:absolute;
  font:12px arial, helvetica,
  sans-serif;
  background-color:
 #CCCCCC; layer-
  background-color:#CCCCCC;
  top:-90px}
 #fileMenu {left:10px;
  width:70px}
 #searchMenu {left:85px;
  width:100px}

 #blogMenu {left:190px;
  width:80px}
 A {text-decoration:none;
  color:#000000}
 A:hover {background-color:
  #000099; color:#FFFFFF}

 -->
 </style>
</head>
<body bgcolor=”white”>
<div id=”fileMenu” class=”menu”
 onmouseover=”toggleMenu
 (‘fileMenu’,-5)” onmouseout=
 ”toggleMenu(‘fileMenu’,
 -90)”>

 <a href=”javascript:
  window.open()”>Open

 <a href=”javascript:
  window.print()”>Print
 

 <a href=”javascript:
  history.back()”>Back
 

 <a href=”javascript:history.
  forward()”>Forward

 <a href=”javascript:
  window.close()”>Close
  <hr />
 <a href=”javascript:toggleMenu
  (‘fileMenu’)”>File
</div>
<div id=”searchMenu” class=”menu”
 onmouseover=”toggleMenu
 (‘searchMenu’,-5)” onmouseout=
 ”toggleMenu(‘searchMenu’,
 -90)”>

 <a href=”http://www.google.
  com”>Google

 <a href=”http://www.ask.
  com”>Ask Jeeves

continues on next page

Ch
ap

te
r

15
: U

se
r

In
te

rf
ac

e
D

es
ig

n
 w

it
h

 Ja
va

S
cr

ip
t


 S

tu
dy

 G
u

id
e


 E

xe
rc

is
es

Java Ins ch 15(E).indd 3/5/04, 2:32 PM2

Study Guide  Chapter 15: User Interface Design with JavaScript

 Modify Script 15.2 to make all of the
names of the plays clickable links.

 And as with Exercise 15.2 (above),
they shouldn’t have to add any
JavaScript here, either. All they should
do is add <a> tags around the lines
within the tags.

 Create a Web page implementing one of
the interface concepts developed during
class discussion.

 Students should have come up with
cool interface ideas during the class
discussion. Here’s their chance to see
if they can make their ideas reality.

 <a href=”http://www.alltheweb.
  com”>All The Web

 <a href=”http://www.av.
  com”>AltaVista

 <a href=”http://www.dmoz.
  com”>Open Directory<hr />
 <a href=”javascript:toggleMenu
  (‘searchMenu’)”>Search
</div>
<div id=”blogMenu” class=”menu”
 onmouseover=”toggleMenu
 (‘blogMenu’,-5)” onmouseout=
 ”toggleMenu(‘blogMenu’,
 -90)”>

 <a href=”http://www.backupbrain.
  com”>Backup Brain

 <a href=”http://www.webstandards.
  org”>WaSP Buzz

 <a href=”http://www.boingboing.
  net”>BoingBoing

 <a href=”http://www.TeeVee.
  org”>TeeVee

 <a href=”http://www.dailykos.
  com”>Daily Kos<hr />
 <a href=”javascript:toggleMenu
  (‘blogMenu’)”>Weblogs
</div>
</body>
</html>

 Students should be able to figure out
that they don’t actually have to add
any JavaScript to make this work—in
fact, all they should have to add is a
single style rule, and a <div> block at
the end containing the chosen links.

Ch
apter 15: U

ser In
terface D

esig
n

 w
ith

 JavaS
cript

 Stu
dy G

u
ide

 Exercises

Java Ins ch 15(E).indd 3/5/04, 2:32 PM3

Study Guide  Chapter 15: User Interface Design with JavaScript

 Discuss the differences in the user experi-
ence between computer operating systems
and the Web. What was lost in the browser
environment, compared to working with
other applications on your computer?

 One of the many differences that
could be mentioned here is that OS
vendors, such as Apple, create human
interface guidelines for how software
developers should create applica-
tions with standard widgets. The
Web doesn’t have anything similar;
consequently, any given Web site can
have a totally different user interface
than any other.

 Discuss what, if anything, the browser
environment brought to the user
experience that the previous world of
OS/applications did not include.

 Students may come up with anything
here, but the main theme that should
be stressed here is that Web pages work
on all operating systems, making them
available to everyone, not just those
with a particular type of computer.

 Discuss specific things you can do with
JavaScript to make the user’s visit to your
Web page easier.

 Instructors should stress clear naviga-
tion and accessibility and discuss how
to make sites that work in the largest
possible number of browsers.

Multiple choice

1. It is important to provide user feedback
on your site:

A. Only in site navigation.

B. When the visitor is using a standards-
compliant browser.

C. When the user requests it.

D. Wherever you can.

2. In Script 15.1, the largest part of each of
the menus is initially:

A. Contained in the toggleMenu object.

B. Defined as the .menu CSS class.

C. Positioned above the top of the
screen.

D. Hidden behind the active window.

3. Which is valid JavaScript code?

A. <a href=”javascript;toggleMenu
 (‘fileMenu’)”>File

B. <a href=”javascript:toggleMenu
 (‘fileMenu’)”>File

C. <a href=”javascript:toggleMenu
 (“fileMenu”)”>File

D. <a href=”toggleMenu
 [‘fileMenu’]”>File

4. The technique used in Script 15.3 uses
JavaScript to create the tool tips for:

A. Any map of the moon.

B. An image map.

C. The moon object.

D. The popUp function.

Ch
ap

te
r

15
: U

se
r

In
te

rf
ac

e
D

es
ig

n
 w

it
h

 Ja
va

S
cr

ip
t


 S

tu
dy

 G
u

id
e


 D

is
cu

ss
io

n
 a

n
d

R
ev

ie
w

 Q
u

es
ti

o
n

s

Class Discussion Questions Review Questions

Java Ins ch 15(E).indd 3/5/04, 2:32 PM4

Study Guide  Chapter 15: User Interface Design with JavaScript

5. Click-anywhere form fields:

A. Allow the user to click anywhere in
the form.

B. Allow the form to accept mouse clicks
in all fields.

C. Extend the clickable area of
checkboxes and radio buttons.

D. Allow the user to edit anywhere inside
scrollable text boxes.

Fill-in-the-blank

1. When doing pull-down menus, you must
take into account that older browsers
cannot do rollovers on <div> tags.

2. Script 15.2, the sliding menus example,
takes advantage of the fact that mod-
ern browsers can add page elements via
JavaScript and automatically reflow text.

3. You can use tool tips to give users pop-up
instructions when filling out forms.

4. Click-anywhere form fields allow the user
to click on the text label of a checkbox or
radio button to select it.

5. The values of a group of radio buttons are
stored in an array.

Find the Errors

The following code contains a number of
errors. Find them all.

<!DOCTYPE html PUBLIC “-//W3C//DTD
 XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Shakespeare’s Plays</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide script from older
  browsers

 function toggleMenu(currMenu) {
 if (document.getElementById) {
 thisMenu = document.
  getElementById(currMenu).
  style
 if (thisMenu.display ==
  “block”) {
 thisMenu.display = “none”
 }
 else {
 thisMenu.display = “block”
 }
 }
 }

 // End hiding script -->
 </script>
 <style type=”text/css”>
 <!--

 .menu {display:none; margin-left:
  20px}

 -->
 </style>
</head>

continues on next page

Ch
apter 15: U

ser In
terface D

esig
n

 w
ith

 JavaS
cript

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 15(E).indd 3/5/04, 2:32 PM5

Study Guide  Chapter 15: User Interface Design with JavaScript

<body bgcolor=”#FFFFFF”>
<h1>Shakespeare’s Plays</h1>
<a href=”page1.html” onclick=”toggleMenu
 (‘menu1’)”>Comedies

 All’s Well That Ends Well

 As You Like It

 Love’s Labour’s Lost

 The Comedy of Errors

</body>
</html>

1. The toggleMenu() function doesn’t
return any value (it should return true
or false).

2. The onclick handler in the <a>
doesn’t look for a return value, causing
page1.html to always load even when
it shouldn’t.

3. The value (menu1) being passed to
togglemenu() doesn’t match the id of
the (menu), and it has to in order
to be changed.

4. The doesn’t have the class attri-
bute, and it’s needed in order for the
correct style rule to apply.

5. One extra number here in case the stu-
dent comes up with an alternate way to
fix the code.

Ch
ap

te
r

15
: U

se
r

In
te

rf
ac

e
D

es
ig

n
 w

it
h

 Ja
va

S
cr

ip
t


 S

tu
dy

 G
u

id
e


 R

ev
ie

w
 Q

u
es

ti
o

n
s

Java Ins ch 15(E).indd 3/5/04, 2:32 PM6

Chapter 16: Applied JavaScript  Study Guide

Learning Objectives
 Learn how to put your JavaScript code

into external .js files.

 In the real world, most code is put
into external files. It’s time for stu-
dents to learn how to do this.

 Learn how to put your style sheets into
external files.

 Much of the power of CSS (i.e., being
able to change an entire site’s look by
changing a single rule) is possible only
when you put your style sheets into
external files.

 Understand how to create custom
JavaScript objects.

 This is an immensely powerful tool,
and the book touches on it only briefly.
Students should be encouraged to play
around with its possibilities.

 Understand how to use JavaScript to
change a page’s style sheet.

 This handy widget is getting to be
popular on more and more Web sites,
as it lets visitors change the look and
feel of sites to suit their own needs.

 Take one of the exercises that you
did earlier in the book, and move its
JavaScript into an external .js file.

 The resulting file should be checked
to make sure that students removed
any “hide from older browsers” com-
ments as well as any <script> tags.
Additionally, the <script> tags in the
HTML file should only contain “hide
from older browsers” comments if
there actually is code to be hidden.

 Combine three scripts from earlier in
this book into a new page, pulling the
JavaScript code (when reasonable) into an
external file. Make the page do something
reasonably useful. Make sure to identify
the scripts you used as inspiration.

 This is the student’s choice, so you
just need to make sure that there’s a
minimum of duplicated JavaScript
and that full advantage is taken of the
external JavaScript file.

 Script 16.13 creates a custom JavaScript
object. Write an entirely different script
that creates one or more custom objects.

 Once again, this is the student’s
choice; the resulting page(s) should be
checked to make sure that students
have come up with something both
meaningful and valid.

 Modify the Style Sheet Switcher example
(see page 361) to use your own custom
style sheets and to allow the user to switch
between three style sheet possibilities.

Get Up and Running Exercises

Ch
apter 16: A

pplied JavaS
cript

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 16(D).indd 3/5/04, 2:32 PM1

Study Guide  Chapter 16: Applied JavaScript

 Discuss when you would want to place
code into an external .js file. Are there
situations on sites where you would not
want to use an external file?

 Students may come up with a number
of reasons, but here are two exam-
ples: (1) if there’s a small amount of
JavaScript code that’s only used on
one page, leaving it on the page may
make more sense, and (2) if one page
of a site does something slightly dif-
ferent from how the rest of the site
does it, you might want to keep the
code for that one page internal so that
the code can’t incorrectly be changed
to match the rest of the site.

 The Style Sheet Switcher example shows
one way you can use JavaScript to make
your sites more user friendly. Can you
come up with other examples of how
sites can use style sheet switching to
cater to different user needs?

 As one example, sites might want to
offer different style sheets based on the
needs of users with disabilities (e.g.,
impaired vision or color-blindness).

 Discuss when and how you would want
to create custom JavaScript objects.

 Students should take a look at the
book example, in which custom
objects are being set to other custom
objects, creating new properties for
the former on the fly. This is a handy
technique for future use.

Multiple choice

1. You can insert references to how many
external .js files in one script?

A. Zero or one

B. Only one

C. As many as you want

D. Any number between 1 and 256

2. You should put references to an external
JavaScript file inside the:

A. <head> tag.

B. <title> tag.

C. <body> tag.

D. DOCTYPE declaration.

3. External .js files are:

A. Encapsulated in an HTML file.

B. Required by the W3C.

C. Never more than 8K of text.

D. None of the above.

4. The charCodeAt() method:

A. Encodes a character for later secure
encryption.

B. Returns the ASCII value for a
character.

C. Returns the octal value for a character.

D. None of the above.

Ch
ap

te
r

16
: A

pp
li

ed
 Ja

va
S

cr
ip

t


 S
tu

dy
 G

u
id

e


 D
is

cu
ss

io
n

 a
n

d
R

ev
ie

w
 Q

u
es

ti
o

n
s

Review QuestionsClass Discussion Questions

Java Ins ch 16(D).indd 3/5/04, 2:32 PM2

Study Guide  Chapter 16: Applied JavaScript

Find the Errors

The following code contains several errors.
Find them all.

<!DOCTYPE html PUBLIC “-//W3C//DTD
 XHTML 1.0 Transitional//EN”>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 16.1</title>
 <style src=”myStyles.css” type=
  ”text/stylesheet” />
 <script href=”external.js”
  type=”text/javascript”
language=”Javascript” />
</head>
<body>
Body text goes here
</body>
</html>

1. The correct syntax for the <script> tag is to
use a src attribute, not an href attribute.

2. The <style> tag cannot refer to an
external style sheet; you need to use the
<link> tag for that.

3. The correct attribute for the <link> tag is
href, not src.

4. If the <style> tag was correct, the correct
value for the type attribute would be text/
css, not text/stylesheet. The <link> tag
doesn’t have a type attribute at all.

5. One extra space is left here for students
to come up with their own answer, but be
aware that closing the <script> tag with />
is valid—it doesn’t need a </script> tag.

5. You can create a new custom object in
JavaScript:

A. Whenever you want.

B. Only in an external .js file.

C. Using new Object().

D. Both A and C.

6. To change shared scripts:

A. Change them in each Web page.

B. Change the external .js file.

C. Use the defineScriptSource()
method.

D. Any of the above.

Fill-in-the-blank

1. To share scripts between different Web
pages, you should place the scripts in a(n)
external .js file.

2. You can share style sheets between differ-
ent Web pages by placing them into (an)
external .css file.

3. The expression charCodeAt(5) looks at
the sixth character in the string.

4. In the two Bar Graph examples,
lilRed.gif is one pixel in size.

5. In Script 16.10, arrayArray is an array
that contains other arrays.

Ch
apter 16: A

pplied JavaS
cript

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 16(D).indd 3/5/04, 2:33 PM3

Chapter 17: Manipulating Nodes  Study Guide

Learning Objectives
 Learn what a node is and how it fits into

the DOM’s tree structure.

 The concepts of nodes and the DOM’s
tree structure are important parts
of understanding how the browser
handles the underlying content of Web
pages. In order to change that content,
you need to understand the concepts.

 Learn why you’d want to manipulate nodes.

 As node manipulation is fairly new
technology, students may wonder
what it can be used for. See the first
discussion question, below, for some
real-world usage.

 Learn how nodes can be added, deleted,
and replaced.

 This chapter’s examples only cover
text nodes, but students should be
encouraged to extrapolate how other
types of nodes would be manipulated.

 Modify Script 17.1 to add images to a page
instead of adding paragraphs of text.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”\>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 17.1</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide script from older
  browsers

 function addNode(inImg) {
 newImg = document.
  createElement(“img”)
 newImg.src = inImg

 docBody = document.
  getElementsByTagName
  (“body”).item(0)
 docBody.appendChild(newImg)
 docBody.appendChild
  (document.createElement
  (“br”))

 return false
 }

 // End hiding script from
  older browsers -->
 </script>
</head>
<body>
<form action=”#” onsubmit=
 ”return addNode(this.textField.
 value)”>

continues on next page

Get Up and Running Exercises

Ch
apter 17: M

an
ipu

latin
g

 N
o

des
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 17(E).indd 3/5/04, 2:33 PM1

Study Guide  Chapter 17: Manipulating Nodes

<input type=”text”
 name=”textField” size=”30” />
<input type=”submit” value=
 ”Add an image to the page” />
</form>
</body>
</html>

 There’s some slightly tricky stuff
here—students will need to under-
stand that adding a paragraph means
adding two nodes (one for the tag, one
for the text inside the tag, as shown
in the book’s text) whereas adding an
image is only one node. Consequently,
where the book calls appendChild()
twice to add the paragraph, a stu-
dent’s example should only have to
call appendChild() once to add the
image. An additional appendChild()
has also been added above to put a

 between images; this is just to
make the resulting page look nicer.

 Modify Script 17.5 to handle images
instead of paragraphs.

<!DOCTYPE html PUBLIC “-//W3C//
 DTD XHTML 1.0 Transitional//
 EN”\>
<html xmlns=”http://www.w3.org/
 1999/xhtml”>
<head>
 <title>Exercise 17.2</title>
 <script type=”text/javascript”
  language=”Javascript”>
 <!-- Hide script from older
  browsers

 function addNode(inImg) {
 newNode = document.
  createElement(“img”)

 newNode.src = inImg

 docBody = document.
  getElementsByTagName
  (“body”).item(0)
 docBody.appendChild
  (newNode)
 docBody.appendChild
  (document.createElement
  (“br”))
 }

 function delNode(delChoice) {
 allImgs = document.
  getElementsByTagName
  (“img”)
 killImg = allImgs.item
  (delChoice)

 docBody = document.
  getElementsByTagName
  (“body”).item(0)
 removed = docBody.
  removeChild(killImg)
 }

 function insertNode
  (inChoice,inImg) {
 newNode = document.
  createElement(“img”)
 newNode.src = inImg

 allImgs = document.
  getElementsByTagName
  (“img”)
 oldImgs =
allImgs.item(inChoice)

 docBody = document.
  getElementsByTagName
  (“body”).item(0)

continues on next page

Ch
ap

te
r

17
: M

an
ip

u
la

ti
n

g
 N

o
de

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 17(E).indd 3/5/04, 2:33 PM2

Study Guide  Chapter 17: Manipulating Nodes

 break
 case 1:
 delNode(nodeForm.
  imgCount.selected
  Index)
 break
 case 2:
 insertNode(nodeForm.
  imgCount.selected
  Index,nodeForm.
  textField.value)
 break
 case 3:
 replaceNode(nodeForm.
  imgCount.selected
  Index,nodeForm.
  textField.value)
 break
 default:
 }
 document.nodeForm.
  imgCount.options.
  length = 0
 for(i=0;i<document.
  getElementsByTagName
  (“img”).length;i++) {
 document.nodeForm.
  imgCount.options[i] =
  new Option(i+1)
 }
 return false
 }

 // End hiding script from
  older browsers -->
 </script>
</head>
<body>
<form action=”#” name=”nodeForm”
 onsubmit=”return nodeChanger()”>

continues on next page

 docBody.insertBefore
  (newNode,oldImgs)
 docBody.insertBefore
  (document.createElement
  (“br”),oldImgs)
 }

 function replaceNode
  (inChoice,inImg) {
 newNode = document.
  createElement(“img”)
 newNode.src = inImg

 allImgs = document.
  getElementsByTagName
  (“img”)
 oldImgs = allImgs.item
  (inChoice)

 docBody = document.
  getElementsByTagName
  (“body”).item(0)
 docBody.replaceChild
  (newNode,oldImgs)
 }

 function nodeChanger() {
 actionType = -1
 for (i=0;i<nodeForm.
  nodeAction.length;i++) {
 if (nodeForm.nodeAction
  [i].checked) {
 actionType = i
 }
 }
 switch(actionType) {
 case -1:
 alert(“No action was
  chosen”)
 break
 case 0:
 addNode(nodeForm.
  textField.value)

Ch
apter 17: M

an
ipu

latin
g

 N
o

des
 Stu

dy G
u

ide
 Exercises

Java Ins ch 17(E).indd 3/5/04, 2:33 PM3

Study Guide  Chapter 17: Manipulating Nodes

 <input type=”text”
  name=”textField” size=”30”
  />

 <input type=”radio” name=
  ”nodeAction” />Add image
 <input type=”radio” name=
  ”nodeAction” />Delete image
 <input type=”radio” name=
  ”nodeAction” />Insert before
  image
 <input type=”radio” name=
  ”nodeAction” />Replace
  image

 Image #: <select name=
  ”imgCount”>
 </select>
 <input type=”submit” name=
  ”submit” value=”Submit” />
</form>
</body>
</html>

 This exercise should be similar to
the first exercise, but students should
get more of a feel for how image nodes
are similar to and differ from para-
graph nodes.

 Combine Script 17.5 and Exercise 17.2 to
let the user add or delete either text or
images on the page.

 This should just be a combination of
the two scripts. Give students more
credit for reusing the most amount of
code (i.e., the less duplicate code on
the page, the better).

 Visit the W3C site mentioned on page
372, and come to class prepared to discuss
what DOM 2 is. For lots of extra credit,
translate the specification from the mystic
language of geeks into plain English.

 This isn’t a bad place in the book to
expose students to the full force of
a W3C spec. It is useful to see how
the real-world pages that we write
are derived from such formalistic,
academic specifications.

Ch
ap

te
r

17
: M

an
ip

u
la

ti
n

g
 N

o
de

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es

Java Ins ch 17(E).indd 3/5/04, 2:33 PM4

Study Guide  Chapter 17: Manipulating Nodes

 Give some examples of how node
manipulation can be used in real-world
Web sites.

 Let students come up with their own
ideas, but some that we’ve heard of
include being able to rewrite a page
on the fly based on user feedback (e.g.,
sorting on various fields) and form
fields that are added to the page based
on answers to previous questions.

 When would you want to use node manip-
ulation versus server-side technology?

 Node manipulation means that you
don’t have to reload the entire page
from the server, but server-side CGIs let
you (for example) read from databases.

 Discuss the tree structure of nodes, as
shown on page 373.

 Note how the HTML container tags
correspond to element nodes.

Multiple choice

1. The DOM tree structure contains:

A. Nodes.

B. HTML tags.

C. Text on the page.

D. All of the above.

2. An element node contains:

A. The DOM tree structure.

B. An HTML tag.

C. Binary code.

D. Only JavaScript.

3. You can add a node using which method?

A. makeElement()

B. createNode()

C. createElement()

D. buildNode()

4. To get all of the paragraph tags on a page,
you would use which method?

A. getElementsById(“p”)

B. getElementsByTagName(“p”)

C. getParagraphElements()

D. getParagraphs()

5. Which of the following is a valid method?

A. insertNodeAfter()

B. insertAfter()

C. appendAfter()

D. appendChild()

Class Discussion Questions Review Questions

Ch
apter 17: M

an
ipu

latin
g

 N
o

des
 Stu

dy G
u

ide
 D

iscu
ssio

n
 an

d R
eview

 Q
u

estio
n

s

Java Ins ch 17(E).indd 3/5/04, 2:33 PM5

Study Guide  Chapter 17: Manipulating Nodes

Fill-in-the-blank

1. The DOM Level 2 specification is pro-
duced by the W3C.

2. You can use JavaScript to manipulate any
aspect of the DOM tree structure.

3. To delete a node, use the removeChild()
method.

4. Text nodes are contained by element nodes.

5. You can exchange one node with another
by using the replaceChild() method.

Definitions

1. What is the tree structure?

 The tree structure is how the browser
internally represents the structure of a
Web page. The tree structure contains
nodes, each of which represents a tag
or text element on the page. See Figure
17.1 on page 373 for a representation of
a simple page’s tree structure.

2. What is a node?

 A node is any aspect of a Web page,
whether tags or text. JavaScript is able
to manipulate nodes.

3. What is an element node?

 An element node is how any and
every tag on a Web page is repre-
sented in a tree structure view of a
Web page.

4. What is a text node?

 A text node is how the text on a Web
page is represented in a tree structure
view of a Web page.

Ch
ap

te
r

17
: M

an
ip

u
la

ti
n

g
 N

o
de

s


 S
tu

dy
 G

u
id

e


 R
ev

ie
w

 Q
u

es
ti

o
n

s

Java Ins ch 17(E).indd 3/5/04, 2:34 PM6

Chapter 18: Bookmarklets  Study Guide

Learning Objectives
 Learn what bookmarklets are and what

they’re useful for.

 Bookmarklets have been called the
most powerful tool that Web design-
ers have that they don’t use. We rec-
ommend spending some time talking
about how darn useful and powerful
they are.

 Learn what the limitations and differences
are of bookmarklets in some browsers.

 For instance, Netscape 4 bookmar-
klets must be 255 characters or less,
and Internet Explorer for Windows
uses a different syntax for getting a
selection off a Web page than that
used by both Internet Explorer for
Mac and Netscape.

 Learn how to add bookmarklets to your
browser.

 Every browser has a different way to
add bookmarklets, so how students add
them depends on their chosen browser.

 Create a bookmarklet that opens a new
window that calls the W3C HTML valida-
tor on the opening window.

javascript:void(window.
 open(‘http://validator.w3.org/
 check?uri=’+window.location.
 href,’_blank’,’’))

 This is one of those incredibly use-
ful bookmarklets that every Web
designer and developer should have
installed on their main browser.

 Create a bookmarklet that resizes the
current window to be 700 pixels wide,
as high as the screen is tall, and flush
against the left side of the screen.

javascript:moveTo(0,0);resizeTo
 (700,screen.availHeight)

 Note that this (and in fact, most book-
marklets) may vary slightly due to dif-
ferences between browsers. Students
should be graded on how well their
bookmarklets work in their browser,
not just on matching this example.

continues on next page

Get Up and Running Exercises

Ch
apter 18: B

o
o

km
arklets

 Stu
dy G

u
ide

 O
bjectives an

d Exercises

Java Ins ch 18(D).indd 3/5/04, 2:34 PM1

Study Guide  Chapter 18: Bookmarklets

 Modify the previous exercise to resize
the window to the same dimensions, but
flush against the right side of the screen.

javascript:moveTo(screen.
 availWidth-700,0);resizeTo
 (700,screen.availHeight)

 This isn’t as easy as students might
think at first, as they’ll need to figure
out where to put the top-left corner
of the browser. Given that we know
the ending width of the window, the
student will have to calculate where
the window should move to based on
the width of the screen.

 Visit http://www.bookmarklets.com and
http://www.favelets.com, and report
back to the class on at least one cool and/or
useful bookmarklet that you found there.

 There’s considerably more that can be
done with bookmarklets than can be
covered in this book, so students should
be familiar with these great resources.

 Discuss why bookmarklets are useful.

 They are useful because you can per-
form a wide variety of handy, practical
work with them, without having to
load a Web page.

 Can you dream up bookmarklets that you
would like to have in your browser?

 This could be an interesting discus-
sion, depending on what students are
interested in. For example, students
who are strongly interested in Web
design and coding might be interested
in bookmarklets that help them code,
whereas students who do a lot of writ-
ing may be more interested in things
like dictionary lookups.

Ch
ap

te
r

18
: B

o
o

km
ar

kl
et

s


 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es
 a

n
d

D
is

cu
ss

io
n

 Q
u

es
ti

o
n

s

Class Discussion Questions

Java Ins ch 18(D).indd 3/5/04, 2:34 PM2

Study Guide  Chapter 18: Bookmarklets

4. Bookmarklets use single character vari-
able names because:

A. It’s a requirement.

B. It’s a requirement, but only for
Netscape 4.

C. It’s recommended for Netscape 4.

D. None of the above.

Fill-in-the-blank

1. Bookmarklets call the browser’s internal
JavaScript interpreter.

2. You separate JavaScript commands in a
bookmarklet with a semicolon.

3. The book examples create unit convert-
ers and calculators in a bookmarklet
using JavaScript’s built in Math object.

4. Bookmarklets must be written in a single line.

5. Bookmarklets that work in Netscape 4
cannot be longer than 255 characters.

Definitions

1. What is a bookmarklet?

 A bookmark or favorite that contains a
call to the browser’s JavaScript interpreter.

2. Explain what javascript:void() does
and why it’s useful.

 Absolutely nothing, but it’s useful for
bookmarklets because in order to
work correctly bookmarklets must
return a value, which void() does
(although it’s a null value).

Multiple choice

1. What is the maximum number of lines a
bookmarklet can be?

A. One

B. 255

C. No limit

D. None of the above.

2. A bookmarklet must:

A. End with a semicolon.

B. Return a value.

C. Use single character variable names.

D. All of the above.

E. None of the above.

3. Which of the following statements can refer
to the text selected in a browser window?

A. window.getSelection()

B. document.getSelection()

C. document.getSelection.createRange
 ().text

D. All of the above.

E. None of the above.

 The answer to A, window.getSelection(),
is the syntax used in Safari. This isn’t
mentioned in the text (it hadn’t been
documented at that point), so it should
be brought up in class prior to students
having to answer this question. C works
in Internet Explorer for Windows, B
works in Netscape (all platforms) and
Internet Explorer for Mac.

Review Questions

Ch
apter 18: B

o
o

km
arklets

 Stu
dy G

u
ide

 R
eview

 Q
u

estio
n

s

Java Ins ch 18(D).indd 3/5/04, 2:34 PM3

Chapter 19: Working with Visual Tools  Study Guide

Learning Objectives
 Understand the advantages and disad-

vantages of visual tools in comparison to
hand coding JavaScript.

 Using a visual tool is certainly easier
for the casual designer, plus it allows
the designer to use the free extensions
that are available for many tools. On
the other hand, it’s more expensive to
use a visual tool instead of a text editor.
And the code is often clunky, bloated,
and difficult or impossible for humans
to read, understand, and change.

 Use a visual tool to accomplish a task
using JavaScript, and compare the results
to hand coding.

 Remind the students that if they
don’t have any visual tools, trial ver-
sions of Macromedia Dreamweaver,
Adobe GoLive, Microsoft FrontPage,
Macromedia Fireworks, and Adobe
ImageReady (as part of Photoshop)
may be downloaded from the compa-
nies’ respective Web sites.

 Many of the visual tools on the market
are extensible, meaning that program-
mers can write additional features for
them. Go to the Macromedia Exchange at
http://www.macromedia.com/exchange/
and browse through the extensions for
Dreamweaver. Check out the range of
extensions, and identify some that would
be useful to you in your work.

 The Macromedia Exchange is the
biggest of the extension repositories,
though they also exist for Adobe and
Microsoft products. Students should
be able to come up with several
examples of extensions that would
help them.

 Using the visual tool of your choice, recreate
one of the book’s more involved examples
found in Chapters 5, 6, and 7. View the
source code of the result, and compare it to
the code found in the book. Come to class
prepared to discuss the differences.

 The code created by the tool will
almost always be longer and much
harder to read and understand than
the hand-coded examples.

continues on next page

Get Up and Running Exercises Ch
apter 19: W

o
rkin

g
 w

ith
 Visu

al To
o

ls
 Stu

dy G
u

ide
 O

bjectives an
d Exercises

Java Ins ch 19(D).indd 3/5/04, 2:34 PM1

Study Guide  Chapter 19: Working with Visual Tools

 One of the interesting uses of JavaScript
is that many applications now use it as
an internal scripting language. These
applications use JavaScript to manipu-
late their own documents, and as a
result, they need to have their own DOM
(Document Object Model). To see an
example of this, check out the specifi-
cation for the Dreamweaver DOM, at
http://livedocs.macromedia.com/
dreamweaver/mx2004/extending/
index.htm. See how Dreamweaver’s DOM
allows the program to be extended in
many different ways.

 Besides Dreamweaver, other
Macromedia products, such as
Fireworks and Flash, have their own
DOMs, as do Adobe products such as
Acrobat, Photoshop, and GoLive.

 If a visual tool will write your JavaScript
for you, why should you bother to learn
the language yourself?

 You’ll be able to write JavaScript that
can do things that the tool can-
not. For example, out of the box,
Dreamweaver can’t do any but the
simplest form validation. If you want
to, say, check that a user entered the
same password twice in a form, you’ll
have to either write your own code or
try to find an extension that someone
else has already written.

 Are there examples where the benefit of
using a visual tool outweighs the loss of
control that you get with hand coding?

 Some things are quite difficult to
hand code, such as the pop-up
menus example that uses Fireworks
(see page 420). In cases like those,
even the coder who is comfortable
with JavaScript might want to turn
to machine-written code. Another
reason might be that you’re under a
heavy deadline, and you simply don’t
have the time to write your own code.

 Discuss how you might want to custom-
ize a program like Dreamweaver.

 One possibility would be to deploy
to clients a limited version of
Dreamweaver that they can use to
make some changes to their sites.
Or you could provide your Web
developers with a custom version
that includes a set of extensions and
commands that they need to handle
specific features of your Web site.

Ch
ap

te
r

19
: W

o
rk

in
g

 w
it

h
 V

is
u

al
 T

o
o

ls
 

 S
tu

dy
 G

u
id

e


 E
xe

rc
is

es
 a

n
d

D
is

cu
ss

io
n

 Q
u

es
ti

o
n

s Class Discussion Questions

Java Ins ch 19(D).indd 3/5/04, 2:35 PM2

Study Guide  Chapter 19: Working with Visual Tools

Fill-in-the-blank

1. The “Flying Objects in Adobe GoLive”
example animates objects using CSS-P.

2. To create a pop-up menu in Fireworks,
you need to start from a button.

3. Fireworks needs a hotspot to trigger a
JavaScript behavior.

4. The JavaScript created by Fireworks will
be in a file named menu.js.

5. To customize Dreamweaver’s menus, you
must change the menus.xml file.

Definitions

1. What are the differences between hand-
written and machine-written JavaScript?

 Hand-written code will be easier to
understand, can be much shorter, and
yields the same result.

2. What is the DHTML Timeline Editor in
GoLive?

 It allows the user to schedule events
in animations, and to play them with-
out previewing the page in a browser.
Dreamweaver has a similar editor, the
Timelines window.

3. What is a hotspot in Fireworks?

 A hotspot in Fireworks is the overlay
over a button or region that Fireworks
uses to trigger a JavaScript behavior.

Multiple choice

1. Which program cannot write JavaScript
for you?

A. Macromedia Dreamweaver.

B. Adobe GoLive.

C. Microsoft FrontPage.

D. Microsoft Word.

2. Dreamweaver calls JavaScript it writes:

A. Behaviors.

B. Actions.

C. JavaScript.

D. Events.

3. In the “Flying Objects in Adobe GoLive”
example, the images must be:

A. GIFs.

B. Transparent GIFs.

C. TIFFs.

D. JPEGs.

4. You can customize Dreamweaver using:

A. JavaScript.

B. HTML.

C. XML.

D. All of the above.

5. GoLive calls JavaScript it writes:

A. Behaviors.

B. Actions.

C. JavaScript.

D. Events.

Review Questions

Ch
apter 19: W

o
rkin

g
 w

ith
 Visu

al To
o

ls
 Stu

dy G
u

ide
 R

eview
 Q

u
estio

n
s

Java Ins ch 19(D).indd 3/5/04, 2:35 PM3

Chapter 20: Debugging Common Errors  Study Guide

Learning Objectives
 Improve the debugging skills learned as

you’ve worked your way through this book.

 Please note that the Study Guide for
this chapter does not include Exercises
and Review Questions, because stu-
dents should, by this point, be able to
provide plenty of examples of buggy
code. The authors feel that students
will benefit more from debugging their
own mistakes than from any examples
we might invent.

 What are the most common bugs that
you’ve run into?

 Different students will identify differ-
ent common bugs, but sharing their
experiences with others will help
them all know what to keep an eye out
for. Some common problems might
involve case sensitivity, or unbalanced
quotes, braces, and parentheses.

 What debugging techniques have worked
best for you?

 Again, the goal here is for students to
share the knowledge they’ve gained.
One approach that seems to work
without fail is asking someone else
to look at your code—a second set of
eyes will almost always find some-
thing you’ve overlooked. Other sug-
gestions are listed in the chapter.

 What browsers have you found best for
debugging?

 Some browsers are better than others
for debugging, as some give more
information and some give less. For
example, Safari gives no JavaScript
debugging information at all, whereas
Netscape’s JavaScript Console gives
some good hints as to where code
problems might lie.

Class Discussion Questions

Ch
apter 20: D

ebu
g

g
in

g
 Co

m
m

o
n

 Erro
rs

 Stu
dy G

u
ide

 O
bjectives an

d D
iscu

ssio
n

 Q
u

estio
n

s

Java Ins ch 20(E).indd 3/5/04, 2:35 PM1

