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This chapter is dedicated to describing the service-orientation design paradigm, its 
principles, and how it compares to other design approaches.

3.1 Introduction to Service-Orientation

In the  everyday world around us services are and have been commonplace for as long 
as civilized history has existed. Any person carrying out a distinct task in support of 
others is providing a service. Any group of individuals collectively performing a task 
in support of a larger task is also demonstrating the delivery of a service (Figure 3.1). 

“I take calls
and arrange
deliveries”

“I  make
deliveries”

“I take care
of the

accounting”

driver bookkeeperdispatcherFigure 3.1 
Three individuals, each capable of 
 providing a distinct service.

Similarly, an organization that carries out tasks associated with its purpose or busi-
ness is also providing a service. As long as the task or function being provided is well 
defi ned and can be relatively isolated from other associated tasks, it can be distinctly 
classifi ed as a service (Figure 3.2). 

Certain baseline requirements exist to enable a group of individual service providers to 
collaborate in order to collectively provide a larger service. Figure 3.2, for example, dis-
plays a group of employees who each provide a service for ABC Delivery. Even though 
each individual contributes a distinct service, for the company to function effectively, 
its staff also needs to have fundamental, common characteristics, such as availability,
reliability, and the ability to communicate using the same language. With all of these 
things in place, these individuals can be composed into a productive working team. 
Establishing these types of baseline requirements within and across business automa-
tion solutions is a key goal  of service-orientation.
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dispatcher

driver

bookkeeper

ABC
Delivery

Figure 3.2
A company that employs these 
three people can compose their 
capabilities to carry out its 
business.  

Services in Business Automation

From a general perspective, a service   is a software program that 
makes its functionality available via a published API that is part of a 
service contract  . Figure 3.3 shows the symbol used to depict a service 
(without providing any detail regarding its service contract).

Different implementation technologies can be used to program and 
build services. The two common implementation mediums covered 
in this book are SOAP-based Web services   (or just Web services) and 
RESTful services (or just REST services  ). Figure 3.4 shows the stan-
dard symbols used to represent service contracts in this book. 

NOTE

A Web service contract  is generally comprised of a WSDL definition and one or more XML 
Schema definitions. Services implemented as REST services are accessed via a uniform 
contract, such as the one provided by HTTP and Web media types. Chapters 8 and 9 pro-
vide examples of Web service and REST service contracts.

A service contract can be further comprised of human-readable documents, such as a 
Service Level Agreement (SLA) that describes additional quality-of-service guarantees, 
behaviors, and limitations. Several SLA-related requirements can also be expressed in 
machine-readable formats.

Figure 3.3
The symbol used to 
represent an abstract 
  service.
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InvoiceInvoice

Figure 3.4
The chorded circle symbol used to display an Invoice service contract (left), and 
a variation of this symbol used specifically for REST service contracts   (right).

Services Are Collections of Capabilities

When  discussing services, it is important to remember that a single service can offer an 
API that provides a collection of capabilities. They are grouped together because they 
relate to a functional context established by the service. The functional context of the 
service illustrated in Figure 3.5, for example, is that of “shipment.” This particular ser-
vice provides a set of capabilities associated with the processing of shipments.

“I can:
- drive
- fill out a waybill
- collect payment
etc.”

Shipment

Get

Add

Report

etc. 

Figure 3.5
Much like a human, an automated 
service can provide multiple 
capabilities.
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A service is therefore essentially a container of related capabilities. It is comprised 
of a body of logic designed to carry out these capabilities and a service contract that 
expresses which of its capabilities are made available for public invocation. When we 
make reference to service capabilities in this book, we are specifi cally focused on those 
that are defi ned as part of the service contract API. 

A service consumer  is the runtime role assumed by a software program when it accesses 
and invokes a service—or, more specifi cally, when it sends a message to a service capa-
bility expressed in the service contract. Upon receiving the request, the service begins 
executing logic encompassed by the invoked capability and it may or may not return a 
corresponding response message to the service consumer. A service consumer can be 
any software program capable of invoking a service via its API. A service itself may act 
as the consumer of another  service.

AGNOSTIC VS. NON-AGNOSTIC LOGIC

The   term “agnostic” originated from Greek and means “without knowledge.”
Therefore, logic that is suffi ciently generic so that it is not specifi c to (has no knowl-
edge of) a particular parent task is classifi ed as agnostic logic. Because knowledge 
that is specifi c to a single-purpose task is intentionally omitted, agnostic logic is 
considered multipurpose. Conversely, logic that is specifi c to (contains knowledge 
of) a single-purpose task is labeled as non-agnostic logic.

Another way of conceptualizing agnostic and non-agnostic logic is to focus on the 
extent to which the logic can be repurposed. Due to the multipurpose nature of 
agnostic logic, it is expected to become reusable across different contexts so that 
the logic, as a single software program (or service), can be used to help automate 
multiple business processes. Non-agnostic logic is not subject to these types of 
expectations. It is deliberately designed as a single-purpose software program (or 
service) and therefore has different characteristics and requirements. Non-agnos-
tic logic can still be reusable, but only within the scope of its parent business pro-
cess, which preserves its context as being specifi c to a greater, single-purpose   task.
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Service-Orientation as a Design Paradigm

A    design paradigm is an approach to designing solution logic. When building distrib-
uted solution logic, design approaches revolve around a software engineering theory 
known as the “separation of concerns.” In a nutshell, this theory states that a larger 
problem is more effectively solved when decomposed into a set of smaller problems or 
concerns. This gives us the option of partitioning solution logic into capabilities, each 
designed to solve an individual concern. Related capabilities can be grouped into units 
of solution logic.

Different design paradigms exist for distributed solution logic. What distinguishes 
service-orientation is the manner in which it carries out the separation of concerns and 
how it shapes the individual units of solution logic with specifi c characteristics and in 
support of a specifi c target state. 

Fundamentally, service-orientation shapes suitable units of solution logic as enter-
prise resources that can be designed to solve immediate concerns while still remaining 
agnostic to the greater problem. This provides the constant opportunity to reutilize the 
capabilities within those units to solve other problems as well.

Applying service-orientation to a meaningful extent results in solution logic that can 
be safely classifi ed as “service-oriented” and units that qualify as “services.” (Chapter 5 
explores in detail how the separation of concerns is carried out with service-orientation.)

Services, as part of service-oriented solutions, exist as physically independent software 
programs with distinct design characteristics. Each service is assigned its own distinct 
functional context and is comprised of a set of capabilities related to this context. A ser-
vice composition  is a coordinated aggregate of services. As explained later in the Effects 
of Service-Orientation on the Enterprise section, a composition of services (Figure 3.6) is 
comparable to a traditional application in that its functional scope is usually associated 
with the automation of a parent business    process.

Figure 3.6 
This symbol, comprised of three connected spheres,    
represents a service composition. Other, more detailed 
representations are based on the use of chorded circle 
symbols that illustrate which service capabilities are 
actually being composed.    
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A service inventory is  an independently standardized and governed collection of com-
plementary services within a boundary that represents an enterprise or a meaningful 
segment of an enterprise. Figure 3.7 establishes the symbol used to represent a service 
inventory in this book.

Figure 3.7 
The service inventory symbol is comprised 
of spheres within      a container.

An IT enterprise can contain or may even be comprised of a single service inventory. 
Alternatively, an enterprise environment can contain multiple service inventories. 
When an organization has multiple service inventories, this term is further qualifi ed as 
domain service inventory . 

The application of service-orientation throughout a service inventory is of paramount 
importance to establish a high degree of native interservice interoperability. This sup-
ports the repeated creation of effective service compositions (Figure 3.8).

service

service inventory

service composition

Figure 3.8
Services (top) are delivered into a service 
inventory (right) from which service 
compositions (bottom) are drawn   . 



26 Chapter 3: Understanding Service-Orientation

Here’s a  brief recap of the elements of service-orientation that have been covered so far:

 • Service-oriented solution logic is  implemented as services and service compositions 
designed in accordance with service-orientation.

 • A service composition is  comprised of services that have been assembled to provide 
the functionality required to automate a specifi c business task or process. 

 • Because service-orientation shapes   many services as enterprise resources, one service 
may be invoked by multiple consumer programs, each of which can involve that 
same service in a different service composition.

 • A collection of standardized services can form the basis of a service inventory that 
can  be independently governed within its own physical deployment environment.

 • Multiple business processes can be automated by the creation of service composi-
tions that draw from a pool of existing agnostic services that reside within a service 
inventory.

As explored in Chapter 4, service-oriented architecture is a form of technology archi-
tecture optimized in support of services, service compositions, and  service inventories.

Service-Orientation Design Principles

The  preceding sections have described the service-orientation paradigm at a very high 
level. But how exactly is this paradigm applied? It is primarily applied at the service 
level (Figure 3.9) via the application of the following eight design principles:

 • Standardized Service Contract    (291) – Services within the same service inventory are 
in compliance with the same contract design standards.

  Services express their purpose and capabilities via a service contract. This is 
perhaps the most fundamental principle in that it essentially dictates the need for 
service-oriented solution logic to be partitioned and distributed in a standardized 
manner. It also places a great deal of emphasis on the design of service contracts 
to ensure that the manner in which services express functionality and defi ne data 
types is kept in relative alignment. 

 • Service Loose Coupling    (293) – Service contracts impose low consumer coupling 
requirements and are themselves decoupled from their surrounding environment.

  Coupling refers to a measure of dependency between two things. This prin-
ciple establishes a specifi c type of relationship within and outside of service 
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boundaries, with a constant emphasis on reducing (“loosening”) dependencies 
between a service contract, its implementation, and service consumers. Service 
Loose Coupling (293) promotes the independent design and evolution of service 
logic while still guaranteeing baseline interoperability. 

 • Service A bstraction   ( 294) – Service contracts only contain essential information and 
information about services is limited to what is published in service contracts.

  Abstraction ties into many aspects of service-orientation. On a fundamental level, 
this principle emphasizes the need to hide as much of the underlying details of 
a service as possible. Doing so directly enables the previously described loosely 
coupled relationship. Service Abstraction (294) also plays a signifi cant role in the 
positioning and design of service compositions. 

 • Service Reusability   (295) – Services contain and express agnostic logic and can be 
positioned as reusable enterprise resources.

  Whenever we build a service, we look for ways to make its underlying capabilities 
useful for more than just one purpose. Reuse is greatly emphasized with service-
orientation—so much so, that it becomes a core part of the design process and it 
also forms the basis for key service models (as explained in Chapter 5). 

 • Service Autonomy   (297) – Services exercise a high level of control over their underlying 
runtime execution environment.

  For services to carry out their capabilities consistently and reliably, their under-
lying solution logic needs to have a signifi cant degree of control over its envi-
ronment and resources. Service Autonomy (297) supports the extent to which 
other design principles can be effectively realized in real-world production 
environments. 

 • Service Statelessness   (298) – Services minimize resource consumption by deferring the 
management of state information when necessary.

  The management of excessive state information can compromise the availability of 
a service as well as the predictability of its behavior. Services are therefore ideally 
designed to remain stateful only when required. Like Service Autonomy (297), 
this is another principle that focuses less on the contract and more on the design 
of the underlying logic. 
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 • Service Discoverability   (300) – Services are supplemented with communicative meta-
data by which they can be effectively discovered and interpreted.

  For services to be positioned as IT assets with repeatable ROI, they need to be 
 easily identifi ed and understood when opportunities for reuse present themselves. 
The service design therefore needs to take the “communications quality” of ser-
vice contracts and capabilities into account, regardless of whether a discovery 
mechanism such as a service registry is an immediate part of the environment. 

implement a
standardized contract

minimize dependencies

minimize the availability
of meta information

implement generic and
reusable logic and contract

implement independent
functional boundary and

runtime environment

implement adaptive and
state management-free logic

implement communicative
 meta information

maximize composability

Standardized
Service Contract

Service
Reusability

Service
Autonomy

Service
Statelessness

Service
Discoverability

Service
Loose Coupling

Service
Abstraction

Service
Composability

service

Figure 3.9
How service-orientation design principles collectively shape service design.
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 • Service Composability    (302) – Services are effective composition participants, regard-
less of the size and complexity of the composition.

  As the sophistication of service-oriented solutions grows, so does the complex-
ity of underlying service composition confi gurations. The ability to effectively 
compose services is a critical requirement for achieving some of the fundamen-
tal goals of service-oriented computing. Complex service compositions place 
demands on service design. Services are expected to be capable of participating 
as effective composition members, regardless of whether they need to be immedi-
ately enlisted in a  composition. 

SOA PATTERNS

Service-orientation principles  are closely related to SOA patterns. Note how each 
pattern profi le table in Appendix C contains a fi eld dedicated to showing related 
design principles.

3.2 Problems Solved by Service-Orientation

To best  appreciate why service-orientation emerged and how it is intended to improve 
the design of automation systems, we need to compare before and after perspectives. By 
studying some of the common issues that have historically plagued IT we can begin to 
understand the solutions proposed by this design paradigm.

Silo-based Application Architecture

In the   world of business, delivering solutions capable of automating the execution of 
business tasks makes a great deal of sense. Over the course of IT’s history, the majority 
of such solutions have been created with a common approach of identifying the busi-
ness tasks to be automated, defi ning their business requirements, and then building the 
c  orresponding solution logic (Figure 3.10).

This has been an accepted and proven approach to achieving tangible business benefi ts 
through the use of technology and has been successful at providing a relatively predict-
able return on investment (Figure 3.11). 



30 Chapter 3: Understanding Service-Orientation

Validate Timesheet Business Process
Step 1 ...
Step 2 ...
Step 3 ...
...

business requirements
for automating the
Validate Timesheet
business process

the Validate Timesheet
application delivered to

automate the
business process

Figure 3.10
A ratio of one application for each new   set of automation requirements has been common.

Development cost = x

Yearly operational cost = y

Estimated yearly savings
due to increased productivity = (x/2) - y

Validate Timesheet
Application

Figure 3.11
A sample formula for calculating ROI is based on a predetermined 
investment   with a predictable return.

The ability to gain any further value from these applications is usually inhibited because 
their capabilities are tied to specifi c business requirements and processes (some of 
which will even have a limited lifespan). When new requirements and processes come 
our way we are forced to either make signifi cant changes to what we already have or 
build a new application altogether. 
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In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s 
explore some of the lessons learned by fi rst focusing on the positive. 

 • Solutions can be built effi ciently because they only need to be concerned with the 
fulfi llment of a narrow set of requirements associated with a limited set of busi-
ness processes.

 • The business analysis effort involved with defi ning the process to be automated is 
straightforward. Analysts are focused only on one process at a time and therefore 
only concern themselves with the business entities and domains associated with 
that one process. 

 • Solution designs are tactically focused. Although complex and sophisticated 
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specifi c set of business processes. This predefi ned functional 
scope simplifi es the overall solution design as well as the underlying application 
architecture.

 • The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled 
with unforeseen challenges, when the delivery scope is well-defi ned (and doesn’t 
change), the process and execution of the delivery phases have a good chance of 
being carried out as expected.

 • Building new systems from the ground up allows organizations to take advantage 
of the latest technology advancements. The IT marketplace progresses every year 
to the extent that we fully expect technology we use to build solution logic today 
to be different and better tomorrow. As a result, organizations that repeatedly 
build disposable applications can leverage the latest technology innovations with 
each new project.

These and other common characteristics of traditional solution delivery provide a good 
indication as to why this approach has been so popular. Despite its acceptance, though, 
it has become evident that there is still much room for   improvement.

It Can Be Highly Wasteful

The  creation of new solution logic in a given enterprise commonly results in a signifi -
cant amount of redundant functionality (Figure 3.12). The effort and expense required 
to construct this logic is therefore also redundant.
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It’s Not as Efficient as It Appears

Because of  the tactical focus on delivering solutions for specifi c process requirements,
the scope of development projects is highly targeted. Therefore, there is the constant 
perception that business requirements will be fulfi lled at the earliest possible time. 
However, by continually building and rebuilding logic that already exists elsewhere, 
the process is not as effi cient as it could be if the creation of redundant logic could be 
avoided (Figure 3.13).

Application A Application B

Application EApplication D Application F

Application C

17 % 18 %

18 %

22 %

16 %
29 %

Figure 3.12
Different applications developed 
independently can result in significant 
amounts of redundant functionality. 
The applications displayed were 
delivered with various levels of 
solution logic that, in some form, 
already  existed.

Application A

Amount of redundant logic required = 17%

Cost = x

Cost of non-redundant application logic = 83% of x

Figure 3.13
Application A was delivered for a 
specific set of business requirements. 
Because a subset of these business 
requirements had already been 
fulfilled elsewhere, Application A’s 
delivery scope is larger than it has 
to  be.

It Bloats an Enterprise

Each  new or extended application adds to the bulk of an IT environment’s system 
inventory (Figure 3.14). The ever-expanding hosting, maintenance, and administration 
demands can infl ate an IT department in budget, resources, and size to the extent that 
IT becomes a signifi cant drain on the overall organization.
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It Can Result in Complex Infrastructures and Convoluted Enterprise 
Architectures

Having  to host numerous applications built from different generations of technologies 
and perhaps even different technology platforms often requires that each will impose 
unique architectural requirements. The disparity across these “siloed” applications can 
lead to a counter-federated environment (Figure 3.15), making it challenging to plan 
the evolution of an enterprise and scale its infrastructure in response to that evolution.

20% excess
solution

logic

Enterprise AFigure 3.14
This simple diagram portrays an 
enterprise environment containing 
applications with redundant functionality. 
The net effect is a larger enterprise .

Figure 3.15 
Different application environments within the same enterprise can introduce incompatible 
runtime platforms as indicated by the shaded zones .
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Integration Becomes a Constant Challenge 

Applications  built only with the automation of specifi c business processes in mind are 
generally not designed to accommodate other interoperability requirements. Making 
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork 
(Figure 3.16) or requiring the introduction of large middleware layers.

Figure 3.16
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed 
by the little lightning bolts that highlight points of concern when trying to bridge proprietary 
environments .

The Need for Service-Orientation

After  repeated generations of traditional distributed solutions, the severity of the pre-
viously described problems has been amplifi ed. This is why service-orientation was 
conceived. It very much represents an evolutionary state in the history of IT in that it 
combines successful design elements of past approaches with new design elements that 
leverage conceptual and technology innovation.

The consistent application of the eight design principles we listed earlier results in the 
widespread proliferation of the corresponding design characteristics:

 • increased consistency in how functionality and data is represented

 • reduced dependencies between units of solution logic
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 • reduced awareness of underlying solution logic design and implementation details

 • increased opportunities to use a piece of solution logic for multiple purposes

 • increased opportunities to combine units of solution logic into different 
confi gurations

 • increased behavioral predictability 

 • increased availability and scalability

 • increased awareness of available solution logic 

When these characteristics exist as real parts of implemented services they establish a 
common synergy. As a result, the complexion of an enterprise changes as the following 
distinct qualities are consistently  promoted.

Increased Amounts of Reusable Solution Logic

Within    a service-oriented solution, units of logic (services) encapsulate functionality 
not specifi c to any one application or business process (Figure 3.17). These services are 
therefore classifi ed as reusable (and agnostic) IT assets.

business process agnostic services

Business
Process

A

Business
Process

C

Business
Process

D

Business
Process

F

Business
Process

E

Business
Process

B

Figure 3.17
Business processes are automated by a series of business process–specific services 
(top layer) that share a pool of business process–agnostic services (bottom layer). These 
layers correspond to service models described in    Chapter 5.
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Reduced Amounts of Application-Specific Logic

Increasing   the amount of solution logic not specifi c to any one application or business 
process decreases the amount of required application-specifi c (or “non-agnostic”) logic 
(Figure 3.18). This blurs the lines between standalone application environments by 
reducing the overall quantity of standalone applications. (See the Service-Orientation 
and the Concept of “Application” section later in this chapter.)

Application A

Service Composition A

Business
Process

A

Business process-specific logic = 100%

Number of services required to automate Business Process A = 3

Number of business-process-specific services = 1

Business process-specific logic = 40%

Figure 3.18
Business Process A can be automated by either Application A or Service Composition A. The delivery of 
Application A can result in a body of solution logic that is all specific to and tailored for the business process. 
Service Composition A would be designed to automate the process with a combination of reusable services and 
40% of additional logic specific to the business process  .

Reduced Volume of Logic Overall

The   overall quantity of solution logic is reduced because the same solution logic is 
shared and reused to automate multiple business processes, as shown in Figure 3.19.



3.2 Problems Solved by Service-Orientation 37

quantity of overall
automation logic = x

enterprise with an inventory of standalone applications

quantity of overall
automation logic = 85% of x

enterprise with a mixed inventory of standalone
applications and services

quantity of overall
automation logic = 65% of x

enterprise with an inventory of services

Figure 3.19
The quantity of solution logic shrinks as an enterprise transitions toward a standardized 
service inventory comprised of “normalized” services. (Service normalization is   
explained further at the end of Chapter 5.)

Inherent Interoperability

Common   design characteristics consistently implemented result in solution logic that 
is naturally aligned. When this carries over to the standardization of service contracts 
and their underlying data models, a base level of automatic interoperability is achieved 
across services, as illustrated in Figure 3.20. (See the Service-Orientation and the Concept 
of “Integration” section later in this chapter.)

NOTE

See Chapter 4 in SOA Principles of Service Design for coverage of common challenges 
introduced by service-orientation.
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3.3 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having    just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse. 
By establishing a service inventory with a high percentage of reusable and agnostic ser-
vices, we are now positioning those services as the primary (or only) means by which 
the solution logic they represent can and should be accessed. 

As a result, we make a very deliberate move away from the silos in which applications 
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition. 
This results in a shift where more and more business requirements are fulfi lled not by 
building or extending applications, but by simply composing existing services into new 
composition confi gurations.

service
inventory

service
composition

Figure 3.20
Services from different parts of a service inventory can be combined into new compositions. If 
these services are designed to be intrinsically interoperable, the effort to assemble them into new 
composition configurations is significantly   reduced.
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When compositions become more common, the traditional concept of an application or 
a system or a solution actually begins to fade, along with the silos that contain them. 
Applications no longer consist of self-contained bodies of programming logic respon-
sible for automating a specifi c set of tasks (Figure 3.21). What was an application is now 
just another composition of services, some of which likely participate in other composi-
tions (Figure 3.22).

a standalone
application

automates a
business process

Business Process AApplication A

Figure 3.21
The traditional application, delivered to automate specific business process    logic.

a service
composition
comprised of
services from
the service
inventory

automates a
business process

Business Process A

Service
Composition A

service
inventory

Figure 3.22
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes    a “composite application.”
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The application therefore loses its individuality. One could argue that a service-oriented 
application actually does not exist because it is, in fact, just one of many service compo-
sitions. However, upon closer refl ection, we can see that some of our services (based on 
the service models established in Chapter 5) are actually not business process agnostic. 
One service, for example, intentionally represents logic that is dedicated to the automa-
tion of just one business task, and therefore not necessarily reusable.

So, single-purpose services can still be associated with the notion of an application. 
However, within service-oriented computing, the meaning of this term can change to 
refl ect the fact that a potentially large portion of the application logic   is no longer exclu-
sive to the    application.

Service-Orientation and the Concept of “Integration”

When we   revisit the idea of a service inventory consisting of services that have, as per 
our service-orientation principles, been shaped into standardized and (for the most 
part) reusable units of solution logic, we can see that this will challenge the traditional 
perception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 3.23). Perhaps they were based 
on different technology platforms or maybe they were never designed to connect with 
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned 
integration into an important, high profi le part of the IT industry.

Services designed to be “intrinsically interoperable” are built with the full awareness 
that they will need to interact with a potentially large range of service consumers, most 
of which will be unknown at the time of their initial delivery. If a signifi cant part of our 
enterprise solution logic is represented by an inventory of intrinsically interoperable 
services, it empowers us with the freedom to mix and match these services into infi nite 
composition confi gurations to fulfi ll whatever automation requirements come our way.
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two applications
integrated specifically

to automate a new
business process

Application A Application B

Business Process G

Figure 3.23
The traditional integration architecture, comprised of two or more applications 
connected in different ways to fulfill a new set of automation requirements (as 
dictated by the new   Business Process G).

As a result, the concept of integration begins to fade. Exchanging data between dif-
ferent units of solution logic becomes a natural and secondary design characteristic 
(Figure 3.24). Again, though, this is something that can only transpire when a sub-
stantial percentage of an organization’s solution logic is represented by a quality ser-
vice inventory. While working toward achieving this environment, there will likely be 
many requirements for traditional integration between existing legacy systems but also 
between legacy systems and these   services. 
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The Service Composition

Applications   , integrated applications, solutions, systems—all of these terms and what 
they have traditionally represented can be directly associated with the service composi-
tion (Figure 3.25). As SOA transition initiatives continue to progress within an enter-
prise, it can be helpful to make a clear distinction between a traditional application 
(one which may reside alongside an SOA implementation or which may be actually 
encapsulated by a service) and the service compositions that eventually become more 
commonplace.

a new service composition
is created by adding a new service

and reusing services from the service
inventory to automate a new

business process

Business Process G

Service
Composition G

service
inventory

Figure 3.24
A new combination of services is composed together to fulfill the role of traditional 
integrated applications  .
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solution

application

system

integrated
applications/solutions/systems

service
composition

Figure 3.25
A service-oriented solution, 
application, or system is the 
equivalent of a    service composition. 

3.4 Goals and Benefits of Service-Oriented Computing 

A set of    strategic goals and benefi ts (Figure 3.26) collectively represents the target state 
we look to achieve when we consistently apply service-orientation to the design of soft-
ware programs. It is highly benefi cial to understand the signifi cance of these goals and 
benefi ts because they provide us with constant, overarching context and justifi cation 
for maintaining our commitment to carrying out service-orientation over the long term.

The upcoming sections describe each of these strategic goals and benefi ts.

strategic goals

strategic benefits

Increased
Organizational

Agility

Increased
Organizational

Agility

Reduced
IT Burden

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Vendor

Diversity
Options

Increased
Intrinsic

Interoperability

Increased
Federation

Figure 3.26
The seven identified goals 
are interrelated and can be 
further categorized into two 
groups: strategic goals and 
resulting benefits. Increased 
organization agility, increased 
ROI, and reduced IT burden 
are concrete benefits resulting 
from the attainment of the 
   remaining four goals.
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Increased Intrinsic Interoperability

Interoperability     refers to the sharing of data. The more interoperable software programs 
are, the easier it is for them to exchange information. Software programs that are not 
interoperable need to be integrated. Therefore, integration can be seen as a process that 
enables interoperability. A goal of service-orientation is to establish native interoper-
ability within services to reduce the need for integration (Figure 3.27). As previously 
explained in the Effects of Service-Orientation on the Enterprise section, integration as a 
concept begins to fade within service-oriented environments.

Project Team A

Project Team B

Project Team C

Invoice Timesheet

Invoice

Timesheet

Figure 3.27
Services are designed to be intrinsically interoperable     regardless of when and for which purpose 
they are delivered. In this example, the intrinsic interoperability of the Invoice and Timesheet 
services delivered by Project Teams A and B allow them to be combined into a new service 
composition by Project Team C.

Interoperability is specifi cally fostered through the consistent application of design 
principles and design standards. This establishes an environment wherein services 
produced by different projects at different times can be repeatedly assembled together 
into a variety of composition confi gurations to help automate a range of business     tasks. 
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Intrinsic interoperability represents a fundamental goal of service-orientation that 
establishes a foundation for the realization of other strategic goals and benefi ts. Contract 
standardization, scalability, behavioral predictability, and reliability are just some of the 
design characteristics required to facilitate interoperability, all of which are addressed 
by the service-orientation principles documented in this book. 

Each of the eight service-orientation principles supports or contributes to interoperabil-
ity in some manner. The following are just a few examples:

 • Standardized Service Contract   (291) – Service contracts are standardized to guaran-
tee a baseline measure of interoperability associated with the harmonization of 
data models.

 • Service Loose Coupling   (293) – Reducing the degree of service coupling fosters 
interoperability by making individual services less dependent on others and 
therefore more open for invocation by different service consumers.

 • Service A bstraction   ( 294) – Abstracting details about the service limits all interop-
eration to the service contract, increasing the long-term consistency of interoper-
ability by allowing underlying service logic to evolve more independently.

 • Service Reusability   (295) – Designing services for reuse implies a high-level of 
required interoperability between the service and numerous potential service 
consumers.

 • Service Autonomy   (297) – By raising a service’s individual autonomy its behavior 
becomes more consistently predictable, increasing its reuse potential and thereby 
its attainable level of interoperability.

 • Service Statelessness   (298) – Through an emphasis on stateless design, the avail-
ability and scalability of services increase, allowing them to interoperate more 
frequently and reliably.

 • Service Discoverability   (300) – Being discoverable simply allows services to be more 
easily located by those who want to potentially interoperate with them. 

 • Service Composability   (302) – Finally, for services to be effectively composable they 
must be interoperable. The success of fulfi lling composability requirements is 
often tied directly to the extent to which services are standardized and cross- 
service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a 
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected     service design characteristic. 
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Increased Federation

A     federated IT environment is one where resources and applications are united while 
maintaining their individual autonomy and self-governance. Service-orientation aims 
to increase a federated perspective of an enterprise to whatever extent it is applied. It 
accomplishes this through the widespread deployment of standardized and compos-
able services, each of which encapsulates a segment of the enterprise and expresses it in 
a consistent manner.

In support of increasing federation, standardization becomes part of the extra up-front 
attention each service receives at design time. Ultimately this leads to an environment 
where enterprise-wide solution logic becomes naturally harmonized, regardless of the 
nature of its underlying implementation (Figure 3.28).

Invoice

Timesheet

Validate
Timesheet

Figure 3.28
Three service contracts establishing 
a federated set of endpoints, each 
of which encapsulates a different     
implementation. 
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Increased Vendor Diversification Options

Vendor diversifi cation     refers to the ability an organization has to pick and choose “best-
of-breed” vendor products and technology innovations and use them together within 
one enterprise. Having a vendor-diverse environment is not necessarily benefi cial for 
an organization; however, having the option to diversify when required is benefi cial. 
To have and retain this option requires that its technology architecture not be tied or 
locked into any one specifi c vendor platform.

This represents an important state for an enterprise in that it provides the constant free-
dom for an organization to change, extend, and even replace solution implementations 
and technology resources without disrupting the overall, federated service architec-
ture. This measure of governance autonomy is attractive because it prolongs the life-
span and increases the fi nancial return of automation solutions.

By designing a service-oriented solution in alignment with but neutral to major ven-
dor SOA platforms and by positioning service contracts as standardized endpoints 
throughout a federated enterprise, proprietary service implementation details can be 
abstracted to establish a consistent interservice communications framework. This pro-
vides organizations with constant options by allowing them to diversify their enter-
prise as needed (Figure 3.29).

DB2

JavaValidate
Timesheet
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Timesheet
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10g

Invoice

Figure 3.29
A service composition consisting of three services, 
each of which encapsulates a different vendor 
automation environment. If service-orientation 
is adequately applied to the services, underlying 
disparity will not inhibit their ability to be combined     
into effective compositions.
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Vendor diversifi cation is further supported by taking advantage of the standards-based,
vendor-neutral Web services framework. Because they impose no proprietary commu-
nication requirements, services further decrease dependency on vendor platforms. As 
with any other implementation medium, though, services need to be shaped and stan-
dardized through service-orientation to become a federated part of a greater service     
inventory.

Increased Business and Technology Domain Alignment

The     extent to which IT business requirements are fulfi lled is often associated with 
the accuracy with which business logic is expressed and automated by solution logic. 
Although initial application implementations have traditionally been designed to meet 
initial requirements, there has historically been a challenge in keeping applications in 
alignment with business needs as the nature and direction of the business changes.

Service-orientation promotes abstraction on many levels. One of the most effective 
means by which functional abstraction is applied is the establishment of service lay-
ers that accurately encapsulate and represent business models. By doing so, common, 
pre-existing representations of business logic (business entities, business processes) can 
exist in implemented form as physical services.

This is accomplished by incorporating a structured analysis and modeling process that 
requires the hands-on involvement of business subject matter experts in the actual defi -
nition of the services (as explained in the Service-Oriented Analysis (Service Modeling) 
section in Chapter 4). The resulting service designs are capable of aligning automation 
technology with business intelligence on an unprecedented level (Figure 3.30).

Furthermore, the fact that services are designed to be intrinsically interoperable directly 
facilitates business change. As business processes are augmented in response to vari-
ous factors (business climates, new policies, new priorities, etc.) services can be recon-
fi gured into new compositions that refl ect the changed business logic. This allows a 
service-oriented technology architecture to evolve in tandem with the business     itself.

Increased ROI

Measuring the      return on investment (ROI) of automated solutions is a critical factor 
in determining just how cost effective a given application or system actually is. The 
greater the return, the more an organization benefi ts from the solution. However, the 
lower the return, the more the cost of automated solutions eats away at an organiza-
tion’s budgets and profi ts.
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Because the nature of required application logic has increased in complexity and due 
to ever-growing, non-federated integration architectures that are diffi cult to maintain 
and evolve, the average IT department represents a signifi cant amount of an organiza-
tion’s operational budget. For many organizations, the fi nancial overhead required by 
IT is a primary concern because it often continues to rise without demonstrating any 
corresponding increase in business value.

Service-orientation advocates the creation of agnostic solution logic—logic that is 
agnostic to any one purpose and therefore useful for multiple purposes. This multipur-
pose or reusable logic fully leverages the intrinsically interoperable nature of services. 
Agnostic services have increased reuse potential that can be realized by allowing them 
to be repeatedly assembled into different compositions. Any one agnostic service can 
therefore fi nd itself being repurposed numerous times to automate different business 
processes as part of different service-oriented solutions.

With this benefi t in mind, additional up-front expense and effort is invested into every 
piece of solution logic to position it as an IT asset for the purpose of repeatable, long-
term fi nancial returns. As shown in Figure 3.31, the emphasis on increasing ROI typi-
cally goes beyond the returns traditionally sought as part of past reuse initiatives. This 
has much to do with the fact that service-orientation aims to establish reuse as a com-
mon, secondary characteristic within most services.

Invoice

Business Process
Definition

Business Entity
Model

Invoice

Timesheet

Run Billing
Report

Figure 3.30
Services with business-centric functional 
contexts are carefully modeled to express 
and encapsulate corresponding business 
models     and logic.
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Figure 3.31
An example of the types of formulas being used to calculate ROI for SOA projects. More is invested in 
the initial delivery      with the goal of benefiting from increased subsequent reuse.

It is important to acknowledge that this goal is not simply tied to the benefi ts tradition-
ally associated with software reuse. Proven commercial product design techniques are 
incorporated and blended with existing enterprise application delivery approaches to 
form the basis of a distinct set of service-oriented analysis and design processes (as 
covered in the chapters      in Part II, Service-Oriented Analysis and Design).

Increased Organizational Agility

Agility, on      an organizational level, refers to effi ciency with which an organization can 
respond to change. Increasing organizational agility is very attractive to corporations, 
especially those in the private sector. Being able to more quickly adapt to industry 
changes and outmaneuver competitors has tremendous strategic signifi cance.

An IT department can sometimes be perceived as a bottleneck, hampering desired 
responsiveness by requiring too much time or resources to fulfi ll new or changing 
business requirements. This is one of the reasons agile development methods have 
gained popularity, as they provide a means of addressing immediate, tactical concerns 
more rapidly.
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Service-orientation is very much geared toward establishing widespread organizational 
agility. When service-orientation is applied throughout an enterprise, it results in the 
creation of services that are highly standardized and reusable and therefore agnostic to 
parent business processes and specifi c application environments. 

As a service inventory is comprised of more and more agnostic services, an increas-
ing percentage of its overall solution logic belongs to no one application environment. 
Instead, because these services have been positioned as reusable IT assets, they can 
be repeatedly composed into different confi gurations. As a result, the time and effort 
required to automate new or changed business processes is correspondingly reduced 
because development projects can now be completed with signifi cantly less custom 
development effort (Figure 3.32).

The net result of this fundamental shift in project delivery is heightened responsiveness 
and reduced time to market potential, all of which translates into increased organiza-
tional agility.

service
inventory

Cost = x/2.5
Effort = y/3
Time = z/3

Build 35% new logic
Reuse 65% existing logic Timesheet

Validation
Solution

Cost = x
Effort = y
Time = z

Build 100% of required logic

time to market

Timesheet 
Validation
Solution

Timesheet 
Validation
Solution

Figure 3.32
The delivery timeline is projected based on the percentage of “net new” solution logic that needs to be 
built. Though in this example only 35% of new logic is required, the timeline is reduced by around 50% 
because significant effort is still required to incorporate existing, reusable services      from the inventory.
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NOTE

Organizational agility represents a target state that organizations work toward as they 
deliver services and populate service inventories. The organization benefits from increased 
responsiveness after a significant amount of services is in place. The processes required to 
model and design those services require more upfront cost and effort than building the cor-
responding quantity of solution logic using traditional project delivery approaches. 

It is therefore important to acknowledge that service-orientation has a strategic focus 
that intends to establish a highly agile enterprise. This is different from agile development 
approaches that have more of a      tactical focus. 

Reduced IT Burden

Consistently    applying service-orientation results in an IT enterprise with reduced waste 
and redundancy, reduced size and operational cost (Figure 3.33), and reduced overhead 
associated with its governance and evolution. Such an enterprise can benefi t an organi-
zation through dramatic increases in effi ciency and cost-effectiveness. 

the same
enterprise

with an
inventory

of services

enterprise
with an

inventory of
integrated

applications

Figure 3.33
If you were to take a typical automated 
enterprise and redevelop it entirely 
with custom, normalized services, its 
overall size would shrink considerably, 
   resulting in a reduced operational 
scope. 

In essence, the attainment of the previously described goals can create a leaner, more 
agile IT department, one that is less of a burden on the organization and more of an 
enabling contributor to its strategic goals.

In summary, the consistent application of service-orientation design principles to indi-
vidual services that eventually comprise a greater service inventory is the core require-
ment to achieving the goals and benefi ts of service-oriented computing (Figure 3.34).
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Figure 3.34
The repeated application of service-orientation principles to services that are delivered as part of a collection leads to 
a target state based on the manifestation of the strategic goals associated with service-oriented    computing. 
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3.5 Four Pillars of Service-Orientation

As previously   explained, service-orientation provides us with a well-defi ned method 
for shaping software programs into units of service-oriented logic that we can legiti-
mately refer to as services. Each such service that we deliver takes us a step closer to 
achieving the desired target state represented by the aforementioned strategic goals 
and benefi ts.

Proven practices, patterns, principles, and technologies exist in support of service-
orientation. However, because of the distinctly strategic nature of the target state that 
service-orientation aims to establish, there is a set of fundamental critical success fac-
tors that act as common prerequisites for its successful adoption. These critical success 
factors are referred to as pillars because they collectively establish a sound and healthy 
foundation upon which to build, deploy, and govern services.

The four pillars of service-orientation are

 • Teamwork – Cross-project teams and cooperation are required.

 • Education – Team members must communicate and cooperate based on common 
knowledge and understanding.

 • Discipline – Team members must apply their common knowledge consistently.

 • Balanced Scope – The extent to which the required levels of Teamwork, Education, 
and Discipline need to be realized is represented by a meaningful yet manageable 
scope.

The existence of these four pillars is considered essential to any SOA initiative. The 
absence of any one of these pillars to a signifi cant extent introduces a major risk factor. If 
such an absence is identifi ed in the early planning stages, it can warrant not proceeding 
with the project until it has been addressed—or the project’s scope has been   reduced.

Teamwork 

Whereas    traditional silo-based applications require cooperation among 
members of individual project teams, the delivery of services and ser-
vice-oriented solutions requires cooperation across multiple project 
teams. The scope of the required teamwork is noticeably larger and can 
introduce new dynamics, new project roles, and the need to forge and 
maintain new relationships among individuals and departments. Those on the overall 
SOA team need to trust and rely on each other; otherwise the team will fail.

Teamwork



3.5 Four Pillars of Service-Orientation 55

Education 

A key factor    to realizing the reliability and trust required by SOA team 
members is to ensure that they use a common communications frame-
work based on common vocabulary, defi nitions, concepts, methods, 
and a common understanding of the target state the team is collectively 
working to attain. To achieve this common understanding requires 
common education, not just in general topics pertaining to service-orientation, SOA, 
and service technologies, but also in specifi c principles, patterns, and practices, as well 
as established standards, policies, and methodology specifi c to the organization. 

Combining the pillars of teamwork and education establishes a foundation of knowl-
edge and an understanding of how to use that knowledge among members of the SOA 
team. The resulting clarity eliminates many of the common risks that have traditionally 
plagued SOA projects.

Discipline 

A critical    success factor for any SOA initiative is consistency in how 
knowledge and practices among a cooperative team are used and 
applied. To be successful as a whole, team members must therefore be 
disciplined in how they apply their knowledge and in how they carry 
out their respective roles. Required measures of discipline are com-
monly expressed in methodology, modeling, and design standards, as well as gover-
nance precepts. Even with the best intentions, an educated and cooperative team will 
fail without discipline.

Balanced Scope

So far we’ve    established that we need: 

 • cooperative teams that have… 

 • a common understanding and education pertaining to industry and enterprise-
specifi c knowledge areas and that… 

 • we need to consistently cooperate as a team, apply our understanding, and follow 
a common methodology and standards in a disciplined manner.

Education

Discipline
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In some IT enterprises, especially those with a long history of building silo-based appli-
cations, achieving these qualities can be challenging. Cultural, political, and various 
other forms of organizational issues can arise to make it diffi cult to attain the necessary 
organizational changes required by these three pillars. How then can they be realisti-
cally achieved? It all comes down to defi ning a balanced scope of adoption.

The scope of adoption needs to be meaningfully cross-silo, while also realisti-
cally manageable. This requires the defi nition of a balanced scope of adoption of 
service-orientation.

NOTE

The concept of a balanced scope corresponds directly to the following guideline in the 
SOA Manifesto: 

“The scope of SOA adoption can vary. Keep efforts manageable and within meaningful 
boundaries.”

See Appendix D for the complete SOA Manifesto and the Annotated SOA Manifesto.

Once a balanced scope of adoption has been defi ned, this scope determines the extent 
to which the other three pillars need to be established. Conversely, the extent to which 
you can realize the other three pillars will infl uence how you determine the scope 
(Figure 3.35).

Common factors involved in determining a balanced scope include:

 • Cultural obstacles

 • Authority structures

 • Geography

 • Business domain alignment

 • Available stakeholder support and funding

 • Available IT resources
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Discipline

Teamwork

Education

Balanced Scope

Figure 3.35 
The Balanced Scope pillar 
encompasses and sets the scope 
at which the other three pillars are 
applied for a given adoption    effort.

A single organization can choose one or more balanced adoption scopes (Figure 3.36). 
Having multiple scopes results in a domain-based approach to adoption. Each domain 
establishes a boundary for an inventory of services. Among domains, adoption of 
 service-orientation and the delivery of services can occur independently. This does not 
result in application silos; it establishes meaningful service domains (also known as 
“continents of services”) within the    IT enterprise.

SOA PATTERNS

The domain service inventory originated with the Domain Inventory   [338] 
pattern, which is an alternative to the Enterprise Inventory   [340] pattern.
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Figure 3.36 
Multiple balanced scopes can exist within the same IT enterprise. Each represents a separate domain service 
inventory that is independently standardized, owned, and    governed.
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