
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133858587
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133858587
https://plusone.google.com/share?url=http://www.informit.com/title/9780133858587
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133858587
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133858587/Free-Sample-Chapter

Service-Oriented Architecture

This page intentionally left blank

Service-Oriented Architecture
Analysis and Design for Services and Microservices

Thomas Erl
With contributions by Paulo Merson and Roger Stoffers

BOSTON • COLUMBUS • INDIANAPOLIS • NEW YORK • SAN FRANCISCO

AMSTERDAM • CAPE TOWN • DUBAI • LONDON • MADRID • MILAN • MUNICH

PARIS • MONTREAL • TORONTO • DELHI • MEXICO CITY • SAO PAULO

SIDNEY • HONG KONG • SEOUL • SINGAPORE • TAIPEI • TOKYO

Publisher
Mark Taub

Editor-in-Chief
Greg Wiegand

Senior Acquisitions Editor
Trina MacDonald

Managing Editor
Sandra Schroeder

Senior Project Editors
Lori Lyons
Betsy Gratner

Copyeditors
Paula Lowell
Language Logistics
Infi net Creative Group
Maria Lee
Teejay Keepence

Indexer
Cheryl Lenser

Proofreaders
Williams Woods Publishing
Abigail Gavin
Melissa Mok
Kam Chiu Mok
Shivapriya Nagaraj
Catherine Shaffer
Pamela Janice Yau
Maria Lee

Editorial Assistant
Olivia Basegio

Cover Design
Thomas Erl

Photos
Thomas Erl

Cover Compositor
Chuti Prasertsith

Compositor
Bumpy Design

Graphics
Jasper Paladino
Zuzana Cappova
Infi nite Creative Group
Spencer Fruhling
Tami Young
Demian Richardson
Kan Kwai Lui
Briana Lee

Educational Content
Development
Arcitura Education Inc.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom
cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2016952031

Copyright © 2017 Arcitura Education Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Depart-
ment, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-385858-7
ISBN-10: 0-13-385858-8

First printing: December 2016

http://www.pearsoned.com/permissions/

To Markus, who recently joined our team

with a keen sense of curiosity and a relentless desire

to analyze and redesign even the most micro of things.

—Thomas Erl

This page intentionally left blank

Contents at a Glance
CHAPTER 1: Introduction .1

CHAPTER 2: Case Study Backgrounds .13

PART I: FUNDAMENTALS
CHAPTER 3: Understanding Service-Orientation. .19

CHAPTER 4: Understanding SOA. .59

CHAPTER 5: Understanding Layers with Services and Microservices 111

PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN
CHAPTER 6: Analysis and Modeling with Web Services and Microservices139

CHAPTER 7: Analysis and Modeling with REST Services and Microservices159

CHAPTER 8: Service API and Contract Design with Web Services191

CHAPTER 9: Service API and Contract Design with REST Services
and Microservices .219

CHAPTER 10: Service API and Contract Versioning with Web Services and
REST Services . 263

PART III: APPENDICES
APPENDIX A: Service-Orientation Principles Reference . 289

APPENDIX B: REST Constraints Reference . 305

APPENDIX C: SOA Design Patterns Reference .317

APPENDIX D: The Annotated SOA Manifesto. 367

About the Author . 383

Index . 384

This page intentionally left blank

Contents

Acknowledgments . xix

Reader Services .xx

CHAPTER 1: Introduction .1

1.1 How Patterns Are Used in this Book 3

1.2 Series Books That Cover Topics from the First Edition 4

1.3 How this Book Is Organized . 6
Part I: Fundamentals .6

Chapter 3, Understanding Service-Orientation. 6
Chapter 4, Understanding SOA . 6
Chapter 5, Understanding Layers with Services and Microservices . . . 6

Part II: Service-Oriented Analysis and Design.7
Chapter 6, Analysis and Modeling with Web Services and
Microservices . 7
Chapter 7, Analysis and Modeling with REST Services and
Microservices . 7
Chapter 8, Service API and Contract Design with Web Services. 7
Chapter 9, Service API and Contract Design with REST Services
and Microservices. 7
Chapter 10, Service API and Contract Versioning with Web Services
and REST Services . 7

Part III: Appendices .7
Appendix A, Service-Orientation Principles Reference 7
Appendix B, REST Constraints Reference . 7
Appendix C, SOA Design Patterns Reference . 8
Appendix D, The Annotated SOA Manifesto. 8

1.4 Page References and Capitalization for Principles,
Constraints, and Patterns. 8

x Contents

Additional Information . 9
Symbol Legend .9
Updates, Errata, and Resources (www.servicetechbooks.com) . . .9
Service-Orientation (www.serviceorientation.com) 10
What Is REST? (www.whatisrest.com) .10
Referenced Specifications (www.servicetechspecs.com).10
SOASchool.com® SOA Certified Professional (SOACP)10
CloudSchool.com™ Cloud Certified Professional (CCP)10
BigDataScienceSchool.com™ Big Data Science Certified
Professional (BDSCP) .11
Notification Service .11

CHAPTER 2: Case Study Backgrounds 13

2.1 How Case Studies Are Used . 14

2.2 Case Study Background #1: Transit Line Systems, Inc. . . . 14

2.3 Case Study Background #2: Midwest University
Association . 15

PART I: FUNDAMENTALS

CHAPTER 3: Understanding Service-Orientation 19

3.1 Introduction to Service-Orientation 20
Services in Business Automation .21
Services Are Collections of Capabilities 22
Service-Orientation as a Design Paradigm 24
Service-Orientation Design Principles . 26

3.2 Problems Solved by Service-Orientation 29
Silo-based Application Architecture. 29
It Can Be Highly Wasteful. .31
It’s Not as Efficient as It Appears .32
It Bloats an Enterprise .32
It Can Result in Complex Infrastructures and Convoluted
Enterprise Architectures . 33
Integration Becomes a Constant Challenge 34
The Need for Service-Orientation . 34

Contents xi

Increased Amounts of Reusable Solution Logic 35
Reduced Amounts of Application-Specific Logic 36
Reduced Volume of Logic Overall . 36
Inherent Interoperability .37

3.3 Effects of Service-Orientation on the Enterprise38
Service-Orientation and the Concept of “Application”. 38
Service-Orientation and the Concept of “Integration” 40
The Service Composition .42

3.4 Goals and Benefits of Service-Oriented Computing 43
Increased Intrinsic Interoperability . 44
Increased Federation . 46
Increased Vendor Diversification Options 47
Increased Business and Technology Domain Alignment 48
Increased ROI . 48
Increased Organizational Agility . 50
Reduced IT Burden .52

3.5 Four Pillars of Service-Orientation.54
Teamwork . 54
Education . 55
Discipline . 55
Balanced Scope. 55

CHAPTER 4: Understanding SOA .59

Introduction to SOA .60

4.1 The Four Characteristics of SOA . 61
Business-Driven .61
Vendor-Neutral . 63
Enterprise-Centric . 66
Composition-Centric . 68
Design Priorities . 69

4.2 The Four Common Types of SOA . 70
Service Architecture .71
Service Composition Architecture . 77
Service Inventory Architecture . 83
Service-Oriented Enterprise Architecture 85

xii Contents

4.3 The End Result of Service-Orientation and SOA.86

4.4 SOA Project and Lifecycle Stages 91
Methodology and Project Delivery Strategies 91
SOA Project Stages . 94
SOA Adoption Planning . 95
Service Inventory Analysis . 96
Service-Oriented Analysis (Service Modeling) 97

Step 1: Define Business Automation Requirements 99
Step 2: Identify Existing Automation Systems. 99
Step 3: Model Candidate Services . 100

Service-Oriented Design (Service Contract)101
Service Logic Design .103
Service Development .103
Service Testing. .103
Service Deployment and Maintenance .105
Service Usage and Monitoring. .105
Service Discovery .106
Service Versioning and Retirement .106
Project Stages and Organizational Roles 107

CHAPTER 5: Understanding Layers with Services
and Microservices . 111

5.1 Introduction to Service Layers . 113
Service Models and Service Layers. .113
Service and Service Capability Candidates.115

5.2 Breaking Down the Business Problem 115
Functional Decomposition .115
Service Encapsulation .116
Agnostic Context . 117
Agnostic Capability .119
Utility Abstraction .120
Entity Abstraction .121
Non-Agnostic Context .122
Micro Task Abstraction and Microservices 123
Process Abstraction and Task Services.123

Contents xiii

5.3 Building Up the Service-Oriented Solution 124
Service-Orientation and Service Composition.124
Capability Composition and Capability Recomposition 127

Capability Composition . 129
Capability Composition and Microservices . 130
Capability Recomposition . 132

Logic Centralization and Service Normalization134

PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN

CHAPTER 6: Analysis and Modeling with Web Services
and Microservices . 139

6.1 Web Service Modeling Process . 140
Case Study Example .141
Step 1: Decompose the Business Process
(into Granular Actions) .142
Case Study Example .142
Step 2: Filter Out Unsuitable Actions .144
Case Study Example .145
Step 3: Define Entity Service Candidates146
Case Study Example .146
Step 4: Identify Process-Specific Logic.149
Case Study Example .149
Step 5: Apply Service-Orientation .150
Step 6: Identify Service Composition Candidates151
Case Study Example .151
Step 7: Analyze Processing Requirements 152
Case Study Example .152
Step 8: Define Utility Service Candidates 153
Case Study Example .154
Step 9: Define Microservice Candidates154
Case Study Example .155
Step 10: Apply Service-Orientation .155
Step 11: Revise Service Composition Candidates.156
Case Study Example .156
Step 12: Revise Capability Candidate Grouping 157

xiv Contents

CHAPTER 7: Analysis and Modeling with REST Services
and Microservices . 159

7.1 REST Service Modeling Process . 160
Case Study Example .162
Step 1: Decompose Business Process (into Granular Actions) . .164
Case Study Example .164
Step 2: Filter Out Unsuitable Actions .165
Case Study Example .165
Step 3: Define Entity Service Candidates 166
Case Study Example .167
Step 4: Identify Process-Specific Logic.169
Case Study Example .169
Step 5: Identify Resources .170
Case Study Example .171
Step 6: Associate Service Capabilities with Resources
and Methods .172
Case Study Example .173
Step 7: Apply Service-Orientation . 174
Case Study Example . 174
Step 8: Identify Service Composition Candidates175
Case Study Example .175
Step 9: Analyze Processing Requirements 176
Case Study Example .177
Step 10: Define Utility Service Candidates (and Associate
Resources and Methods). .178
Case Study Example .179
Step 11: Define Microservice Candidates (and Associate
Resources and Methods). .180
Case Study Example .181
Step 12: Apply Service-Orientation .181
Step 13: Revise Candidate Service Compositions.181
Case Study Example .182
Step 14: Revise Resource Definitions and Capability
Candidate Grouping. .182

Contents xv

7.2 Additional Considerations . 183
Uniform Contract Modeling and REST Service Inventory
Modeling .183
REST Constraints and Uniform Contract Modeling186
REST Service Capability Granularity .188
Resources vs. Entities .189

CHAPTER 8: Service API and Contract Design with
Web Services . 191

8.1 Service Model Design Considerations 193
Entity Service Design .193
Utility Service Design .194
Microservice Design .196
Task Service Design .196
Case Study Example .198

8.2 Web Service Design Guidelines .208
Apply Naming Standards. 208
Apply a Suitable Level of Contract API Granularity 210
Case Study Example .212
Design Web Service Operations to Be Inherently Extensible . . .212
Case Study Example .213
Consider Using Modular WSDL Documents 214
Case Study Example .214
Use Namespaces Carefully .215
Case Study Example .215
Use the SOAP Document and Literal Attribute Values.216
Case Study Example .217

CHAPTER 9: Service API and Contract Design with
REST Services and Microservices. 219

9.1 Service Model Design Considerations 221
Entity Service Design .221
Utility Service Design . 222
Microservice Design . 223
Task Service Design. 225
Case Study Example . 226

xvi Contents

9.2 REST Service Design Guidelines 231
Uniform Contract Design Considerations.231
Designing and Standardizing Methods .231
Designing and Standardizing HTTP Headers 233
Designing and Standardizing HTTP Response Codes 235
Customizing Response Codes. .240
Designing Media Types .242
Designing Schemas for Media Types .244
Complex Method Design .246
Stateless Complex Methods. .249

Fetch Method . 249
Store Method. 250
Delta Method. 252
Async Method . 254

Stateful Complex Methods . 256
Trans Method . 256
PubSub Method . 257

Case Study Example . 259

CHAPTER 10: Service API and Contract Versioning
with Web Services and REST Services263

10.1 Versioning Basics .265
Versioning Web Services . 265
Versioning REST Services . 266
Fine and Coarse-Grained Constraints . 266

10.2 Versioning and Compatibility. 267
Backwards Compatibility . 267

Backwards Compatibility in Web Services . 267
Backwards Compatibility in REST Services . 268

Forwards Compatibility. .271
Compatible Changes .273
Incompatible Changes .275

10.3 REST Service Compatibility Considerations 276

10.4 Version Identifiers . 279

Contents xvii

10.5 Versioning Strategies. 282
The Strict Strategy (New Change, New Contract) 282

Pros and Cons. 283

The Flexible Strategy (Backwards Compatibility). 283
Pros and Cons. 284

The Loose Strategy (Backwards and Forwards Compatibility) . 284
Pros and Cons. 284

Strategy Summary . 285

10.6 REST Service Versioning Considerations 286

PART III: APPENDICES

APPENDIX A: Service-Orientation Principles Reference . .289

APPENDIX B: REST Constraints Reference305

APPENDIX C: SOA Design Patterns Reference 317

What’s a Design Pattern?. 318

What’s a Design Pattern Language? .320

Pattern Profiles . 321

APPENDIX D: The Annotated SOA Manifesto.367

The SOA Manifesto .368

The SOA Manifesto Explored. .369
Preamble .370
Priorities .371
Guiding Principles .375

About the Author .383

Index .384

This page intentionally left blank

This Second Edition is comprised of content from a variety of sources, including new
content that refl ects industry developments and revised content from other series titles.
Thank you to all who helped shape what this book is comprised of, and special thanks
to the following individuals who contributed new insights and new design patterns:

In alphabetical order:

 • Paulo Merson

 • Roger Stoffers

Acknowledgments

Reader Services

Register your copy of Service-Oriented Architecture: Analysis and Design for Services and
Microservices at informit.com for convenient access to downloads, updates, and correc-
tions as they become available. To start the registration process, go to informit.com/
register and log in or create an account.* Enter the product ISBN, 9780133858587, and
click Submit. Once the process is complete, you will fi nd any available bonus content
under “Registered Products.”

*Be sure to check the box that you would like to hear from us in order to receive exclusive
discounts on future editions of this product.

Fundamentals

Part I

Chapter 3: Understanding Service-Orientation

Chapter 4: Understanding SOA

Chapter 5: Understanding Layers with Services
and Microservices

This page intentionally left blank

Chapter 3

Understanding Service-Orientation

3.1 Introduction to Service-Orientation

3.2 Problems Solved by Service-Orientation

3.3 Effects of Service-Orientation on the Enterprise

3.4 Goals and Benefi ts of Service-Oriented Computing

3.5 Four Pillars of Service-Orientation

This chapter is dedicated to describing the service-orientation design paradigm, its
principles, and how it compares to other design approaches.

3.1 Introduction to Service-Orientation

In the everyday world around us services are and have been commonplace for as long
as civilized history has existed. Any person carrying out a distinct task in support of
others is providing a service. Any group of individuals collectively performing a task
in support of a larger task is also demonstrating the delivery of a service (Figure 3.1).

“I take calls
and arrange
deliveries”

“I make
deliveries”

“I take care
of the

accounting”

driver bookkeeperdispatcherFigure 3.1
Three individuals, each capable of
 providing a distinct service.

Similarly, an organization that carries out tasks associated with its purpose or busi-
ness is also providing a service. As long as the task or function being provided is well
defi ned and can be relatively isolated from other associated tasks, it can be distinctly
classifi ed as a service (Figure 3.2).

Certain baseline requirements exist to enable a group of individual service providers to
collaborate in order to collectively provide a larger service. Figure 3.2, for example, dis-
plays a group of employees who each provide a service for ABC Delivery. Even though
each individual contributes a distinct service, for the company to function effectively,
its staff also needs to have fundamental, common characteristics, such as availability,
reliability, and the ability to communicate using the same language. With all of these
things in place, these individuals can be composed into a productive working team.
Establishing these types of baseline requirements within and across business automa-
tion solutions is a key goal of service-orientation.

3.1 Introduction to Service-Orientation 21

dispatcher

driver

bookkeeper

ABC
Delivery

Figure 3.2
A company that employs these
three people can compose their
capabilities to carry out its
business.

Services in Business Automation

From a general perspective, a service is a software program that
makes its functionality available via a published API that is part of a
service contract . Figure 3.3 shows the symbol used to depict a service
(without providing any detail regarding its service contract).

Different implementation technologies can be used to program and
build services. The two common implementation mediums covered
in this book are SOAP-based Web services (or just Web services) and
RESTful services (or just REST services). Figure 3.4 shows the stan-
dard symbols used to represent service contracts in this book.

NOTE

A Web service contract is generally comprised of a WSDL definition and one or more XML
Schema definitions. Services implemented as REST services are accessed via a uniform
contract, such as the one provided by HTTP and Web media types. Chapters 8 and 9 pro-
vide examples of Web service and REST service contracts.

A service contract can be further comprised of human-readable documents, such as a
Service Level Agreement (SLA) that describes additional quality-of-service guarantees,
behaviors, and limitations. Several SLA-related requirements can also be expressed in
machine-readable formats.

Figure 3.3
The symbol used to
represent an abstract
 service.

22 Chapter 3: Understanding Service-Orientation

InvoiceInvoice

Figure 3.4
The chorded circle symbol used to display an Invoice service contract (left), and
a variation of this symbol used specifically for REST service contracts (right).

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can offer an
API that provides a collection of capabilities. They are grouped together because they
relate to a functional context established by the service. The functional context of the
service illustrated in Figure 3.5, for example, is that of “shipment.” This particular ser-
vice provides a set of capabilities associated with the processing of shipments.

“I can:
- drive
- fill out a waybill
- collect payment
etc.”

Shipment

Get

Add

Report

etc.

Figure 3.5
Much like a human, an automated
service can provide multiple
capabilities.

3.1 Introduction to Service-Orientation 23

A service is therefore essentially a container of related capabilities. It is comprised
of a body of logic designed to carry out these capabilities and a service contract that
expresses which of its capabilities are made available for public invocation. When we
make reference to service capabilities in this book, we are specifi cally focused on those
that are defi ned as part of the service contract API.

A service consumer is the runtime role assumed by a software program when it accesses
and invokes a service—or, more specifi cally, when it sends a message to a service capa-
bility expressed in the service contract. Upon receiving the request, the service begins
executing logic encompassed by the invoked capability and it may or may not return a
corresponding response message to the service consumer. A service consumer can be
any software program capable of invoking a service via its API. A service itself may act
as the consumer of another service.

AGNOSTIC VS. NON-AGNOSTIC LOGIC

The term “agnostic” originated from Greek and means “without knowledge.”
Therefore, logic that is suffi ciently generic so that it is not specifi c to (has no knowl-
edge of) a particular parent task is classifi ed as agnostic logic. Because knowledge
that is specifi c to a single-purpose task is intentionally omitted, agnostic logic is
considered multipurpose. Conversely, logic that is specifi c to (contains knowledge
of) a single-purpose task is labeled as non-agnostic logic.

Another way of conceptualizing agnostic and non-agnostic logic is to focus on the
extent to which the logic can be repurposed. Due to the multipurpose nature of
agnostic logic, it is expected to become reusable across different contexts so that
the logic, as a single software program (or service), can be used to help automate
multiple business processes. Non-agnostic logic is not subject to these types of
expectations. It is deliberately designed as a single-purpose software program (or
service) and therefore has different characteristics and requirements. Non-agnos-
tic logic can still be reusable, but only within the scope of its parent business pro-
cess, which preserves its context as being specifi c to a greater, single-purpose task.

24 Chapter 3: Understanding Service-Orientation

Service-Orientation as a Design Paradigm

A design paradigm is an approach to designing solution logic. When building distrib-
uted solution logic, design approaches revolve around a software engineering theory
known as the “separation of concerns.” In a nutshell, this theory states that a larger
problem is more effectively solved when decomposed into a set of smaller problems or
concerns. This gives us the option of partitioning solution logic into capabilities, each
designed to solve an individual concern. Related capabilities can be grouped into units
of solution logic.

Different design paradigms exist for distributed solution logic. What distinguishes
service-orientation is the manner in which it carries out the separation of concerns and
how it shapes the individual units of solution logic with specifi c characteristics and in
support of a specifi c target state.

Fundamentally, service-orientation shapes suitable units of solution logic as enter-
prise resources that can be designed to solve immediate concerns while still remaining
agnostic to the greater problem. This provides the constant opportunity to reutilize the
capabilities within those units to solve other problems as well.

Applying service-orientation to a meaningful extent results in solution logic that can
be safely classifi ed as “service-oriented” and units that qualify as “services.” (Chapter 5
explores in detail how the separation of concerns is carried out with service-orientation.)

Services, as part of service-oriented solutions, exist as physically independent software
programs with distinct design characteristics. Each service is assigned its own distinct
functional context and is comprised of a set of capabilities related to this context. A ser-
vice composition is a coordinated aggregate of services. As explained later in the Effects
of Service-Orientation on the Enterprise section, a composition of services (Figure 3.6) is
comparable to a traditional application in that its functional scope is usually associated
with the automation of a parent business process.

Figure 3.6
This symbol, comprised of three connected spheres,
represents a service composition. Other, more detailed
representations are based on the use of chorded circle
symbols that illustrate which service capabilities are
actually being composed.

3.1 Introduction to Service-Orientation 25

A service inventory is an independently standardized and governed collection of com-
plementary services within a boundary that represents an enterprise or a meaningful
segment of an enterprise. Figure 3.7 establishes the symbol used to represent a service
inventory in this book.

Figure 3.7
The service inventory symbol is comprised
of spheres within a container.

An IT enterprise can contain or may even be comprised of a single service inventory.
Alternatively, an enterprise environment can contain multiple service inventories.
When an organization has multiple service inventories, this term is further qualifi ed as
domain service inventory .

The application of service-orientation throughout a service inventory is of paramount
importance to establish a high degree of native interservice interoperability. This sup-
ports the repeated creation of effective service compositions (Figure 3.8).

service

service inventory

service composition

Figure 3.8
Services (top) are delivered into a service
inventory (right) from which service
compositions (bottom) are drawn .

26 Chapter 3: Understanding Service-Orientation

Here’s a brief recap of the elements of service-orientation that have been covered so far:

 • Service-oriented solution logic is implemented as services and service compositions
designed in accordance with service-orientation.

 • A service composition is comprised of services that have been assembled to provide
the functionality required to automate a specifi c business task or process.

 • Because service-orientation shapes many services as enterprise resources, one service
may be invoked by multiple consumer programs, each of which can involve that
same service in a different service composition.

 • A collection of standardized services can form the basis of a service inventory that
can be independently governed within its own physical deployment environment.

 • Multiple business processes can be automated by the creation of service composi-
tions that draw from a pool of existing agnostic services that reside within a service
inventory.

As explored in Chapter 4, service-oriented architecture is a form of technology archi-
tecture optimized in support of services, service compositions, and service inventories.

Service-Orientation Design Principles

The preceding sections have described the service-orientation paradigm at a very high
level. But how exactly is this paradigm applied? It is primarily applied at the service
level (Figure 3.9) via the application of the following eight design principles:

 • Standardized Service Contract (291) – Services within the same service inventory are
in compliance with the same contract design standards.

 Services express their purpose and capabilities via a service contract. This is
perhaps the most fundamental principle in that it essentially dictates the need for
service-oriented solution logic to be partitioned and distributed in a standardized
manner. It also places a great deal of emphasis on the design of service contracts
to ensure that the manner in which services express functionality and defi ne data
types is kept in relative alignment.

 • Service Loose Coupling (293) – Service contracts impose low consumer coupling
requirements and are themselves decoupled from their surrounding environment.

 Coupling refers to a measure of dependency between two things. This prin-
ciple establishes a specifi c type of relationship within and outside of service

3.1 Introduction to Service-Orientation 27

boundaries, with a constant emphasis on reducing (“loosening”) dependencies
between a service contract, its implementation, and service consumers. Service
Loose Coupling (293) promotes the independent design and evolution of service
logic while still guaranteeing baseline interoperability.

 • Service A bstraction (294) – Service contracts only contain essential information and
information about services is limited to what is published in service contracts.

 Abstraction ties into many aspects of service-orientation. On a fundamental level,
this principle emphasizes the need to hide as much of the underlying details of
a service as possible. Doing so directly enables the previously described loosely
coupled relationship. Service Abstraction (294) also plays a signifi cant role in the
positioning and design of service compositions.

 • Service Reusability (295) – Services contain and express agnostic logic and can be
positioned as reusable enterprise resources.

 Whenever we build a service, we look for ways to make its underlying capabilities
useful for more than just one purpose. Reuse is greatly emphasized with service-
orientation—so much so, that it becomes a core part of the design process and it
also forms the basis for key service models (as explained in Chapter 5).

 • Service Autonomy (297) – Services exercise a high level of control over their underlying
runtime execution environment.

 For services to carry out their capabilities consistently and reliably, their under-
lying solution logic needs to have a signifi cant degree of control over its envi-
ronment and resources. Service Autonomy (297) supports the extent to which
other design principles can be effectively realized in real-world production
environments.

 • Service Statelessness (298) – Services minimize resource consumption by deferring the
management of state information when necessary.

 The management of excessive state information can compromise the availability of
a service as well as the predictability of its behavior. Services are therefore ideally
designed to remain stateful only when required. Like Service Autonomy (297),
this is another principle that focuses less on the contract and more on the design
of the underlying logic.

28 Chapter 3: Understanding Service-Orientation

 • Service Discoverability (300) – Services are supplemented with communicative meta-
data by which they can be effectively discovered and interpreted.

 For services to be positioned as IT assets with repeatable ROI, they need to be
 easily identifi ed and understood when opportunities for reuse present themselves.
The service design therefore needs to take the “communications quality” of ser-
vice contracts and capabilities into account, regardless of whether a discovery
mechanism such as a service registry is an immediate part of the environment.

implement a
standardized contract

minimize dependencies

minimize the availability
of meta information

implement generic and
reusable logic and contract

implement independent
functional boundary and

runtime environment

implement adaptive and
state management-free logic

implement communicative
 meta information

maximize composability

Standardized
Service Contract

Service
Reusability

Service
Autonomy

Service
Statelessness

Service
Discoverability

Service
Loose Coupling

Service
Abstraction

Service
Composability

service

Figure 3.9
How service-orientation design principles collectively shape service design.

3.2 Problems Solved by Service-Orientation 29

 • Service Composability (302) – Services are effective composition participants, regard-
less of the size and complexity of the composition.

 As the sophistication of service-oriented solutions grows, so does the complex-
ity of underlying service composition confi gurations. The ability to effectively
compose services is a critical requirement for achieving some of the fundamen-
tal goals of service-oriented computing. Complex service compositions place
demands on service design. Services are expected to be capable of participating
as effective composition members, regardless of whether they need to be immedi-
ately enlisted in a composition.

SOA PATTERNS

Service-orientation principles are closely related to SOA patterns. Note how each
pattern profi le table in Appendix C contains a fi eld dedicated to showing related
design principles.

3.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation emerged and how it is intended to improve
the design of automation systems, we need to compare before and after perspectives. By
studying some of the common issues that have historically plagued IT we can begin to
understand the solutions proposed by this design paradigm.

Silo-based Application Architecture

In the world of business, delivering solutions capable of automating the execution of
business tasks makes a great deal of sense. Over the course of IT’s history, the majority
of such solutions have been created with a common approach of identifying the busi-
ness tasks to be automated, defi ning their business requirements, and then building the
c orresponding solution logic (Figure 3.10).

This has been an accepted and proven approach to achieving tangible business benefi ts
through the use of technology and has been successful at providing a relatively predict-
able return on investment (Figure 3.11).

30 Chapter 3: Understanding Service-Orientation

Validate Timesheet Business Process
Step 1 ...
Step 2 ...
Step 3 ...
...

business requirements
for automating the
Validate Timesheet
business process

the Validate Timesheet
application delivered to

automate the
business process

Figure 3.10
A ratio of one application for each new set of automation requirements has been common.

Development cost = x

Yearly operational cost = y

Estimated yearly savings
due to increased productivity = (x/2) - y

Validate Timesheet
Application

Figure 3.11
A sample formula for calculating ROI is based on a predetermined
investment with a predictable return.

The ability to gain any further value from these applications is usually inhibited because
their capabilities are tied to specifi c business requirements and processes (some of
which will even have a limited lifespan). When new requirements and processes come
our way we are forced to either make signifi cant changes to what we already have or
build a new application altogether.

3.2 Problems Solved by Service-Orientation 31

In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s
explore some of the lessons learned by fi rst focusing on the positive.

 • Solutions can be built effi ciently because they only need to be concerned with the
fulfi llment of a narrow set of requirements associated with a limited set of busi-
ness processes.

 • The business analysis effort involved with defi ning the process to be automated is
straightforward. Analysts are focused only on one process at a time and therefore
only concern themselves with the business entities and domains associated with
that one process.

 • Solution designs are tactically focused. Although complex and sophisticated
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specifi c set of business processes. This predefi ned functional
scope simplifi es the overall solution design as well as the underlying application
architecture.

 • The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled
with unforeseen challenges, when the delivery scope is well-defi ned (and doesn’t
change), the process and execution of the delivery phases have a good chance of
being carried out as expected.

 • Building new systems from the ground up allows organizations to take advantage
of the latest technology advancements. The IT marketplace progresses every year
to the extent that we fully expect technology we use to build solution logic today
to be different and better tomorrow. As a result, organizations that repeatedly
build disposable applications can leverage the latest technology innovations with
each new project.

These and other common characteristics of traditional solution delivery provide a good
indication as to why this approach has been so popular. Despite its acceptance, though,
it has become evident that there is still much room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi -
cant amount of redundant functionality (Figure 3.12). The effort and expense required
to construct this logic is therefore also redundant.

32 Chapter 3: Understanding Service-Orientation

It’s Not as Efficient as It Appears

Because of the tactical focus on delivering solutions for specifi c process requirements,
the scope of development projects is highly targeted. Therefore, there is the constant
perception that business requirements will be fulfi lled at the earliest possible time.
However, by continually building and rebuilding logic that already exists elsewhere,
the process is not as effi cient as it could be if the creation of redundant logic could be
avoided (Figure 3.13).

Application A Application B

Application EApplication D Application F

Application C

17 % 18 %

18 %

22 %

16 %
29 %

Figure 3.12
Different applications developed
independently can result in significant
amounts of redundant functionality.
The applications displayed were
delivered with various levels of
solution logic that, in some form,
already existed.

Application A

Amount of redundant logic required = 17%

Cost = x

Cost of non-redundant application logic = 83% of x

Figure 3.13
Application A was delivered for a
specific set of business requirements.
Because a subset of these business
requirements had already been
fulfilled elsewhere, Application A’s
delivery scope is larger than it has
to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system
inventory (Figure 3.14). The ever-expanding hosting, maintenance, and administration
demands can infl ate an IT department in budget, resources, and size to the extent that
IT becomes a signifi cant drain on the overall organization.

3.2 Problems Solved by Service-Orientation 33

It Can Result in Complex Infrastructures and Convoluted Enterprise
Architectures

Having to host numerous applications built from different generations of technologies
and perhaps even different technology platforms often requires that each will impose
unique architectural requirements. The disparity across these “siloed” applications can
lead to a counter-federated environment (Figure 3.15), making it challenging to plan
the evolution of an enterprise and scale its infrastructure in response to that evolution.

20% excess
solution

logic

Enterprise AFigure 3.14
This simple diagram portrays an
enterprise environment containing
applications with redundant functionality.
The net effect is a larger enterprise .

Figure 3.15
Different application environments within the same enterprise can introduce incompatible
runtime platforms as indicated by the shaded zones .

34 Chapter 3: Understanding Service-Orientation

Integration Becomes a Constant Challenge

Applications built only with the automation of specifi c business processes in mind are
generally not designed to accommodate other interoperability requirements. Making
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork
(Figure 3.16) or requiring the introduction of large middleware layers.

Figure 3.16
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed
by the little lightning bolts that highlight points of concern when trying to bridge proprietary
environments .

The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the pre-
viously described problems has been amplifi ed. This is why service-orientation was
conceived. It very much represents an evolutionary state in the history of IT in that it
combines successful design elements of past approaches with new design elements that
leverage conceptual and technology innovation.

The consistent application of the eight design principles we listed earlier results in the
widespread proliferation of the corresponding design characteristics:

 • increased consistency in how functionality and data is represented

 • reduced dependencies between units of solution logic

3.2 Problems Solved by Service-Orientation 35

 • reduced awareness of underlying solution logic design and implementation details

 • increased opportunities to use a piece of solution logic for multiple purposes

 • increased opportunities to combine units of solution logic into different
confi gurations

 • increased behavioral predictability

 • increased availability and scalability

 • increased awareness of available solution logic

When these characteristics exist as real parts of implemented services they establish a
common synergy. As a result, the complexion of an enterprise changes as the following
distinct qualities are consistently promoted.

Increased Amounts of Reusable Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality
not specifi c to any one application or business process (Figure 3.17). These services are
therefore classifi ed as reusable (and agnostic) IT assets.

business process agnostic services

Business
Process

A

Business
Process

C

Business
Process

D

Business
Process

F

Business
Process

E

Business
Process

B

Figure 3.17
Business processes are automated by a series of business process–specific services
(top layer) that share a pool of business process–agnostic services (bottom layer). These
layers correspond to service models described in Chapter 5.

36 Chapter 3: Understanding Service-Orientation

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specifi c to any one application or business
process decreases the amount of required application-specifi c (or “non-agnostic”) logic
(Figure 3.18). This blurs the lines between standalone application environments by
reducing the overall quantity of standalone applications. (See the Service-Orientation
and the Concept of “Application” section later in this chapter.)

Application A

Service Composition A

Business
Process

A

Business process-specific logic = 100%

Number of services required to automate Business Process A = 3

Number of business-process-specific services = 1

Business process-specific logic = 40%

Figure 3.18
Business Process A can be automated by either Application A or Service Composition A. The delivery of
Application A can result in a body of solution logic that is all specific to and tailored for the business process.
Service Composition A would be designed to automate the process with a combination of reusable services and
40% of additional logic specific to the business process .

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is
shared and reused to automate multiple business processes, as shown in Figure 3.19.

3.2 Problems Solved by Service-Orientation 37

quantity of overall
automation logic = x

enterprise with an inventory of standalone applications

quantity of overall
automation logic = 85% of x

enterprise with a mixed inventory of standalone
applications and services

quantity of overall
automation logic = 65% of x

enterprise with an inventory of services

Figure 3.19
The quantity of solution logic shrinks as an enterprise transitions toward a standardized
service inventory comprised of “normalized” services. (Service normalization is
explained further at the end of Chapter 5.)

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that
is naturally aligned. When this carries over to the standardization of service contracts
and their underlying data models, a base level of automatic interoperability is achieved
across services, as illustrated in Figure 3.20. (See the Service-Orientation and the Concept
of “Integration” section later in this chapter.)

NOTE

See Chapter 4 in SOA Principles of Service Design for coverage of common challenges
introduced by service-orientation.

38 Chapter 3: Understanding Service-Orientation

3.3 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse.
By establishing a service inventory with a high percentage of reusable and agnostic ser-
vices, we are now positioning those services as the primary (or only) means by which
the solution logic they represent can and should be accessed.

As a result, we make a very deliberate move away from the silos in which applications
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition.
This results in a shift where more and more business requirements are fulfi lled not by
building or extending applications, but by simply composing existing services into new
composition confi gurations.

service
inventory

service
composition

Figure 3.20
Services from different parts of a service inventory can be combined into new compositions. If
these services are designed to be intrinsically interoperable, the effort to assemble them into new
composition configurations is significantly reduced.

3.3 Effects of Service-Orientation on the Enterprise 39

When compositions become more common, the traditional concept of an application or
a system or a solution actually begins to fade, along with the silos that contain them.
Applications no longer consist of self-contained bodies of programming logic respon-
sible for automating a specifi c set of tasks (Figure 3.21). What was an application is now
just another composition of services, some of which likely participate in other composi-
tions (Figure 3.22).

a standalone
application

automates a
business process

Business Process AApplication A

Figure 3.21
The traditional application, delivered to automate specific business process logic.

a service
composition
comprised of
services from
the service
inventory

automates a
business process

Business Process A

Service
Composition A

service
inventory

Figure 3.22
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes a “composite application.”

40 Chapter 3: Understanding Service-Orientation

The application therefore loses its individuality. One could argue that a service-oriented
application actually does not exist because it is, in fact, just one of many service compo-
sitions. However, upon closer refl ection, we can see that some of our services (based on
the service models established in Chapter 5) are actually not business process agnostic.
One service, for example, intentionally represents logic that is dedicated to the automa-
tion of just one business task, and therefore not necessarily reusable.

So, single-purpose services can still be associated with the notion of an application.
However, within service-oriented computing, the meaning of this term can change to
refl ect the fact that a potentially large portion of the application logic is no longer exclu-
sive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per
our service-orientation principles, been shaped into standardized and (for the most
part) reusable units of solution logic, we can see that this will challenge the traditional
perception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 3.23). Perhaps they were based
on different technology platforms or maybe they were never designed to connect with
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned
integration into an important, high profi le part of the IT industry.

Services designed to be “intrinsically interoperable” are built with the full awareness
that they will need to interact with a potentially large range of service consumers, most
of which will be unknown at the time of their initial delivery. If a signifi cant part of our
enterprise solution logic is represented by an inventory of intrinsically interoperable
services, it empowers us with the freedom to mix and match these services into infi nite
composition confi gurations to fulfi ll whatever automation requirements come our way.

3.3 Effects of Service-Orientation on the Enterprise 41

two applications
integrated specifically

to automate a new
business process

Application A Application B

Business Process G

Figure 3.23
The traditional integration architecture, comprised of two or more applications
connected in different ways to fulfill a new set of automation requirements (as
dictated by the new Business Process G).

As a result, the concept of integration begins to fade. Exchanging data between dif-
ferent units of solution logic becomes a natural and secondary design characteristic
(Figure 3.24). Again, though, this is something that can only transpire when a sub-
stantial percentage of an organization’s solution logic is represented by a quality ser-
vice inventory. While working toward achieving this environment, there will likely be
many requirements for traditional integration between existing legacy systems but also
between legacy systems and these services.

42 Chapter 3: Understanding Service-Orientation

The Service Composition

Applications , integrated applications, solutions, systems—all of these terms and what
they have traditionally represented can be directly associated with the service composi-
tion (Figure 3.25). As SOA transition initiatives continue to progress within an enter-
prise, it can be helpful to make a clear distinction between a traditional application
(one which may reside alongside an SOA implementation or which may be actually
encapsulated by a service) and the service compositions that eventually become more
commonplace.

a new service composition
is created by adding a new service

and reusing services from the service
inventory to automate a new

business process

Business Process G

Service
Composition G

service
inventory

Figure 3.24
A new combination of services is composed together to fulfill the role of traditional
integrated applications .

3.4 Goals and Benefi ts of Service-Oriented Computing 43

solution

application

system

integrated
applications/solutions/systems

service
composition

Figure 3.25
A service-oriented solution,
application, or system is the
equivalent of a service composition.

3.4 Goals and Benefits of Service-Oriented Computing

A set of strategic goals and benefi ts (Figure 3.26) collectively represents the target state
we look to achieve when we consistently apply service-orientation to the design of soft-
ware programs. It is highly benefi cial to understand the signifi cance of these goals and
benefi ts because they provide us with constant, overarching context and justifi cation
for maintaining our commitment to carrying out service-orientation over the long term.

The upcoming sections describe each of these strategic goals and benefi ts.

strategic goals

strategic benefits

Increased
Organizational

Agility

Increased
Organizational

Agility

Reduced
IT Burden

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Vendor

Diversity
Options

Increased
Intrinsic

Interoperability

Increased
Federation

Figure 3.26
The seven identified goals
are interrelated and can be
further categorized into two
groups: strategic goals and
resulting benefits. Increased
organization agility, increased
ROI, and reduced IT burden
are concrete benefits resulting
from the attainment of the
 remaining four goals.

44 Chapter 3: Understanding Service-Orientation

Increased Intrinsic Interoperability

Interoperability refers to the sharing of data. The more interoperable software programs
are, the easier it is for them to exchange information. Software programs that are not
interoperable need to be integrated. Therefore, integration can be seen as a process that
enables interoperability. A goal of service-orientation is to establish native interoper-
ability within services to reduce the need for integration (Figure 3.27). As previously
explained in the Effects of Service-Orientation on the Enterprise section, integration as a
concept begins to fade within service-oriented environments.

Project Team A

Project Team B

Project Team C

Invoice Timesheet

Invoice

Timesheet

Figure 3.27
Services are designed to be intrinsically interoperable regardless of when and for which purpose
they are delivered. In this example, the intrinsic interoperability of the Invoice and Timesheet
services delivered by Project Teams A and B allow them to be combined into a new service
composition by Project Team C.

Interoperability is specifi cally fostered through the consistent application of design
principles and design standards. This establishes an environment wherein services
produced by different projects at different times can be repeatedly assembled together
into a variety of composition confi gurations to help automate a range of business tasks.

3.4 Goals and Benefi ts of Service-Oriented Computing 45

Intrinsic interoperability represents a fundamental goal of service-orientation that
establishes a foundation for the realization of other strategic goals and benefi ts. Contract
standardization, scalability, behavioral predictability, and reliability are just some of the
design characteristics required to facilitate interoperability, all of which are addressed
by the service-orientation principles documented in this book.

Each of the eight service-orientation principles supports or contributes to interoperabil-
ity in some manner. The following are just a few examples:

 • Standardized Service Contract (291) – Service contracts are standardized to guaran-
tee a baseline measure of interoperability associated with the harmonization of
data models.

 • Service Loose Coupling (293) – Reducing the degree of service coupling fosters
interoperability by making individual services less dependent on others and
therefore more open for invocation by different service consumers.

 • Service A bstraction (294) – Abstracting details about the service limits all interop-
eration to the service contract, increasing the long-term consistency of interoper-
ability by allowing underlying service logic to evolve more independently.

 • Service Reusability (295) – Designing services for reuse implies a high-level of
required interoperability between the service and numerous potential service
consumers.

 • Service Autonomy (297) – By raising a service’s individual autonomy its behavior
becomes more consistently predictable, increasing its reuse potential and thereby
its attainable level of interoperability.

 • Service Statelessness (298) – Through an emphasis on stateless design, the avail-
ability and scalability of services increase, allowing them to interoperate more
frequently and reliably.

 • Service Discoverability (300) – Being discoverable simply allows services to be more
easily located by those who want to potentially interoperate with them.

 • Service Composability (302) – Finally, for services to be effectively composable they
must be interoperable. The success of fulfi lling composability requirements is
often tied directly to the extent to which services are standardized and cross-
service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected service design characteristic.

46 Chapter 3: Understanding Service-Orientation

Increased Federation

A federated IT environment is one where resources and applications are united while
maintaining their individual autonomy and self-governance. Service-orientation aims
to increase a federated perspective of an enterprise to whatever extent it is applied. It
accomplishes this through the widespread deployment of standardized and compos-
able services, each of which encapsulates a segment of the enterprise and expresses it in
a consistent manner.

In support of increasing federation, standardization becomes part of the extra up-front
attention each service receives at design time. Ultimately this leads to an environment
where enterprise-wide solution logic becomes naturally harmonized, regardless of the
nature of its underlying implementation (Figure 3.28).

Invoice

Timesheet

Validate
Timesheet

Figure 3.28
Three service contracts establishing
a federated set of endpoints, each
of which encapsulates a different
implementation.

3.4 Goals and Benefi ts of Service-Oriented Computing 47

Increased Vendor Diversification Options

Vendor diversifi cation refers to the ability an organization has to pick and choose “best-
of-breed” vendor products and technology innovations and use them together within
one enterprise. Having a vendor-diverse environment is not necessarily benefi cial for
an organization; however, having the option to diversify when required is benefi cial.
To have and retain this option requires that its technology architecture not be tied or
locked into any one specifi c vendor platform.

This represents an important state for an enterprise in that it provides the constant free-
dom for an organization to change, extend, and even replace solution implementations
and technology resources without disrupting the overall, federated service architec-
ture. This measure of governance autonomy is attractive because it prolongs the life-
span and increases the fi nancial return of automation solutions.

By designing a service-oriented solution in alignment with but neutral to major ven-
dor SOA platforms and by positioning service contracts as standardized endpoints
throughout a federated enterprise, proprietary service implementation details can be
abstracted to establish a consistent interservice communications framework. This pro-
vides organizations with constant options by allowing them to diversify their enter-
prise as needed (Figure 3.29).

DB2

JavaValidate
Timesheet

.NET

SQL
Server

Timesheet

Java

10g

Invoice

Figure 3.29
A service composition consisting of three services,
each of which encapsulates a different vendor
automation environment. If service-orientation
is adequately applied to the services, underlying
disparity will not inhibit their ability to be combined
into effective compositions.

48 Chapter 3: Understanding Service-Orientation

Vendor diversifi cation is further supported by taking advantage of the standards-based,
vendor-neutral Web services framework. Because they impose no proprietary commu-
nication requirements, services further decrease dependency on vendor platforms. As
with any other implementation medium, though, services need to be shaped and stan-
dardized through service-orientation to become a federated part of a greater service
inventory.

Increased Business and Technology Domain Alignment

The extent to which IT business requirements are fulfi lled is often associated with
the accuracy with which business logic is expressed and automated by solution logic.
Although initial application implementations have traditionally been designed to meet
initial requirements, there has historically been a challenge in keeping applications in
alignment with business needs as the nature and direction of the business changes.

Service-orientation promotes abstraction on many levels. One of the most effective
means by which functional abstraction is applied is the establishment of service lay-
ers that accurately encapsulate and represent business models. By doing so, common,
pre-existing representations of business logic (business entities, business processes) can
exist in implemented form as physical services.

This is accomplished by incorporating a structured analysis and modeling process that
requires the hands-on involvement of business subject matter experts in the actual defi -
nition of the services (as explained in the Service-Oriented Analysis (Service Modeling)
section in Chapter 4). The resulting service designs are capable of aligning automation
technology with business intelligence on an unprecedented level (Figure 3.30).

Furthermore, the fact that services are designed to be intrinsically interoperable directly
facilitates business change. As business processes are augmented in response to vari-
ous factors (business climates, new policies, new priorities, etc.) services can be recon-
fi gured into new compositions that refl ect the changed business logic. This allows a
service-oriented technology architecture to evolve in tandem with the business itself.

Increased ROI

Measuring the return on investment (ROI) of automated solutions is a critical factor
in determining just how cost effective a given application or system actually is. The
greater the return, the more an organization benefi ts from the solution. However, the
lower the return, the more the cost of automated solutions eats away at an organiza-
tion’s budgets and profi ts.

3.4 Goals and Benefi ts of Service-Oriented Computing 49

Because the nature of required application logic has increased in complexity and due
to ever-growing, non-federated integration architectures that are diffi cult to maintain
and evolve, the average IT department represents a signifi cant amount of an organiza-
tion’s operational budget. For many organizations, the fi nancial overhead required by
IT is a primary concern because it often continues to rise without demonstrating any
corresponding increase in business value.

Service-orientation advocates the creation of agnostic solution logic—logic that is
agnostic to any one purpose and therefore useful for multiple purposes. This multipur-
pose or reusable logic fully leverages the intrinsically interoperable nature of services.
Agnostic services have increased reuse potential that can be realized by allowing them
to be repeatedly assembled into different compositions. Any one agnostic service can
therefore fi nd itself being repurposed numerous times to automate different business
processes as part of different service-oriented solutions.

With this benefi t in mind, additional up-front expense and effort is invested into every
piece of solution logic to position it as an IT asset for the purpose of repeatable, long-
term fi nancial returns. As shown in Figure 3.31, the emphasis on increasing ROI typi-
cally goes beyond the returns traditionally sought as part of past reuse initiatives. This
has much to do with the fact that service-orientation aims to establish reuse as a com-
mon, secondary characteristic within most services.

Invoice

Business Process
Definition

Business Entity
Model

Invoice

Timesheet

Run Billing
Report

Figure 3.30
Services with business-centric functional
contexts are carefully modeled to express
and encapsulate corresponding business
models and logic.

50 Chapter 3: Understanding Service-Orientation

y x 2 y x 5 y x 9

ROI

x + 30%

delivery cost

service-oriented
unit of solution

logic

1st
year

2nd
year

3rd
year

x

delivery cost

traditional
unit of solution

logic

y y x 2 y x 3

ROI

1st
year

2nd
year

3rd
year

Figure 3.31
An example of the types of formulas being used to calculate ROI for SOA projects. More is invested in
the initial delivery with the goal of benefiting from increased subsequent reuse.

It is important to acknowledge that this goal is not simply tied to the benefi ts tradition-
ally associated with software reuse. Proven commercial product design techniques are
incorporated and blended with existing enterprise application delivery approaches to
form the basis of a distinct set of service-oriented analysis and design processes (as
covered in the chapters in Part II, Service-Oriented Analysis and Design).

Increased Organizational Agility

Agility, on an organizational level, refers to effi ciency with which an organization can
respond to change. Increasing organizational agility is very attractive to corporations,
especially those in the private sector. Being able to more quickly adapt to industry
changes and outmaneuver competitors has tremendous strategic signifi cance.

An IT department can sometimes be perceived as a bottleneck, hampering desired
responsiveness by requiring too much time or resources to fulfi ll new or changing
business requirements. This is one of the reasons agile development methods have
gained popularity, as they provide a means of addressing immediate, tactical concerns
more rapidly.

3.4 Goals and Benefi ts of Service-Oriented Computing 51

Service-orientation is very much geared toward establishing widespread organizational
agility. When service-orientation is applied throughout an enterprise, it results in the
creation of services that are highly standardized and reusable and therefore agnostic to
parent business processes and specifi c application environments.

As a service inventory is comprised of more and more agnostic services, an increas-
ing percentage of its overall solution logic belongs to no one application environment.
Instead, because these services have been positioned as reusable IT assets, they can
be repeatedly composed into different confi gurations. As a result, the time and effort
required to automate new or changed business processes is correspondingly reduced
because development projects can now be completed with signifi cantly less custom
development effort (Figure 3.32).

The net result of this fundamental shift in project delivery is heightened responsiveness
and reduced time to market potential, all of which translates into increased organiza-
tional agility.

service
inventory

Cost = x/2.5
Effort = y/3
Time = z/3

Build 35% new logic
Reuse 65% existing logic Timesheet

Validation
Solution

Cost = x
Effort = y
Time = z

Build 100% of required logic

time to market

Timesheet
Validation
Solution

Timesheet
Validation
Solution

Figure 3.32
The delivery timeline is projected based on the percentage of “net new” solution logic that needs to be
built. Though in this example only 35% of new logic is required, the timeline is reduced by around 50%
because significant effort is still required to incorporate existing, reusable services from the inventory.

52 Chapter 3: Understanding Service-Orientation

NOTE

Organizational agility represents a target state that organizations work toward as they
deliver services and populate service inventories. The organization benefits from increased
responsiveness after a significant amount of services is in place. The processes required to
model and design those services require more upfront cost and effort than building the cor-
responding quantity of solution logic using traditional project delivery approaches.

It is therefore important to acknowledge that service-orientation has a strategic focus
that intends to establish a highly agile enterprise. This is different from agile development
approaches that have more of a tactical focus.

Reduced IT Burden

Consistently applying service-orientation results in an IT enterprise with reduced waste
and redundancy, reduced size and operational cost (Figure 3.33), and reduced overhead
associated with its governance and evolution. Such an enterprise can benefi t an organi-
zation through dramatic increases in effi ciency and cost-effectiveness.

the same
enterprise

with an
inventory

of services

enterprise
with an

inventory of
integrated

applications

Figure 3.33
If you were to take a typical automated
enterprise and redevelop it entirely
with custom, normalized services, its
overall size would shrink considerably,
 resulting in a reduced operational
scope.

In essence, the attainment of the previously described goals can create a leaner, more
agile IT department, one that is less of a burden on the organization and more of an
enabling contributor to its strategic goals.

In summary, the consistent application of service-orientation design principles to indi-
vidual services that eventually comprise a greater service inventory is the core require-
ment to achieving the goals and benefi ts of service-oriented computing (Figure 3.34).

3.4 Goals and Benefi ts of Service-Oriented Computing 53

Standardized
Service Contract

Service
Abstraction

Service
Reusability

Service
Composability

Service
Loose Coupling

Service
Discoverability

Service
Autonomy

Service
Statelessness

Increased
Organizational

Agility

Increased
Organizational

Agility

Reduced
IT Burden

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Vendor

Diversity
Options

Increased
Intrinsic

Interoperability

Increased
Federation

Figure 3.34
The repeated application of service-orientation principles to services that are delivered as part of a collection leads to
a target state based on the manifestation of the strategic goals associated with service-oriented computing.

54 Chapter 3: Understanding Service-Orientation

3.5 Four Pillars of Service-Orientation

As previously explained, service-orientation provides us with a well-defi ned method
for shaping software programs into units of service-oriented logic that we can legiti-
mately refer to as services. Each such service that we deliver takes us a step closer to
achieving the desired target state represented by the aforementioned strategic goals
and benefi ts.

Proven practices, patterns, principles, and technologies exist in support of service-
orientation. However, because of the distinctly strategic nature of the target state that
service-orientation aims to establish, there is a set of fundamental critical success fac-
tors that act as common prerequisites for its successful adoption. These critical success
factors are referred to as pillars because they collectively establish a sound and healthy
foundation upon which to build, deploy, and govern services.

The four pillars of service-orientation are

 • Teamwork – Cross-project teams and cooperation are required.

 • Education – Team members must communicate and cooperate based on common
knowledge and understanding.

 • Discipline – Team members must apply their common knowledge consistently.

 • Balanced Scope – The extent to which the required levels of Teamwork, Education,
and Discipline need to be realized is represented by a meaningful yet manageable
scope.

The existence of these four pillars is considered essential to any SOA initiative. The
absence of any one of these pillars to a signifi cant extent introduces a major risk factor. If
such an absence is identifi ed in the early planning stages, it can warrant not proceeding
with the project until it has been addressed—or the project’s scope has been reduced.

Teamwork

Whereas traditional silo-based applications require cooperation among
members of individual project teams, the delivery of services and ser-
vice-oriented solutions requires cooperation across multiple project
teams. The scope of the required teamwork is noticeably larger and can
introduce new dynamics, new project roles, and the need to forge and
maintain new relationships among individuals and departments. Those on the overall
SOA team need to trust and rely on each other; otherwise the team will fail.

Teamwork

3.5 Four Pillars of Service-Orientation 55

Education

A key factor to realizing the reliability and trust required by SOA team
members is to ensure that they use a common communications frame-
work based on common vocabulary, defi nitions, concepts, methods,
and a common understanding of the target state the team is collectively
working to attain. To achieve this common understanding requires
common education, not just in general topics pertaining to service-orientation, SOA,
and service technologies, but also in specifi c principles, patterns, and practices, as well
as established standards, policies, and methodology specifi c to the organization.

Combining the pillars of teamwork and education establishes a foundation of knowl-
edge and an understanding of how to use that knowledge among members of the SOA
team. The resulting clarity eliminates many of the common risks that have traditionally
plagued SOA projects.

Discipline

A critical success factor for any SOA initiative is consistency in how
knowledge and practices among a cooperative team are used and
applied. To be successful as a whole, team members must therefore be
disciplined in how they apply their knowledge and in how they carry
out their respective roles. Required measures of discipline are com-
monly expressed in methodology, modeling, and design standards, as well as gover-
nance precepts. Even with the best intentions, an educated and cooperative team will
fail without discipline.

Balanced Scope

So far we’ve established that we need:

 • cooperative teams that have…

 • a common understanding and education pertaining to industry and enterprise-
specifi c knowledge areas and that…

 • we need to consistently cooperate as a team, apply our understanding, and follow
a common methodology and standards in a disciplined manner.

Education

Discipline

56 Chapter 3: Understanding Service-Orientation

In some IT enterprises, especially those with a long history of building silo-based appli-
cations, achieving these qualities can be challenging. Cultural, political, and various
other forms of organizational issues can arise to make it diffi cult to attain the necessary
organizational changes required by these three pillars. How then can they be realisti-
cally achieved? It all comes down to defi ning a balanced scope of adoption.

The scope of adoption needs to be meaningfully cross-silo, while also realisti-
cally manageable. This requires the defi nition of a balanced scope of adoption of
service-orientation.

NOTE

The concept of a balanced scope corresponds directly to the following guideline in the
SOA Manifesto:

“The scope of SOA adoption can vary. Keep efforts manageable and within meaningful
boundaries.”

See Appendix D for the complete SOA Manifesto and the Annotated SOA Manifesto.

Once a balanced scope of adoption has been defi ned, this scope determines the extent
to which the other three pillars need to be established. Conversely, the extent to which
you can realize the other three pillars will infl uence how you determine the scope
(Figure 3.35).

Common factors involved in determining a balanced scope include:

 • Cultural obstacles

 • Authority structures

 • Geography

 • Business domain alignment

 • Available stakeholder support and funding

 • Available IT resources

3.5 Four Pillars of Service-Orientation 57

Discipline

Teamwork

Education

Balanced Scope

Figure 3.35
The Balanced Scope pillar
encompasses and sets the scope
at which the other three pillars are
applied for a given adoption effort.

A single organization can choose one or more balanced adoption scopes (Figure 3.36).
Having multiple scopes results in a domain-based approach to adoption. Each domain
establishes a boundary for an inventory of services. Among domains, adoption of
 service-orientation and the delivery of services can occur independently. This does not
result in application silos; it establishes meaningful service domains (also known as
“continents of services”) within the IT enterprise.

SOA PATTERNS

The domain service inventory originated with the Domain Inventory [338]
pattern, which is an alternative to the Enterprise Inventory [340] pattern.

58 Chapter 3: Understanding Service-Orientation

Figure 3.36
Multiple balanced scopes can exist within the same IT enterprise. Each represents a separate domain service
inventory that is independently standardized, owned, and governed.

Teamwork

Balanced Scope

IT enterprise

Education Discipline

Teamwork

Balanced Scope

Education Discipline

Teamwork

Balanced Scope

Education Discipline

Index

A
agents. See service agents
agility (organizational), 50-52
agnostic

business process category, 115
defi ned, 114

Agnostic Capability design patt ern, 133, 322
agnostic capability stage (service layers), 119
Agnostic Context design patt ern, 133, 323
agnostic context stage (service layers), 117-118
agnostic logic, 23
Annotated SOA Manifesto, 367-382
application services. See utility services
applications, as service compositions, 38-43
architecture

design patt erns and, 70
service architecture, 70-76
service composition architecture, 70, 77-83
service inventory architecture, 70, 83-85
service-oriented enterprise architecture, 70, 85-86

Async complex method, 247, 254-256
Atomic Service Transaction design patt ern,

198, 324
att ribute values for SOAP messages, 216
automation systems, identifying, 99

B
backwards compatibility, 267-270

fl exible versioning strategy, 283-284
loose versioning strategy, 284

balanced scope (service-orientation pillar),
55-58, 97

BDSCP (Big Data Science Certifi ed
Professional), 11

benefi ts of service-orientation, 43
Increased Business and Technology Domain

Alignment, 48-49
Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

Big Data Science Certifi ed Professional
(BDSCP), 11

blueprints. See service inventory blueprints
books

mapped to topics from fi rst edition, 4-6
organization of, 6-8

bott om-up project delivery strategy, 91-92
business community, relationship with IT

community, 86-90
business-driven (SOA characteristic), 61-63
business models, technology alignment with,

48-49
business processes

decomposition, 115-124, 142, 164
fi ltering actions, 144, 165
identifying non-agnostic logic, 149, 169
identifying resources, 170-171

business requirements in service-oriented
analysis, 99

C
Cache constraint, 186

profi le, 310
Canonical Expression design patt ern, 209, 325
Canonical Schema design patt ern, 194, 222, 326
Canonical Versioning design patt ern, 281, 327
Capability Composition design patt ern, 83,

134, 328
capability granularity, 210
Capability Recomposition design patt ern, 83,

134, 329
case studies

Midwest University Association (MUA)
analyzing processing requirements, 177-178
applying service-orientation, 174
associating service capability candidates with

resources, 173-174
background, 15
business process decomposition, 164
complex methods, 259-262
defi ning entity service candidates, 167-169
defi ning microservice candidates, 181
defi ning utility service candidates, 179-180

Index 385

compatible changes, 273-275
Compensating Service Transaction design patt ern,

198, 330
complex methods

case study, 259-262
designing, 246-249
stateful methods, 256-258
stateless methods, 249-256

composition. See service composition
composition architecture. See service composition

architecture
Composition Autonomy design patt ern, 224, 331
composition-centricity, 68-69, 124
composition controllers, 78, 123
composition members, 78
Concurrent Contracts design patt ern, 193, 195,

212, 221, 223, 332
constraint granularity, 210

versioning and, 266-267
constraints (REST). See also design constraints

Cache, 186, 310
Client-Server, 307
Code-on-Demand, 315
Layered System, 187,313-314
profi le table format, 306
Stateless, 186, 249, 256-257, 308-309
Uniform Contract, 183, 187, 311-312
uniform contract modeling and, 186-187

Containerization design patt ern, 333
Content Negotiation design patt ern, 244-245, 334
Contemporary SOA. See SOA
Contract Denormalization design patt ern, 212, 335
contracts. See service contracts
Cross-Domain Utility Layer design patt ern,

195, 336

D
data granularity, 210
decomposition of business processes, 142, 164
decomposition stage (service layers), 115-124
Decoupled Contract design patt ern, 193, 337
delivery strategies for SOA projects, 91-92
Delta complex method, 247, 252-254
dependencies, versioning and, 264
deployment stage (SOA projects), 105

design considerations for REST service contracts,
226-230

fi ltering actions, 165
identifying non-agnostic logic, 169-170
identifying resources, 171-172
identifying service composition candidates,

175-176
REST service modeling, 162-163
revising service composition candidates, 182

Transit Line Systems, Inc. (TLS)
analyzing processing requirements, 152
background, 14-15
business process decomposition, 142-144
defi ning entity service candidates, 146-149
defi ning microservice candidates, 155
defi ning utility service candidates, 154
design considerations for Web services, 198-208
fi ltering actions, 145
identifying non-agnostic logic, 149-150
identifying service composition candidates, 151
modular WSDL documents, 214
namespaces, 215-216
revising service composition candidates, 156
SOAP att ribute values, 217
Web service extensibility, 213
Web service granularity, 212
Web service modeling, 141

CCP (Cloud Certifi ed Professional), 10
Client-Server constraint, profi le, 307
Cloud Certifi ed Professional (CCP), 10
cloud computing, resources for information, 60
Cloud Computing: Concepts, Technology &

Architecture, 60
Cloud Computing Design Patt erns, 60
coarse-grained granularity, 211

versioning and, 266-267
Code-on-Demand constraint, profi le, 315
compatibility. See also versioning

REST services considerations, 276-279
versioning and, 267

backwards compatibility, 267-270
compatible changes, 273-275
forwards compatibility, 271-273
incompatible changes, 275-276

compatibility guarantee, 280

386 Index

Enterprise Inventory, 57, 83, 187, 340
Entity Abstraction, 133, 341
Entity Linking, 222, 342
Event-Driven Messaging, 258, 343
Functional Decomposition, 133, 344
Idempotent Capability, 252, 345
Inventory Endpoint, 86, 346
Legacy Wrapper, 195, 223, 347
Logic Centralization, 135, 166, 348
Microservice Deployment, 349
Micro Task Abstraction, 134, 350
Non-Agnostic Context, 133, 351
Partial State Deferral, 198, 352
Process Abstraction, 134, 353
profi les, conventions for, 8-9
profi le table format, 321
Redundant Implementation, 224, 354
Reusable Contract, 233, 355
Schema Centralization, 194, 222, 277, 356
Service Agent, 76, 357
Service Data Replication, 224, 358
Service Encapsulation, 67, 133, 359
Service Façade, 193, 195, 221, 223, 360
Service Normalization, 135, 166, 361
State Messaging, 198, 362
State Repository, 198, 363
usage in book, 3-4
Utility Abstraction, 133, 364
Validation Abstraction, 214, 245, 365
Version Identifi cation, 279, 366

design principles, 60-61
list of, 26, 29
profi les, conventions for, 8-9
profi le table format, 290
Service Abstraction, 27, 73, 80, 150, 223, 248

interoperability, 45
profi le, 294

Service Autonomy, 27, 73, 150, 174, 194
interoperability, 45
profi le, 297

Service Composability, 29, 68, 103, 127, 213
interoperability, 45
profi le, 302-303

Service Discoverability, 28, 106
interoperability, 45
profi le, 300-301

design considerations
for REST service contracts

by service model, 221-225
case study, 226-230
guidelines for, 231-258

for uniform contracts, 231
HTT P complex method design, 246-249
HTT P header design, 233-235
HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

for Web service contracts
by service model, 193-198
case study, 198-208
guidelines for, 208-216

design constraints, conventions for profi les, 8-9
design paradigms, 24-25
design patt ern languages. See patt ern languages
design patt erns

advantages of, 318-319
Agnostic Capability, 133, 322
Agnostic Context, 133, 323
architecture and, 70
Atomic Service Transaction, 198, 324
Canonical Expression, 209, 325
Canonical Schema, 194, 222, 326
Canonical Versioning, 281, 327
Capability Composition, 83, 134, 328
Capability Recomposition, 83, 134, 329
Compensating Service Transaction, 198, 330
Composition Autonomy, 224, 331
Concurrent Contracts, 193, 195, 212, 221,

223, 332
Containerization, 333
Content Negotiation, 244, 245, 334
Contract Denormalization, 212, 335
Cross-Domain Utility Layer, 195, 336
Decoupled Contract, 193, 337
defi ned, 318-319
Domain Inventory, 57, 83, 97, 187, 195, 338
Dual Protocols, 155, 193, 195, 212, 221, 223, 339

Index 387

F
federation, Increased Federation goal/benefi t, 46
Fetch complex method, 247, 249-250
fi gures, symbol legend, 9
fi ne-grained granularity, 211

versioning and, 266-267
fl exible versioning strategy, 283-285
forwards compatibility, 271-273

loose versioning strategy, 284
functional decomposition, 116
Functional Decomposition design patt ern,

133, 344
functional decomposition stage (service

layers), 115

G
goals of service-orientation, 43

Increased Business and Technology Domain
Alignment, 48-49

Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

granularity
constraint granularity, versioning and, 266-267
REST service modeling, 188
of Web services, 210-212

H
HTML, compatible changes, 278-279
HTT P headers, design and standardization,

233-235
HTT P media types

designing, 242-244
schema design, 244-245

HTT P methods
complex method design, 246-249
complex methods case study, 259-262
design and standardization, 231-233
stateful complex methods, 256-258
stateless complex methods, 249-256

HTT P response codes
customization, 240-241
design and standardization, 235-236, 239-240

Service Loose Coupling, 26, 150, 223
interoperability, 45
profi le, 293

Service Reusability, 27, 194, 195, 213
interoperability, 45
profi le, 295-296

Service Statelessness, 27, 73, 198
interoperability, 45
profi le, 298-299

Standardized Service Contract, 26, 103, 223-224
interoperability, 45
profi le, 291-292

design priorities, 69
discipline (service-orientation pillar), 55
discovery stage (SOA projects), 106
document att ribute value for SOAP messages, 216
Domain Inventory design patt ern, 57, 83, 97, 187,

195, 338
domain service inventory, 25
Dual Protocols design patt ern, 155, 193, 195, 212,

221, 223, 339

E
education (service-orientation pillar), 55
enterprise-centric (SOA characteristic), 66-67
Enterprise Inventory design patt ern, 57, 83,

187, 340
enterprise resources, 66
entities, resources versus, 189
Entity Abstraction design patt ern, 133, 341
entity abstraction stage (service layers), 121
Entity Linking design patt ern, 222, 342
entity service candidates

associating with resources, 172
defi ning, 146, 166

entity services
defi ned, 113
design considerations

for REST service contracts, 221-222
for Web services, 193-194

errata, 9, 11
Event-Driven Messaging design patt ern, 258, 343
extensibility of Web services, 212-213

388 Index

Micro Task Abstraction design patt ern, 134, 350
micro task abstraction stage (service layers), 123
Midwest University Association case study.

See case studies, Midwest University
Association (MUA)

modular WSDL documents, 214
monitoring stage (SOA projects), 105-106

N
namespaces for WSDL documents, 215
naming standards for Web services, 208-209
Next Generation SOA: A Concise Introduction to

Service Technology & Service-Orientation, 3
non-agnostic

business process category, 115
defi ned, 114

Non-Agnostic Context design patt ern, 133, 351
non-agnostic context stage (service layers), 122
non-agnostic logic, 23

identifying, 149, 169
notifi cation service website, 11

O
open-ended patt ern languages, 320
orchestrated task services, 114
organizational agility, Increased Organizational

Agility goal/benefi t, 50-52
organizational roles, SOA project stages and,

107-109

P
Partial State Deferral design patt ern, 198, 352
patt ern languages, 320
patt erns. See design patt erns
pillars of service-orientation, 54

balanced scope, 55-58, 97
discipline, 55
education, 55
teamwork, 54

Prentice Hall Service Technology Series from
Th omas Erl, 2, 4, 6, 290, 306, 321

primitive methods, 247
principles. See design principles
Process Abstraction design patt ern, 134, 353
process abstraction stage (service layers), 123-124
profi les, conventions for, 8-9

I
Idempotent Capability design patt ern, 252, 345
incompatible changes, 275-276
Increased Intrinsic Interoperability, 44-45
integration in service-orientation, 40-42
interoperability, 37-38, 44-45
inventory architecture. See service inventory

architecture
Inventory Endpoint design patt ern, 86, 346
IT community, relationship with business

community, 86-90

L
Layered System constraint, 187

profi le, 313-314
Legacy Wrapper design patt ern, 195, 223, 347
literal att ribute value for SOAP messages, 216
logic centralization, 134
Logic Centralization design patt ern, 135, 166, 348
loose versioning strategy, 284-285

M
maintenance stage (SOA projects), 105
media types

designing, 242-244
schema design, 244-245
uniform contract media types, compatibility,

277-279
messages (SOAP), att ribute values, 216
methodology for SOA projects, 91-92
methods (HTT P)

complex method design, 246-249
complex methods case study, 259-262
design and standardization, 231-233
stateful complex methods, 256-258
stateless complex methods, 249-256

microservice candidates, defi ning, 154, 180
microservice candidate stage (service layers), 123
Microservice Deployment design patt ern, 349
microservices

defi ned, 113
design considerations

for REST service contracts, 223-224
for Web services, 196

service capability composition and, 130-131

Index 389

resources versus entities, 189
revising service capability candidate groupings,

182-183
revising service composition candidates, 181

REST services, 21
backwards compatibility, 268-270
compatibility considerations, 276-279
forwards compatibility, 271-273
service normalization, 135
versioning, 266,286

website for information, 10
REST service contracts

benefi ts of, 220
design considerations

by service model, 221-225
case study, 226-230
guidelines for, 231-236, 239-258

return on investment, Increased ROI goal/benefi t,
48, 50

reusability of solution logic, 35
Reusable Contract design patt ern, 233, 355
ROI (return on investment), 48, 50

S
Schema Centralization design patt ern, 194, 222,

277, 356
schemas, designing for media types, 244-245
separation of concerns, 24-25
Service Abstraction design principle, 27, 73, 80,

150, 223, 248
interoperability, 45
profi le, 294

Service Agent design patt ern, 76, 357
service agents, 76-77
service architecture, 70-76
Service Autonomy design principle, 27, 73, 150,

174, 194
interoperability, 45
profi le, 297

service boundaries, 134
service candidates, 115
service capabilities, 76
service capability candidates

analyzing processing requirements, 152, 176-177
associating with resources, 172
composition and recomposition, 127-133

profi le tables. See design patt erns; design
principles; REST constraints

projects. See SOA projects
PubSub complex method, 257-258

R
recomposition . See service composition
Reduced IT Burden, 52-53
Redundant Implementation design patt ern,

224, 354
resources

associating service capability candidates with, 172
entities versus, 189
identifying, 170-171
for information, 9
revising defi nitions, 182-183

response codes (HTT P)
customization, 240-241
design and standardization, 235-236, 239-240

REST
constraints

Cache, 186, 310
Client-Server, 307
Code-on-Demand, 315
Layered System, 187, 313-314
profi le table format, 306
Stateless, 186, 249, 256-257, 308-309
Uniform Contract, 183, 187, 311-312
uniform contract modeling and, 186-187

service inventory modeling, uniform contract
modeling and, 183-186

service modeling, 160-161
analyzing processing requirements, 176-177
applying service-orientation, 174, 181
associating service capability candidates with

resources, 172
business process decomposition, 164
defi ning entity service candidates, 166
defi ning microservice candidates, 180
defi ning utility service candidates, 178
fi ltering actions, 165
granularity, 188
identifying non-agnostic logic, 169
identifying resources, 170-171
identifying service composition candidates, 175
process for, 165

390 Index

HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

service inventory analysis, 96-97
service inventory architecture, 70, 83-85
service inventory blueprint, 84, 96-97
service inventory modeling (REST), uniform

contract modeling and, 183-186
service layers

decomposition stage, 115-124
defi ned, 114

service logic design, 103
Service Loose Coupling design principle, 26,

150, 223
interoperability, 45
profi le, 293

service modeling
defi ned, 100
primitive process steps, 112
REST service modeling, 160-161

analyzing processing requirements, 176-177
applying service-orientation, 174, 181
associating service capability candidates with

resources, 172
business process decomposition, 164
defi ning entity service candidates, 166
defi ning microservice candidates, 180
defi ning utility service candidates, 178
fi ltering actions, 165
granularity, 188
identifying non-agnostic logic, 169
identifying resources, 170-171
identifying service composition candidates, 175
process for, 165
resources versus entities, 189
revising service capability candidate groupings,

182-183
revising service composition candidates, 181

Web services, 140
analyzing processing requirements, 152
applying service-orientation, 150, 155

defi ned, 115
revising groupings, 157, 182-183

Service Composability design principle, 29, 68,
103, 127, 213
interoperability, 45
profi le, 302-303

service composition
applications as, 38-43
defi ned, 24, 26, 77
of service capability candidates, 127-133
service-orientation and, 124-127
symbols, 24

service composition architecture, 70, 77-83
service composition candidates

identifying, 151, 175
revising, 156, 181

service consumers, 23
service contracts,21, 74-75

REST
benefi ts of, 220
design considerations, 221-230
design guidelines, 231-236, 239-258

Web services
benefi ts of, 192
design considerations, 193-208
design guidelines, 208-216

Service Data Replication design patt ern, 224, 358
service deployment and maintenance, 105
service development, 103
Service Discoverability design principle, 28, 106

interoperability, 45
profi le, 300-301

service discovery, 106
Service Encapsulation design patt ern, 67, 133, 359
service encapsulation stage (service layers),

116-117
Service Façade design patt ern, 193, 195, 221,

223, 360
service granularity, 210
service inventories

defi ned, 25-26
service boundaries, 134
symbols, 25
uniform contract design considerations, 231

HTT P complex method design, 246-249
HTT P header design, 233-235

Index 391

problems solved by, 29
architecture complexity, 33
effi ciency, lack of, 32
enterprise bloat, 32-33
integration challenges, 34
silo-based application architecture, 29-31
wastefulness, 31-32

result of, 86-90
service composition and, 124-127

service-orientation design principles. See design
principles

service-oriented analysis, 97-100
service-oriented architecture. See SOA
Service-Oriented Architecture: Concepts,

Technology, and Design, 2-3
service-oriented design, 101-102
service-oriented enterprise architecture, 70, 85-86
service-oriented solution logic, 26
service profi le documents, 76
Service Reusability design principle, 27,

194-195, 213
interoperability, 45
profi le, 295-296

services
as collections of capabilities, 22-23
defi ned, 21, 26
explained, 20-21
REST services, 21
symbols for, 21-22
Web services, 21

services contracts, 21
Service Statelessness design principle, 27, 73, 198

interoperability, 45
profi le, 298-299

service testing, 103-104
service usage and monitoring, 105-106
service versioning, 106-107
silo-based application architecture, 29-31
SOA (service-oriented architecture)

characteristics of, 61-69
business-driven, 61-63
composition-centric, 68-69
enterprise-centric, 66-67
vendor-neutral, 63-65

design priorities, 69

business process decomposition, 142
defi ning entity service candidates, 146
defi ning microservice candidates, 154
defi ning utility service candidates, 153
fi ltering actions, 144
identifying non-agnostic logic, 149
identifying service composition candidates, 151
revising service capability candidate groupings, 157
revising service composition candidates, 156

service models
defi ned, 113
design considerations

for REST service contracts, 221-225
for Web service contracts, 193-198

list of, 113
service normalization, 134
Service Normalization design patt ern, 135,

166, 361
service-orientation

applications in, 38-43
applying in service modeling, 150, 155, 174, 181
defi ned, 26
design characteristics of, 34-35

application-specifi c logic, reducing, 36
interoperability, 37-38
overall solution logic, reducing, 36-37
reusable solution logic, 35

as design paradigm, 24-25
elements of, 26
goals and benefi ts of, 43

Increased Business and Technology Domain
Alignment, 48-49

Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

integration and, 40-42
pillars of, 54

balanced scope, 55-58, 97
discipline, 55
education, 55
teamwork, 54

392 Index

Stateless constraint, 186, 249, 256-257
profi le, 308-309

State Messaging design patt ern, 198, 362
State Repository design patt ern, 198, 363
Store complex method, 247, 250-251
strict versioning strategy, 282-285
structured patt ern languages

advantages of, 320
defi ned, 320

symbols, 21-22
legend, 9
service composition, 24
service inventory, 25

T
task services

defi ned, 113
design considerations

for REST service contracts, 225
for Web services, 196-198

task service stage (service layers), 123-124
teamwork (service-orientation pillar), 54
technology architecture. See architecture
testing stage (SOA projects), 103-104
top-down project delivery strategy, 91-92
Trans complex method, 256
Transit Line Systems, Inc. case study. See case

studies, Transit Line Systems, Inc. (TLS), 14

U
Uniform Contract constraint, 183, 187, 245

profi le, 311-312
uniform contract media types, compatibility,

277-279
uniform contract modeling

REST constraints and, 186-187
REST service inventory modeling and, 183-186

uniform contracts, design considerations, 231
HTT P complex method design, 246-249
HTT P header design, 233-235
HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

types of, 70-71
service architecture, 71-76
service composition architecture, 77-83
service inventory architecture, 83-85
service-oriented enterprise architecture, 85-86

SOA adoption planning, 95
SOACP (SOA Certifi ed Professional), 10
SOA Design Patt erns, 3, 89, 320-321
SOA Governance: Governing Shared Services

On-Premise & in the Cloud, 3, 107
SOA Manifesto

annotated version, 367-382
design priorities, 69

SOA patt erns. See design patt erns
SOAP-based Web services. See Web services
SOAP messages, att ribute values, 216
SOA Principles of Service Design, 3, 290
SOA projects

delivery strategies and methodology, 91-92
stages of, 94-95

organizational roles and, 107-109
service deployment and maintenance, 105
service development, 103
service discovery, 106
service inventory analysis, 96-97
service logic design, 103
service-oriented analysis, 97-100
service-oriented design, 101-102
service testing, 103-104
service usage and monitoring, 105-106
service versioning, 106-107
SOA adoption planning, 95

SOA with REST: Principles, Patt erns &
Constraints for Building Enterprise Solutions
with REST, 3, 220, 306

solution logic
application-specifi c logic, reducing, 36
overall logic, reducing, 36-37
reusability, 35

Standardized Service Contract design principle,
26, 103, 223-224
interoperability, 45
profi le, 291-292

stateful complex methods, 256-258
stateless complex methods, 249-256

Index 393

Web services
backwards compatibility, 267-268
extensibility, 212-213
forwards compatibility, 271
granularity, 210-212
naming standards, 208-209
service modeling, 140

analyzing processing requirements, 152
applying service-orientation, 150, 155
business process decomposition, 142
defi ning entity service candidates, 146
defi ning microservice candidates, 154
defi ning utility service candidates, 153
fi ltering actions, 144
identifying non-agnostic logic, 149
identifying service composition candidates, 151
revising service capability candidate groupings, 157
revising service composition candidates, 156

service normalization, 135
versioning, 265-266

websites
www.arcitura.com/notation, 9
www.bigdatapatt erns.org, 3
www.bigdatascienceschool.com, 11
www.cloudpatt erns.org, 3, 60
www.cloudschool.com, 10
www.serviceorientation.com, 10, 290
www.servicetechbooks.com, 6, 9, 11, 290, 306, 321
www.servicetechspecs.com, 10
www.soa-manifesto.com, 8
www.soapatt erns.org, 3, 8, 321
www.soaschool.com, 10
www.whatiscloud.com, 60
www.whatisrest.com, 10, 306

WSDL documents
as modules, 214
namespaces, 215

updates, 9
Utility Abstraction design patt ern, 133, 364
utility abstraction stage (service layers), 120
utility service candidates, defi ning, 153, 178
utility services

defi ned, 113
design considerations

for REST service contracts, 222-223
for Web services, 194, 195

V
Validation Abstraction design patt ern, 214,

245, 365
vendor diversifi cation, Increased Vendor

Diversifi cation Options goal/benefi t, 47-48
vendor-neutral (SOA characteristic), 63-65
Version Identifi cation design patt ern, 279, 366
version identifi ers, 279-281
versioning. See also compatibility

compatibility and, 267
backwards compatibility, 267-270
compatible changes, 273-275
forwards compatibility, 271-273
incompatible changes, 275-276

constraint granularity and, 266-267
dependencies and, 264
REST services, 266, 286
strategies, 282

comparison of, 285
fl exible strategy, 283-284
loose strategy, 284
strict strategy, 282-283

version identifi ers, 279-281
Web services, 265-266

versioning stage (SOA projects), 106-107

W
Web Service Contract Design and Versioning

or SOA, 192, 245
Web service contracts

benefi ts of, 192
design considerations

case study, 198-208
guidelines for, 208-216
by service model, 193-198

http://www.arcitura.com/notation
http://www.bigdatapatterns.org
http://www.bigdatascienceschool.com
http://www.cloudpatterns.org
http://www.cloudschool.com
http://www.serviceorientation.com
http://www.servicetechbooks.com
http://www.servicetechspecs.com
http://www.soa-manifesto.com
http://www.soapatterns.org
http://www.soaschool.com
http://www.whatiscloud.com
http://www.whatisrest.com

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Reader Services
	PART I: FUNDAMENTALS
	CHAPTER 3: Understanding Service-Orientation
	3.1 Introduction to Service-Orientation
	Services in Business Automation
	Services Are Collections of Capabilities
	Service-Orientation as a Design Paradigm
	Service-Orientation Design Principles

	3.2 Problems Solved by Service-Orientation
	Silo-based Application Architecture
	It Can Be Highly Wasteful
	It’s Not as Efficient as It Appears
	It Bloats an Enterprise
	It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures
	Integration Becomes a Constant Challenge
	The Need for Service-Orientation
	Increased Amounts of Reusable Solution Logic
	Reduced Amounts of Application-Specific Logic
	Reduced Volume of Logic Overall
	Inherent Interoperability

	3.3 Effects of Service-Orientation on the Enterprise
	Service-Orientation and the Concept of “Application”
	Service-Orientation and the Concept of “Integration”
	The Service Composition

	3.4 Goals and Benefits of Service-Oriented Computing
	Increased Intrinsic Interoperability
	Increased Federation
	Increased Vendor Diversification Options
	Increased Business and Technology Domain Alignment
	Increased ROI
	Increased Organizational Agility
	Reduced IT Burden

	3.5 Four Pillars of Service-Orientation
	Teamwork
	Education
	Discipline
	Balanced Scope

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

