
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134291062
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134291062
https://plusone.google.com/share?url=http://www.informit.com/title/9780134291062
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134291062
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134291062/Free-Sample-Chapter

Developer TesTing

This page intentionally left blank

Developer TesTing

Building Quality into Software

alexander tarlinder

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2016944434
Copyright © 2017 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.
ISBN-13: 978-0-13-429106-2
ISBN-10: 0-13-429106-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
1 16

http://www.pearsoned.com/permissions/

To my grandfather Romuald, who taught me about books.

This page intentionally left blank

 vii

Contents

Foreword by Jeff Langr xiii

Foreword by Lisa Crispin xv

Preface xvii

Acknowledgments xxiii

About the Author xxv

Chapter 1 Developer Testing 1

Developers Test 1
Developer Testing Activities 2
What Developers Usually Don’t Do 5
Defining Developer Testing 6
Developer Testing and the Development Process 7
Summary 8

Chapter 2 Testing Objectives, Styles, and Roles 9

Testing and Checking 9
Testing Objectives 10
Testing Styles 11
Your Quality Assurance and Developer Testing 18
Summary 19

Chapter 3 The Testing Vocabulary 21

Errors, Defects, Failures 22
White Box and Black Box Testing 22
Classifying Tests 23
The Agile Testing Quadrants 32
Some Other Types of Testing 33
Summary 36

viii Contents

Chapter 4 Testability from a Developer’s Perspective 37

Testable Software 37
Benefits of Testability 39
Testability Defined 43
Summary 55

Chapter 5 Programming by Contract 57

Contracts Formalize Constraints 57
Implementing Programming by Contract 60
Enforcing Contracts 62
Summary 65

Chapter 6 Drivers of Testability 67

Direct Input and Output 68
Indirect Input and Output 68
State 70
Temporal Coupling 71
Data Types and Testability 72
Domain-to-Range Ratio 77
Summary 78

Chapter 7 Unit Testing 79

Why Do It? 79
What Is a Unit Test? 81
The Life Cycle of a Unit Testing Framework 83
Naming Tests 85
Structuring Tests 88
Assertion Methods 89
Testing Exceptions 99
Behavior-driven Development–Style Frameworks 102
Summary 105

Chapter 8 Specification-based Testing Techniques 107

Equivalence Partitioning 107
Boundary Value Analysis 110
Edge Cases and Gotchas for Some Data Types 111
State Transition Testing 113
Decision Tables 115
Summary 116

 Contents ix

Chapter 9 Dependencies 119

Relations between Objects 119
System Resource Dependencies 125
Dependencies between Layers 129
Dependencies across Tiers 132
Summary 133

Chapter 10 Data-driven and Combinatorial Testing 135

Parameterized Tests 138
Theories 139
Generative Testing 141
Combinatorial Testing 145
Summary 149

Chapter 11 Almost Unit Tests 151

Examples 152
Impact 156
Summary 157

Chapter 12 Test Doubles 159

Stubs 159
Fakes 162
Mock Objects 164
Spies 170
Dummies 171
Verify State or Behavior? 173
Summary 176

Chapter 13 Mocking Frameworks 177

Constructing Test Doubles 177
Setting Expectations 179
Verifying Interactions 183
Misuse, Overuse, and Other Pitfalls 185
Summary 189

Chapter 14 Test-driven Development—Classic Style 191

Test-driving a Simple Search Engine 192
Order of Tests 204
Red- to Green-bar Strategies 205

x Contents

Challenges 206
Test First or Test Last? 209
Summary 210

Chapter 15 Test-driven Development—Mockist Style 213

A Different Approach 213
Double-loop TDD 220
Summary 223

Chapter 16 Duplication 225

Why Duplication Is Bad 225
Taking Advantage of Duplication 227
Mechanical Duplication 228
Knowledge Duplication 232
Summary 235

Chapter 17 Working with Test Code 237

Commenting Tests 237
Deleting Tests 241
Summary 243

Chapter 18 Beyond Unit Testing 245

Tests that Aren’t Unit Tests 245
Characteristics of Tests that Aren’t Unit Tests 257
Pointers and Practices 263
Deciding on a Developer Testing Strategy 267
Summary 269

Chapter 19 Test Ideas and Heuristics 271

High-level Considerations 271
Low-level Considerations 274
Summary 276

Appendix A Tools and Libraries 277

Appendix B Source Code 279

Test Doubles 279
Data-driven and Combinatorial Testing 279

 Contents xi

Test-driven Development 282
Beyond Unit Testing 287

Bibliography 289

Index 295

This page intentionally left blank

 xiii

Foreword by JeFF Langr

Ten years ago, I became the manager and tech lead for a small development team at a
local, small start-up after spending some months developing for them. The software
was an almost prototypically mired mess of convoluted logic and difficult defects. On
taking the leadership role, I began to promote ideas of test-driven development (TDD)
in an attempt to improve the code quality. Most of the developers were at least willing
to listen, and a couple eventually embraced TDD.

One developer, however, quit two days later without saying a word to me. I was
told that he said something to the effect that “I’m never going to write a test, that’s not
my job as a programmer.” I was initially concerned that I’d been too eager (though I’d
never insisted on anything, just attempted to educate). I no longer felt guilty after see-
ing the absolute nightmare that was his code, though.

Somewhat later, one of the testers complained to me about another developer—a
consultant with many years of experience—who continually submitted defect-riddled
code to our QA team. “It’s my job to write the code; it’s their job to find the prob-
lems with it.” No amount of discussion was going to convince this gentleman that he
needed to make any effort to test his code.

Still later and on the same codebase, I ended up shipping an embarrassing defect
that the testers failed to catch—despite my efforts to ensure that the units were well
tested. A bit of change to some server code and an overlooked flipping of a bool-
ean value meant that the client—a high-security chat application—no longer rang the
bell on an incoming message. We didn’t have comprehensive enough end-to-end tests
needed to catch the problem.

Developer tests are tools. They’re not there to make your manager happy—if that’s all
they were, I, too, would find a way to skip out on creating them. Tests are tools that give
you the confidence to ship, whether to an end customer or to the QA team.

Thankfully, 10 years on, most developers have learned that it’s indeed their job
to test their own code. Few of you will embark on an interview where some form of
developer testing isn’t discussed. Expectations are that you’re a software development
professional, and part of being a professional is crafting a high-quality product. Ten
years on, I’d squash any notions of hiring someone who thought they didn’t have to
test their own code.

Developer testing is no longer as simple as “just do TDD,” or “write some inte-
gration tests,” however. There are many aspects of testing that a true developer must
embrace in order to deliver correct, high-quality software. And while you can find
a good book on TDD or a good book on combinatorial testing, Developer Testing:

xiv Foreword by Jeff Langr

Building Quality into Software overviews the essentials in one place. Alexander sur-
veys the world of testing to clarify the numerous kinds of developer tests, weighing in
on the relative merits of each and providing you with indispensable tips for success.

In Developer Testing, Alexander first presents a case for the kinds of tests you
need to focus on. He discusses overlooked but useful concepts such as programming
by contract. He teaches what it takes to design code that can easily be tested. And
he emphasizes two of my favorite goals: constructing highly readable specification-
based tests that retain high documentation value, and eliminating the various flavors
of duplication—one of the biggest enemies to quality systems. He wraps up the topic
of unit testing with a pragmatic, balanced approach to TDD, presenting both classical
and mockist TDD techniques.

But wait! There’s more: In Chapter 18, “Beyond Unit Testing,” Alexander pro-
vides as extensive a discussion as you could expect in one chapter on the murky world
of developer tests that fall outside the range of unit tests. Designing these tests to be
stable, useful, and sustainable is quite the challenge. Developer Testing doesn’t disap-
point, again supplying abundant hard-earned wisdom on how to best tackle the topic.

I enjoyed working through Developer Testing and found that it got even better as
it went along, as Alexander worked through the meaty coding parts. It’s hard to come
up with good examples that keep the reader engaged and frustration free, and Alex-
ander succeeds masterfully with his examples. I think you’ll enjoy the book too, and
you’ll also thank yourself for getting a foundation of the testing skills that are critical
to your continued career growth.

 xv

Foreword by Lisa Crispin

The subtitle says it all—“Building Quality into Software.” We’ve always known that
we can’t test quality in by testing after coding is “done.” Quality has to be baked in.
To do that, the entire delivery team, including developers, has to start building each
feature by thinking about how to test it. In successful teams, every team member has
an agile testing mind-set. They work with the delivery and customer teams to under-
stand what the customers need to be successful. They focus on preventing, rather
than finding, defects. They find the simplest solutions that provide the right value.

In my experience, even teams with experienced professional testers need devel-
opers who understand testing. They need to be able to talk with designers, product
experts, testers, and other team members to learn what each feature should do. They
need to design testable code. They need to know how to use tests to guide coding,
from the unit level on up. They need to know how to design test code as well as—or
even better than—production code, because that test code is our living documenta-
tion and our safety net. They need to know how to explore each feature they develop
to learn whether it delivers the right value to customers.

I’ve encountered a lot of teams where developers are paid to write production
code and pushed to meet deadlines. Their managers consider any time spent testing
to be a waste. If these organizations have testers at all, they’re considered to be less
valuable contributors, and the bugs they find are logged in a defect tracking system
and ignored. These teams build a mass of code that nobody understands and that is
difficult to change without something breaking. Over time they generally grind to a
halt under the weight of their technical debt.

I’ve been fortunate over the years to work with several developers who really
“get” testing. They eagerly engage in conversations with business experts, design-
ers, testers, analysts, data specialists, and others to create a shared understanding of
how each feature should behave. They’re comfortable pairing with testers and hap-
pily test their own work even before it’s delivered to a test environment. These are
happy teams that deliver solid, valuable features to their customers frequently. They
can change direction quickly to accommodate new business priorities.

Testing’s a vast subject, and we’re all busy, so where do you start? This book deliv-
ers key testing principles and practices to help you and your team deliver the qual-
ity your customers need, in a format that lets you pick up ideas quickly. You’ll learn
the language of testing so you can collaborate effectively with testers, customers, and
other delivery team members. Most importantly (at least to me), you’ll enjoy your
work a lot more and be proud of the product you help to build.

This page intentionally left blank

 xvii

preFaCe

I started writing this book four years ago with a very clear mental image of what I
wanted it to be and who my readers were going to be. Four years is quite a while, and
I’ve had to revise some of my ideas and assumptions, both in response to other work
in the field and because of deepening understanding of the subject. The biggest thing
that has happened during the course of those years is that the topic has become less
controversial. Several recent books adopt a stance similar to this one, and there’s some
reassuring overlap, which I interpret as being on the right track.

Why I Wrote This Book
I wrote this book because this was the book I should have read a decade ago! Ten years is
a long time, but believe it or not, I still need this book today—although for other reasons.

Roughly 10 years ago I embarked on a journey to understand software quality. I
wasn’t aware of it back then; I just knew that the code that I and my colleagues wrote
was full of bugs and made us sad and the customers unhappy. I was convinced that
having testers execute manual routines on our software wouldn’t significantly increase
its quality—and time has proven me right! So I started reading everything I could find
about software craftsmanship and testing, which led to two major observations.

First, to my surprise, these topics were often totally separated back then! Books
about writing software seldom spoke of verifying it. Maybe they mentioned one or
two testing techniques, but they tended to skip the theory part and the conceptual
frameworks needed for understanding how to work systematically with testing in dif-
ferent contexts. That was my impression at least. On the other hand, books on testing
often tended to take off in the direction of a testing process. Books on test-driven
development focused on test-driven development. This applied to blogs and other
online material too.

Second, writing testable code was harder than it initially appeared, not to men-
tion turning old legacy monoliths into something that could be tested. To get a feel-
ing for it, I had to dive deep into the areas of software craftsmanship, refactoring,
legacy code, test-driven development, and unit testing. It took a lot of deliberate
practice and study.

Based on these observations and my accumulated experience, I set some goals for
a book project:

xviii Preface

 Make the foundations of software testing easily accessible to developers, so
that they can make informed choices about the kind and level of verifica-
tion that would be the most appropriate for code they’re about to ship. In my
experience, many developers don’t read books or blogs on testing, yet they
keep asking themselves: When have I tested this enough? How many tests
do I need to write? What should my test verify? I wanted these to become
no-brainers.

 Demonstrate how a testing mind-set and the use of testing techniques can
enrich the daily routines of software development and show how they can
become a developer’s second nature.

 Create a single, good enough body of knowledge on techniques for writing test-
able code. I realized that such a work would be far from comprehensible, espe-
cially if kept concise, but I wanted to create something that was complete enough
to save the readers from plowing through thousands of pages of books and online
material. I wanted to provide a “map of the territory,” if you will.

This is why I should have had a book written with these goals in mind a decade
ago, but why today? Hasn’t the world changed? Hasn’t there been any progress in the
industry? And here comes the truly interesting part: this book is just as applicable
today as it would have been 10 years ago. One reason is that it’s relatively technol-
ogy agnostic. Admittedly it is quite committed to object-oriented programming,
although large parts hold true for procedural programming, and some contents apply
to functional programming as well. Another reason is that progress in the field it cov-
ers hasn’t been as impressive as in many others. True, today, many developers have
grasped the basics of testing, and few, if any, new popular frameworks and libraries
are created without testability in mind. Still, I’d argue that it’s orders of magnitude
easier to find a developer who’s a master in writing isomorphic JavaScript applica-
tions backed by NoSQL databases running in the cloud than to find a developer who’s
really good at unit testing, refactoring, and, above all, who can remain calm when the
going gets tough and keep applying developer testing practices in times of pressure
from managers and stressed-out peers.

Being a consultant specializing in software development, training, and men-
toring, I’ve had the privilege to work on several software development teams and to
observe other teams in action. Based on these experiences, I’d say that teams and
developers follow pretty much the same learning curve when it comes to quality
assurance. This book is written with such a learning curve in mind, and I’ve done my
best to help the reader overcome it and progress as fast as possible.

 Preface xix

Target Audience
This is a book for developers who want to write better code and who want to avoid
creating bugs. It’s about achieving quality in software by acknowledging testability
as a primary quality attribute and adapting the development style thereafter. Readers
of this book want to become better developers and want to understand more about
software testing, but they have neither the time nor support from their peers, not to
mention from their organizations.

This is not a book for beginners. It does explain many foundations and basic
techniques, but it assumes that the reader knows how to work his development envi-
ronment and build system and is no stranger to continuous integration and related
tooling, like static analysis or code coverage tools. To get the most out of this book,
the reader should have at least three years of experience creating software profession-
ally. Such readers will find the book’s dialogues familiar and should be able to relate
to the code samples, which are all based on real code, not ideal code.

I also expect the reader to work. Even though my ambition is to make lots of
information readily available, I leave the knowledge integration part to the reader.
This is not a cookbook.

About the Examples
This book contains a lot of source code. Still, my intention was never to write a pro-
gramming book. I want this to be a book on principles and practices, and as such, it’s
natural that the code examples be written in different languages. Although I’m trying
to stay true to the idioms and structure used in the various languages, I also don’t
want to lose the reader in fancy details specific to a single language or framework;
that is, I try to keep the examples generic enough so that they can be read by anyone
with a reasonable level of programming experience. At times, though, I’ve found this
stance problematic. Some frameworks and languages are just better suited for certain
constructs. At other times, I couldn’t decide, and I put an alternative implementation
in the appendix. The source code for the examples in the book and other related code
are available on the book’s companion website—http://developertesting.rocks.

How to Read This Book
This book has been written with a very specific reader in mind: the pressed-for-time
developer who needs practical information about a certain topic without having to
read tons of articles, blogs, or books. Therefore, the underlying idea is that each chap-
ter should take no more than one hour to read, preferably less. Ideally, the reader
should be able to finish a chapter while commuting to work. As a consequence, the

http://developertesting.rocks

xx Preface

chapters are quite independent and can be read in isolation. However, starting with
the first four chapters is recommended, as they lay a common ground for the rest of
the material.

Here’s a quick overview of the chapters:

 Chapter 1: Developer Testing—Explains that developers are engaged in a lot
of testing activities and that they verify that their programs work, regardless
of whether they call it testing or not. Developer testing is defined here.

 Chapter 2: Testing Objectives, Styles, and Roles—Describes different
approaches to testing. The difference between testing to critique and testing
to support is explained. The second half of the chapter is dedicated to describ-
ing traditional testing, agile testing, and different versions of behavior-driven
development. Developer testing is placed on this map in the category of sup-
porting testing that thrives in an agile context.

 Chapter 3: The Testing Vocabulary—This chapter can be seen as one big
glossary. It explains the terms used in the testing community and presents
some commonly used models like the matrix of test levels and test types and
the agile testing quadrants. All terms are explained from a developer’s point
of view, and ambiguities and different interpretations of some of them are
acknowledged rather than resolved.

 Chapter 4: Testability from a Developer’s Perspective—Why should the
developer care about testability? Here the case for testable software and its
benefits is made. The quality attribute testability is broken down into observ-
ability, controllability, and smallness and explained further.

 Chapter 5: Programming by Contract—This chapter explains the benefits
of keeping programming by contract in mind when developing, regardless of
whether tests are being written or not. This technique formalizes responsibili-
ties between calling code and called code, which is an important aspect of
writing testable software. It also introduces the concept of assertions, which
reside at the core of all testing frameworks.

 Chapter 6: Drivers of Testability—Some constructs in code have great impact
on testability. Therefore, being able to recognize and name them is critical.
This chapter explains direct and indirect input/output, state, temporal cou-
pling, and domain-to-range ratio.

 Chapter 7: Unit Testing—This chapter starts by describing the fundamen-
tals of xUnit-based testing frameworks. However, it soon moves on to more
advanced topics like structuring and naming tests, proper use of assertions,
constraint-based assertions, and some other technicalities of unit testing.

 Preface xxi

 Chapter 8: Specification-based Testing Techniques—Here the testing
domain is prevalent. Fundamental testing techniques are explained from the
point of view of the developer. Knowing them is essential to being able to
answer the question: “How many tests do I need to write?”

 Chapter 9: Dependencies—Dependencies between classes, components, lay-
ers, or tiers all affect testability in different ways. This chapter is dedicated to
explaining the different kinds and how to deal with them.

 Chapter 10: Data-driven and Combinatorial Testing—This chapter explains
how to handle cases where seemingly many similar-looking tests are needed.
It introduces parameterized tests and theories, which both solve this problem.
It also explains generative testing, which is about taking test parameteriza-
tion even further. Finally, it describes techniques used by testers to deal with
combinatorial explosions of test cases.

 Chapter 11: Almost Unit Tests—This book relies on a definition of unit tests
that disqualifies some tests that look and run almost as fast as unit tests from
actually being called by that name. To emphasize the distinction, they’re
called “fast medium tests”. They typically involve setting up a lightweight
server of some kind, like a servlet container, mail server, or in-memory data-
base. Such tests are described in this chapter.

 Chapter 12: Test Doubles—This chapter introduces typical test doubles like
stubs, mocks, fakes, and dummies, but without using any mocking frame-
works. The point is to understand test doubles without having to learn yet
another framework. This chapter also describes the difference between state-
based and interaction-based testing.

 Chapter 13: Mocking Frameworks—Here it gets very practical, as the mock-
ing frameworks Moq, Mockito, and the test double facilities of Spock are used
to create test doubles for different needs and situations—especially stubs and
mocks. This chapter also includes pitfalls and antipatterns related to the use
of mocking frameworks.

 Chapter 14: Test-driven Development—Classic Style—Here, classic test-
driven development is introduced through a longer example. The example
is used to illustrate the various details of the technique, such as the order in
which to write tests and strategies for making them pass.

 Chapter 15: Test-driven Development—Mockist Style—There’s more than one
way to do test-driven development. In this chapter, an alternative way is described. It’s
applicable in cases where test driving the design of the system is more important than
test driving the implementation of a single class or component.

xxii Preface

 Chapter 16: Duplication—This chapter explains why code duplication is bad
for testability, but sometimes a necessary evil to achieve independence and
throughput. Two main categories of duplication are introduced and dissected:
mechanical duplication and duplication of knowledge.

 Chapter 17: Working with Test Code—This chapter contains suggestions on
what to do before resorting to comments in test code and when to delete tests.

 Chapter 18: Beyond Unit Testing—Unit testing is the foundation of devel-
oper testing, but it’s just one piece of the puzzle. Software systems of today are
often complex and require testing at various levels of abstraction and granu-
larity. This is where integration, system, and end-to-end tests come in. This
chapter introduces such tests through a series of examples and discusses their
characteristics.

 Chapter 19: Test Ideas and Heuristics—This final chapter, on the border of
being an appendix, summarizes various test heuristics and ideas from the book.

Register your copy of Developer Testing at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the
registration process, go to informit.com and log in or create an account. Enter
the product ISBN (9780134291062) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”

 xxiii

aCknowLedgments

Writing a book is a team effort. The author is the one who writes the text and spends
the most time with it, but many people make their contributions. This book is no excep-
tion. My first thanks go to Joakim Tengstrand, an expert in software development with a
unique perspective on things, but above all, my friend. He’s been giving me continual and
insightful feedback from very early stages of writing to the very end.

Another person who needs a special mention is Stephen Vance. He helped me by
doing a very exhaustive second-pass technical review. Not only did he offer extensive
and very helpful feedback, he also found many, if not all, places where I tried to make
things easy for myself. In addition, he helped me broaden the book by offering alter-
natives and perspectives.

As a matter of fact, this entire book wouldn’t exist in its present form without
Lisa Crispin’s help. She’s helped me to get it published, and she has supported me
whenever I needed it throughout the entire process. I’m honored to have her write one
of the forewords. Speaking of which, Jeff Langr also deserves my deepest gratitude
for writing a foreword as well and for motivating me to rewrite an important section
that I had been postponing forever. Mike Cohn, whom I’ve never had the pleasure of
meeting, has accepted this book into his series. I can’t even express how grateful I am
and what it means to me. Thanks!

While on the topic of publication, I really need to thank Chris Guzikowski at
Addison-Wesley. He’s been very professional throughout the process and, above all,
supportive beyond all limits. I don’t know how many e-mails I started with some-
thing akin to: “Thanks for your patience! There’s this thing I need to do before hand-
ing in the manuscript . . .” During the process of finalizing the book, I’ve had the
pleasure to work with very professional and accommodating people, who really made
the end of the journey interesting, challenging, and quite fun. Many thanks to Chris
Zahn, Lisa McCoy, Julie Nahil, and Rachel Paul.

My reviewers, Mikael Brodd, Max Wenzin, and Mats Henricson, have done a
huge job going through the text while doing the first-pass technical review.

Carlos Blé deserves special thanks for taking me through a TDD session that
ended up producing a solution quite different from the one in the chapter on TDD.
It sure gave me some things to think about, and it eventually led to a rewrite of the
entire chapter. Ben Kelly has helped me enormously in getting the details of the test-
ing terminology right, and he didn’t let me escape with dividing some work between
developers and testers. Dan North has helped me get the details straight about BDD
and ATDD. Frank Appel has helped me around the topic of unit testing and related

xxiv Acknowledgments

material. His well-grounded and thorough comments really made me stop and think
at times. Many thanks. Alex Moore-Niemi has widened the book’s scope by provid-
ing a sidebar on types, a topic with which I’m only superficially familiar.

I’d also like to extend my thanks to Al Bagdonas, my first-pass proofreader and
copy editor for his dedication to this project.

In addition, I’d like to thank other people who have helped me along the way
or served as inspiration: Per Lundholm, Kristoffer Skjutare, Fredrik Lindgren, Yassal
Sundman, Olle Hallin, Jörgen Damberg, Lasse Koskela, Bobby Singh Sanghera, Gojko
Adzic, and Peter Franzen.

Last, but not least, I’m joining the scores of authors who thank their wives and
families. Writing a book is an endeavor that requires a lot of passion, dedication, and
above all, time away from the family. Teresia, thanks for your patience and support.

 xxv

about the author

Alexander Tarlinder wrote his first computer program around the age of 10, some-
time in the early nineties. It was a simple, text-based role-playing game for the Com-
modore 64. It had lots of GOTO statements and an abundance of duplicated code.
Still, to him, this was the most fantastic piece of software ever conceived, and an
entry point to his future career.

Twenty-five years later, Alexander still writes code and remains a developer at
heart. Today, his professional career stretches over 15 years, a time during which
he shouldered a variety of roles: developer, architect, project manager, Scrum-
Master, tester, and agile coach. In all these roles, he has gravitated toward sus-
tainable pace, craftsmanship, and attention to quality, and he eventually got test
infected around 2005. In a way, this was inevitable, because many of his projects
involved programming money somehow (in the banking and gaming industry),
and he always felt that he could do more to ensure the quality of his code before
handing it over to someone else.

Presently, Alexander seeks roles that allow him to inf luence the implementa-
tion process on a larger scale. He combines development projects with training
and coaching, and he shares technical and nontechnical aspects of developer test-
ing and quality assurance in conferences and local user groups meetings.

This page intentionally left blank

 37

Chapter 4

testabiLity From a
deveLoper’s perspeCtive

Testability means different things to different people depending on the context. From
a bird’s eye view, testability is linked to our prior experience of the things we want to
test and our tolerance for defects: the commercial web site that we’ve been running
for the last five years will require less testing and will be easier to test than the insu-
lin pump that we’re building for the first time. If we run a project, testability would
be about obtaining the necessary information, securing resources (such as tools and
environments), and having the time to perform various kinds of testing. There’s also
a knowledge perspective: How well do we know the product and the technology used
to build it? How good are our testing skills? What’s our testing strategy? Yet another
take on testability would be developing an understanding of what to build by having
reliable specifications and ensuring user involvement. It’s hard to test anything unless
we know how it’s supposed to behave.1

Before breaking down what testability means to developers, let’s look at why
achieving it for software is an end in itself.

Testable Software
Testable software encourages the existence of tests—be they manual or automatic.
The more testable the software, the greater the chance that somebody will test it, that
is, verify that it behaves correctly with respect to a specification or some other expec-
tations, or explore its behavior with some specific objective in mind. Generally, peo-
ple follow the path of least resistance in their work, and if testing isn’t along that path,
it’s very likely not going to be performed (Figure 4.1).

That testable software will have a greater chance of undergoing some kind of
testing may sound really obvious. Equally apparent is the fact that lack of testability,
often combined with time pressure, can and does result in bug-ridden and broken
software.

Whereas testable software stands on one side of the scale, The Big Ball of Mud
(Foote & Yoder 1999) stands on the other. This is code that makes you suspect that

1. For an in-depth breakdown of testability, I recommend James Bach’s work on the subject (2015).

38 Chapter 4 Testability from a Developer’s Perspective

the people who wrote it deliberately booby-trapped it with antitestability constructs
to make your life miserable. A very real consequence of working with a system that’s
evolved into The Big Ball of Mud architecture is that it’ll prevent you from verifying
the effects of your coding efforts. For various reasons, such as convoluted configura-
tion, unnecessary start-up time, or just the difficulty to produce a certain state or
data, you may actually have a hard time executing the code you’ve just written, not to
mention being able to write any kinds of tests for it!

For example, imagine a system that requires you to log in to a user interface (UI)
and then performing a series of steps that require interacting with various graphical
components and then navigating through multiple views before being able to reach
the functionality you’ve just changed or added and want to verify. To make things
more realistic (yes, this is a real-life example), further imagine that arriving at the
login screen takes four minutes because of some poor design decisions that ended up
having a severe impact on start-up time. As another example, imagine a batch pro-
gram that has to run for 20 minutes before a certain condition is met and a specific
path through the code is taken.

Honestly, how many times will you verify, or even just run, the new code if you
have to enter values into a multitude of fields in a UI and click through several screens

FIgURE 4.1 Is untestable software going to be tested?

 Benefits of Testability 39

(to say nothing of waiting for the application to start up), or if you must take a coffee
break every time you want to check if your batch program behaves correctly for that
special almost-never-occurring edge case?

Testers approaching a system with The Big Ball of Mud architecture also face a
daunting task. Their test cases will start with a long sequence of instructions about
how to put the system in a state the test expects. This will be the script for how to
fill in the values in the UI or how to set the system up for the 20-minute-long batch
execution. Not only must the testers author that script and make it detailed enough,
they must also follow it . . . many times, if they are unlucky. Brrr.

Benefits of Testability
Apart from shielding the developers and testers from immediate misery, testable soft-
ware also has some other appealing qualities.

Its Functionality Can Be Verified
If the software is developed so that its behavior can be verified, it’s easy to confirm
that it supports a certain feature, behaves correctly given a certain input, adheres to a
specific contract, or fulfills some nonfunctional constraint. Resolving a bug becomes
a matter of locating it, changing the code, and running some tests. The opposite of
this rather mechanical and predictable procedure is playing the guessing game:

Charlie: Does business rule X apply in situation Y?
Kate: Not a clue! Wasn’t business rule X replaced by business rule Z in release

5.21 by the way?
Charlie: Dunno, but wasn’t release 5.2 scrapped altogether? I recall that it was

too slow and buggy, and that we waited for 5.4 instead.
Kate: Got me there. Not a clue.

Such discussions take place if the software’s functionality isn’t verifiable and is
expressed as guesses instead. Lack of testability makes confirming these guesses hard
and time consuming. Therefore, there’s a strong probability that it won’t be done.

And because it won’t be done, some of the software’s features will only be found
in the lore and telltales of the organization. Features may “get lost” and, even worse,
features may get imagined and people will start expecting them to be there, even
though they never were. All this leads to “this is not a bug, it’s a feature” type of argu-
ments and blame games.

40 Chapter 4 Testability from a Developer’s Perspective

It Comes with Fewer Surprises
Irrespective of the methodology used to run a software project, at some point some-
body will want to check on its progress. How much work has been done? How much
remains? Such checks needn’t be very formal and don’t require a written report with
milestones, toll gates, or Gantt charts. In agile teams, developers will be communicat-
ing their progress at least on a daily basis in standup meetings or their equivalents.

However, estimating progress for software that has no tests (because of poor test-
ability) ranges between best guesses and wishful thinking. A developer who believes
he is “95 percent finished” with a feature has virtually no way of telling what fraction of
seemingly unrelated functionality he has broken along the way and how much time it’ll
take to fix these regressions and the remaining “5 percent”. A suite of tests makes this
situation more manageable. Again, if the feature is supposedly “95 percent finished”
and all tests for the new functionality pass, as well as those that exercise the rest of the
system, the estimate is much more credible. Now the uncertainty is reduced to poten-
tial surprises in the remaining work, not to random regressions that may pop up any-
where in the system. Needless to say, this assumes that the codebase is indeed covered
by tests that would actually break had any regression issues taken place.2

It Can Be Changed
Software can always be changed. The trick is to do it safely and at a reasonable cost.
Assuming that testable software implies tests, their presence allows making changes
without having to worry that something—probably unrelated—will break as a side
effect of that change.

Changing software that has no tests makes the average developer uncomfort-
able and afraid (and it should). Fear is easily observed in code. It manifests itself as
duplication—the safe way to avoid breaking something that works. When doing code
archaeology, we can sometimes find evidence of the following scenario:

At some point in time, the developer needed a certain feature. Alas, there wasn’t
anything quite like it in the codebase. Instead of adapting an existing concept, by gener-
alizing or parameterizing it, he took the safe route and created a parallel implementa-
tion, knowing that a bug in it would only affect the new functionality and leave the rest
of the system unharmed.

2. A slight variation of this is nicely described in the book Pragmatic Unit Testing by Andrew Hunt
and David Thomas (2003). They plot productivity versus time for software with and without
tests. The productivity is lower for software supported by tests, but it’s kept constant over time.
For software without tests, the initial productivity is higher, but it plummets after a while and
becomes negative. Have you been there? I have.

 Benefits of Testability 41

This is but one form of duplication. In fact, the topic is intricate enough to deserve
a chapter of its own.

Why Care about Testability
Ultimately, testable software is about money and happiness. Its stakeholders can roll
out new features quickly, obtain accurate estimates from the developers, and sleep
well at night, because they’re confident about the quality. As developers working with
code every day, we, too, want to be able to feel productive, give good estimates, and be
proud of the quality of our systems. We also want our job to feel fulfilling; we don’t
want to get stuck in eternal code-fix cycles, and, above all, we don’t want our job to be
repetitive and mind numbing. Unfortunately, unless our software is testable, we run
that risk. Untestable software forces us to work more and harder instead of smarter.

Tests Are Wasteful

by Stephen Vance

This may sound heretical in a book on developer testing and from the author of
another book on code-level testing, but bear with me. Agile methods attempt
to improve the software we write, or more generally, the results of our
knowledge work. I’m very careful to phrase this in a way that highlights that
the results are more important than the methods. If some magical Intention
Machine produced the software we want without programming, this entire
book would be academic. If we could achieve the results without software
altogether at the same levels of speed and convenience, our entire discipline
would be irrelevant. In some sense, as advanced as we are compared to the
course of human history, the labor-intensive-approach trade we ply is quite
primitive. Before we wither at the futility of it all, we realize we can only
achieve this magical future through improvement.

Most Agile methods have some basis in the thinking that revolutionized
manufacturing at the end of the twentieth century. Lean, Total Quality
Management, Just-in-time, Theory of Constraints, and the Toyota Production
System from the likes of Juran, Deming, Ohno, and Goldratt completely
changed the state of manufacturing. Agile methods take those insights and
apply them to a domain of inherent invention and variability. Although the
principles must be significantly adapted, most of them still apply.

A key principle is the elimination of waste. The Toyota Production System
even has three words for waste, muda, mura, and muri, and mura has at

42 Chapter 4 Testability from a Developer’s Perspective

least seven subcategories captured in the acronym TIMWOOD. Much of our
testing focuses on the waste of defects, but does so by incurring inventory
and overprocessing.

We incur inventory waste when we invest capital (i.e., coding time)
in product that has not yet derived value. Since tests are never delivered,
they are eternal inventory. They are an investment with no direct return, only
indirect through the reduction and possible prevention of defects.

We incur overprocessing waste by spending the extra attention required to
write the tests as compared to the raw production code. The extra attention may
pay off compared to the debugging time to get it right at first, the rework for the
defects we don’t catch, and the refamiliarization on each maintenance encounter.
It is clearly additional to getting the code right naturally from the start.

The previous alternatives clearly show that tests are better than the
problems they address. That just means they’re the best thing we have, not
the best we can do. Ultimately, we care about correctness, not tests. We need
to keep looking for better ways to ensure the correctness of our software.

I haven’t found the answer yet, but there are some interesting candidates.

Domain-Specific Languages

Domain-specific languages (DSLs) have promise. They simplify the work for
their users and avoid the repetitive creation of similar code. They bring us
closer to being able to say exactly what we mean in the language of the
problem we are solving by encapsulating potentially complex logic in a higher-
order vocabulary. If the author guarantees the correctness of the elements of
the DSL, whole layers of code are correct before we try to use them.

However, good DSLs are notoriously hard to write. Arguably, almost
every API we use should be a good DSL, but how many are? Creating a good
DSL requires not only taking the time to understand the domain, but also
playing with different models of the domain and its interactions to optimize
its usability and utility. Additionally, there may be multiple characteristic
usage patterns, differing levels of relevant abstractions, varying levels of user
expertise, and impactful technological changes over time.

Take, for example, the Capybara acceptance test framework for Ruby,
often cited as an example of a well-crafted DSL in the context of its host
language. With a set of actions like visit, fill_in, click_button and
matchers like have_content, it is well suited to static web pages. Under the
covers, it has adapted to the rapid evolution of underlying tools like Selenium,
but not without challenges at times. However, it still has difficulty dealing with
the dynamic, time-dependent behaviors of single-page applications.

Formal Methods

Formal methods sound good. They provide formal proof of the correctness
of the code. Unfortunately, we have had a hard time adapting them to larger

 Testability Defined 43

Testability Defined
Testability is a quality attribute among other “ilities” like reliability, maintainability,
and usability. Just like the other quality attributes, it can be broken down into more
fine-grained components (Figure 4.2). Observability and controllability are the two
cornerstones of testability. Without them, it’s hard to say anything about correctness.
The remaining components described next made it to the model based on my practi-
cal experience, although I hope that their presence isn’t surprising or controversial.

When a program element (see “Program Elements”) is testable, it means that it
can be put in a known state, acted on, and then observed. Further, it means that this
can be done without affecting any other program elements and without them inter-
fering. In other words, it’s about making the black box of testing somewhat transpar-
ent and adding some control levers to it.

Program Elements
From time to time I’ll be using the term program element. The meaning of the term
depends on the context. Sometimes it’s a function, sometimes a method, sometimes a
class, sometimes a module, sometimes a component, or sometimes all of these things.
I use the generic term to avoid clumsy sentences.

Using a catch-all term also solves the problem of emphasizing the difference
between programming paradigms. Although the book favors object-oriented code,
many techniques apply to procedural and functional constructs too. So instead of
writing “class” and “method” everywhere, I can use “program element” and refer to
“function” or “module” as well, like a C file with a bunch of related functions.

problems, they are very labor intensive, and most programmers I’ve met
prefer not to deal in that level of mathematical rigor. The research continues,
but we’re not there yet.

Types

Types bridge the gap between mainstream languages and formal methods in
my opinion. By using a subset of formal specification, they help you ensure
correctness by cleanly and compactly expressing your illegal “corner cases”
in the context they can be most readily applied.

Others

Other approaches provide partial, complex, or laborious solutions. If you’re so
inclined, maybe you can find that great breakthrough. Until then, keep testing.

44 Chapter 4 Testability from a Developer’s Perspective

Observability
In order to verify that whatever action our tested program element has been subjected
to has had an impact, we need to be able to observe it. The best test in the world isn’t
worth anything unless its effects can be seen. Software can be observed using a vari-
ety of methods. One way of classifying them is in order of increasing intrusiveness.

The obvious, but seldom sufficient, method of observation is to examine whatever
output the tested program element produces. Sometimes that output is a sequence of
characters, sometimes a window full of widgets, sometimes a web page, and some-
times a rising or falling signal on the pin of a chip.

Then there’s output that isn’t always meant for the end users. Logging statements,
temporary files, lock files, and diagnostics information are all output. Such output is
mostly meant for operations and other more “technical” stakeholders. Together with
the user output, it provides a source of information for nonintrusive testing.

To increase observability beyond the application’s obvious and less obvious out-
put, we have to be willing to make some intrusions and modify it accordingly. Both
testers and developers benefit from strategically placed observation points and vari-
ous types of hooks/seams for attaching probes, changing implementations, or just
peeking at the internal state of the application. Such modifications are sometimes
frowned upon, as they result in injection of code with the sole purpose of increasing
observability. At the last level, there’s a kind of observability that’s achievable only by

FIgURE 4.2 The testability quality attribute decomposed.

 Testability Defined 45

developers. It’s the ability to step through running code using a debugger. This cer-
tainly provides maximum observability at the cost of total intrusion. I don’t consider
this activity testing, but rather writing code. And you certainly don’t want debugging
to be your only means of verifying that your code works.

Too many observation points and working too far from production code may
result in the appearance of Heisenbugs—bugs that tend to disappear when one tries to
find and study them. This happens because the inspection process changes something
in the program’s execution. Excessive logging may, for example, hide a race condition
because of the time it takes to construct and output the information to be logged.

Logging, by the way, is a double-edged sword. Although it’s certainly the easiest
way to increase observability, it may also destroy readability. After all, who hasn’t
seen methods like this:

void performRemoteReboot(String message) {
 if (log.isDebugEnabled()) {
 log.debug("In performRemoteReboot:" + message);
 }
 log.debug("Creating telnet client");
 TelnetClient client = new TelnetClient("192.168.1.34");
 log.debug("Logging in");
 client.login("rebooter", "secret42");
 log.debug("Rebooting");
 client.send("/sbin/shutdown -r now '" + message + "'");
 client.close();
 log.debug("done");
}

As developers, we need to take observability into account early. We need to think
about what kind of additional output we and our testers may want and where to add
more observation points.

Observability and information hiding are often at odds with each other. Many
languages, most notably the object-oriented ones, have mechanisms that enable them
to limit the visibility of code and data to separate the interface (function) from the
implementation. In formal terms, this means that any proofs of correctness must rely
solely on public properties and not on “secret” ones (Meyer 1997). On top of that, the
general opinion among developers seems to be that the kind of testing that they do
should be performed at the level of public interfaces. The argument is sound: if tests
get coupled to internal representations and operations, they get brittle and become
obsolete or won’t even compile with the slightest refactoring. They no longer serve as
the safety net needed to make refactoring a safe operation.

46 Chapter 4 Testability from a Developer’s Perspective

Although all of this is true, the root cause of the problem isn’t really information
hiding or encapsulation, but poor design and implementation, which, in turn, forces
us to ask the question of the decade: Should I test private methods? 3

Old systems were seldom designed with testability in mind, which means that
their program elements often have multiple areas of responsibility, operate at differ-
ent levels of abstraction at the same time, and exhibit high coupling and low cohesion.
Because of the mess under the hood, testing specific functionality in such systems
through whatever public interfaces they have (or even finding such interfaces) is a
laborious and slow process. Tests, especially unit tests, become very complex because
they need to set up entire “ecosystems” of seemingly unrelated dependencies to get
something deep in the dragon’s lair working.

In such cases we have two options. Option one is to open up the encapsulation by
relaxing restrictions on accessibility to increase both observability and controllabil-
ity. In Java, changing methods from private to package scoped makes them accessible
to (test) code in the same package. In C++, there’s the infamous friend keyword,
which can be used to achieve roughly a similar result, and C# has its Internals-
VisibleTo attribute.

The other option is to consider the fact that testing at a level where we need to
worry about the observability of deeply buried monolithic spaghetti isn’t the course
of action that gives the best bang for the buck at the given moment. Higher-level tests,
like system tests or integration tests, may be a better bet for old low-quality code that
doesn’t change that much (Vance 2013).

With well-designed new code, observability and information hiding shouldn’t be
an issue. If the code is designed with testability in mind from the start and each pro-
gram element has a single area of responsibility, then it follows that all interesting
abstractions and their functionality will be primary concepts in the code. In object-
oriented languages this corresponds to public classes with well-defined functionality
(in procedural languages, to modules or the like). Many such abstractions may be
too specialized to be useful outside the system, but in context they’re most meaning-
ful and eligible for detailed developer testing. The tale in the sidebar contains some
examples of this.

Testing Encapsulated Code
Don’t put yourself in the position where testing encapsulated code becomes an issue. If
you’re already there and can’t escape in the foreseeable future, test it!

3. Or functions, or modules, or any program element, the accessibility to which is restricted by the
programming language to support encapsulation.

 Testability Defined 47

The Tale of the Math Package

Let’s assume that we’re setting out to build a math package with a user
interface. Users will enter different expressions or equations somehow, and
the software will compute the result or perform a mathematical operation like
differentiation or integration.

If built iteratively in increments, possibly in a test-driven manner, the
entire application may initially start in a single class or module, which will
do everything: accept input, parse it, evaluate it, and eventually output the
results. Such a program can easily be tested via its public interface, which
would be somewhere around accepting unparsed input and returning the
results of the computation. Maybe like so:

DisplayableResult evaluate(String userInput)

However, as the code grows, new program elements will be introduced
behind this public interface. First a parser may appear, then something that
evaluates the parsed input, then a bunch of specialized math functions,
and finally a module that presents the output somehow—either graphically
or using some clever notation. As all these building blocks come into
existence, testing them through only the first public entry point becomes
ceremonious, because they’re standalone abstractions with well-defined
behavior. Consequently, all of them operate on their own data types and
domains, which have their own boundary values and equivalence partitions
(see Chapter 8, “Specification-based Testing Techniques”) and their own
kind of error and exception handling. Ergo, they need their share of tests.
Such tests will be much simpler than the ones starting at the boundary of
the public interface, because they’ll hit the targeted functionality using its
own domains and abstractions. Thus, a parsing module will be tested using
strings as input and verified against some tree-like structure that represents
the expression, whereas an evaluation module may be tested using this tree-
like representation and returning something similar. If the underlying math
library contains a tailor-made implementation of prime number factorization,
that, too, will need specific testing.

If built with some degree of upfront design (be it detailed or rough), that
design will reveal some interesting actors, like the parser or the evaluation
engine, and their interfaces from the start. At this stage it will be apparent
that these actors need to work together correctly, but also exhibit individual
correctness. Enter tests of nonpublic behavior . . .

48 Chapter 4 Testability from a Developer’s Perspective

Controllability
Controllability is the ability to put something in a specific state and is of paramount
importance to any kind of testing because it leads to reproducibility. As developers,
we like to deal with determinism. We like things to happen the same way every time,
or at least in a way that we understand. When we get a bug report, we want to be able
to reproduce the bug so that we may understand under what conditions it occurs.
Given that understanding, we can fix it. The ability to reproduce a given condition in
a system, component, or class depends on the ability to isolate it and manipulate its
internal state.

Dealing with state is complex enough to mandate a section of its own. For now,
we can safely assume that too much state turns reproducibility, and hence control-
lability, into a real pain. But what is state? In this context, state simply refers to what-
ever data we need to provide in order to set the system up for testing. In practice, state
isn’t only about data. To get a system into a certain state, we usually have to set up
some data and execute some of the system’s functions, which in turn will act on the
data and lead to the desired state.

Different test types require different amounts of state. A unit test for a class that
takes a string as a parameter in its constructor and prints it on the screen when a
certain method is called has little state. On the other hand, if we need to set up thou-
sands of fake transactions in a database to test aggregation of cumulative discounts,
then that would qualify as a great deal of state.

Deployability
Before the advent of DevOps, deployability seldom made it to the top five quality attri-
butes to consider when implementing a system. Think about the time you were in a
large corporation that deployed its huge monolith to a commercial application server.
Was the process easy? Deployability is a measure of the amount of work needed to
deploy the system, most notably, into production. To get a rough feeling for it, ask:

So what happens if, let’s say, the parsing code is replaced with a third-
party implementation? Numerous tests will be worthless, because the new
component happens to be both well renowned for its stability and correctness
and well tested. This wouldn’t have happened if all tests targeted the initial
public interface. Well, this is the “soft” in software—it changes. The tests that
are going to get thrown away once secured the functionality of the parser,
given its capabilities and implementation. The new parsing component comes
with new capabilities, and certainly a new implementation, so some tests will
no longer be relevant.

 Testability Defined 49

“How long does it take to get a change that affects one line of code into production?”
(Poppendieck & Poppendieck 2006).

Deployability affects the developers’ ability to run their code in a production-like
environment. Let’s say that a chunk of code passes its unit tests and all other tests on
the developer’s machine. Now it’s time to see if the code actually works as expected in
an environment that has more data, more integrations, and more complexity (like a
good production-like test environment should have). This is a critical point. If deploy-
ing a new version of the system is complicated and prone to error or takes too much
time, it won’t be done. A typical process that illustrates this problem is manual deploy-
ment based on a list of instructions. Common traits of deployment instructions are that
they’re old, they contain some nonobvious steps that may not be relevant at all, and
despite their apparent level of detail, they still require a large amount of tacit knowledge.
Furthermore, they describe a process that’s complex enough to be quite error prone.

Manual Deployment Instructions

A list of instructions for manual deployment is a scary relic from the past, and
it can break even the toughest of us. It’s a sequence of steps written probably
five or more years ago, detailing the procedure to manually deploy a system.
It may look something like this:

1. Log in to prod.mycompany.com using ssh with user root, password
secret123.

2. Navigate to the application server directory:

cd /data/opt/extras/appserver/jboss

3. Stop the server by running the following:

./stop_server_v1_7.sh

4. On your local machine, run the build script:

cd c:\projects\killerapp, ant package

5. Use WinSCP version 1.32 to copy killerapp.ear to the deployment
directory.

6. Remove the temporary files in /tmp/killerapp.

7. Clear the application cache:

rm -rf server/killerapp/cache*)

8. More steps . . .

50 Chapter 4 Testability from a Developer’s Perspective

Being unable to deploy painlessly often punishes the developers in the end. If
deployment is too complicated and too time consuming, or perceived as such, they
may stop verifying that their code runs in environments that are different from their
development machines. If this starts happening, they end up in the good-old “it works
on my machine” argument, and it never makes them look good, like in this argument
between Tracy the Tester and David the Developer:

Tracy: I tried to run the routine for verifying postal codes in Norway. When I
entered an invalid code, nothing happened.

David: All my unit tests are green and I even ran the integration tests!
Tracy: Great! But I expected an error message from the system, or at least some

kind of reaction.
David: But really, look at my screen! I get an error message when entering an

invalid postal code. I have a Norwegian postal code in my database.
Tracy: I notice that you’re running build 273 while the test environment runs

269. What happened?
David: Well . . . I didn’t deploy! It would take me half a day to do it! I’d have to

add a column to the database and then manually dump the data for Norway.
Then I’d have to copy the six artifacts that make up the system to the
application server, but before doing that I’d have to rebuild three of them. . . .
I forgot to run the thing because I wanted to finish it!

The bottom line is that developers are not to consider themselves finished with
their code until they’ve executed it in an environment that resembles the actual pro-
duction environment.

Poor deployability has other adverse effects as well. For example, when prepar-
ing a demo at the end of an iteration, a team can get totally stressed out if getting the
last-minute fixes to the demo environment is a lengthy process because of a manual
procedure.

Last, but not least, struggling with unpredictable deployment also makes critical
bug fixes difficult. I don’t encourage making quick changes that have to be made in a
very short time frame, but sometimes you encounter critical bugs in production and
they have to be fixed immediately. In such situations, you don’t want to think about
how hard it’s going to get the fix out—you just want to squash the bug.

What about Automated Deployment?
One way to ensure good deployability is to commit to continuous integration and
then adapt the techniques described in the book Continuous Delivery. Its authors often
repeat: “If it’s painful, do it more often” (Humble & Farley 2010), and this certainly
refers to the deployment process, which should be automated.

 Testability Defined 51

Isolability
Isolability, modularity, low coupling—in this context, they’re all different sides of the
same coin. There are many names for this property, but regardless of the name, it’s
about being able to isolate the program element under test—be it a function, class,
web service, or an entire system.

Isolability is a desirable property from both a developer’s and a tester’s point of
view. In modular systems, related concepts are grouped together, and changes don’t
ripple across the entire system. On the other hand, components with lots of depen-
dencies are not only difficult to modify, but also difficult to test. Their tests will
require much setup, often of seemingly unrelated dependencies, and their interac-
tions with the outside world will be artificial and hard to make sense of.

Isolability applies at all levels of a system. On the class level, isolability can be
described in terms of fan-out, that is, the number of outgoing dependencies on other
classes. A useful design rule of thumb is trying to achieve a low fan-out. In fact, high
fan-out is often considered bad design (Borysowich 2007). Unit testing classes with
high fan-out is cumbersome because of the number of test doubles needed to isolate
the class from all collaborators.

Poor isolability at the component level may manifest itself as difficulty setting
up its surrounding environment. The component may be coupled to other compo-
nents by various communication protocols such as SOAP or connected in more indi-
rect ways such as queues or message buses. Putting such a component under test may
require that parts of it be reimplemented to make the integration points interchange-
able for stubs. In some unfortunate cases, this cannot be done, and testing such a
component may require that an entire middleware package be set up just to make it
testable.

Systems with poor isolability suffer from the sum of poorness of their individ-
ual components. So if a system is composed of one component that makes use of an
enterprise-wide message bus, another component that requires a very specific direc-
tory layout on the production server (because it won’t even run anywhere else), and a
third that requires some web services at specific locations, you’re in for a treat.

Smallness
The smaller the software, the better the testability, because there’s less to test. Simply
put, there are fewer moving parts that need to be controlled and observed, to stay
consistent with this chapter’s terminology. Smallness primarily translates into the
quantity of tests needed to cover the software to achieve a sufficient degree of con-
fidence. But what exactly about the software should be “small”? From a testability
perspective, two properties matter the most: the number of features and the size of
the codebase. They both drive different aspects of testing.

52 Chapter 4 Testability from a Developer’s Perspective

Feature-richness drives testing from both a black box and a white box perspec-
tive. Each feature somehow needs to be tested and verified from the perspective of the
user. This typically requires a mix of manual testing and automated high-level tests
like end-to-end tests or system tests. In addition, low-level tests are required to secure
the building blocks that comprise all the features. Each new feature brings additional
complexity to the table and increases the potential for unfortunate and unforeseen
interactions with existing features. This implies that there are clear incentives to keep
down the number of features in software, which includes removing unused ones.

A codebase’s smallness is a bit trickier, because it depends on a number of fac-
tors. These factors aren’t related to the number of features, which means that they’re
seldom observable from a black box perspective, but they may place a lot of burden on
the shoulders of the developer. In short, white box testing is driven by the size of the
codebase. The following sections describe properties that can make developer testing
cumbersome without rewarding the effort from the feature point of view.

Singularity
If something is singular, there’s only one instance of it. In systems with high singu-
larity, every behavior and piece of data have a single source of truth. Whenever we
want to make a change, we make it in one place. In the book The Pragmatic Program-
mer, this has been formulated as the DRY principle: Don’t Repeat Yourself (Hunt &
Thomas 1999).

Testing a system where singularity has been neglected is quite hard, especially
from a black box perspective. Suppose, for example, that you were to test the copy/
paste functionality of an editor. Such functionality is normally accessible in three
ways: from a menu, by right-clicking, and by using a keyboard shortcut. If you
approached this as a black box test while having a limited time constraint, you might
have been satisfied with testing only one of these three ways. You’d assume that the
others would work by analogy. Unfortunately, if this particular functionality had
been implemented by two different developers on two different occasions, then you
wouldn’t be able to assume that both are working properly.

The tester sees . . . The developer implemented . . .

EditorUtil.copy

currentEditorPanel.performCopy

A third version?

This example is a bit simplistic, but this scenario is very common in systems that
have been developed by different generations of developers (which is true of pretty
much every system that’s been in use for a while). Systems with poor singularity

 Testability Defined 53

appear confusing and frustrating to their users, who report a bug and expect it to be
fixed. However, when they perform an action similar to the one that triggered the bug
by using a different command or accessing it from another part of the system, the
problem is back! From their perspective, the system should behave consistently, and
explaining why the bug has been fixed in two out of three places inspires confidence
in neither the system nor the developers’ ability.

To a developer, nonsingularity—duplication—presents itself as the activity of imple-
menting or changing the same data or behavior multiple times to achieve a single
result. With that comes maintaining multiple instances of test code and making sure
that all contracts and behavior are consistent.

Level of Abstraction
The level of abstraction is determined by the choice of programming language and
frameworks. If they do the majority of the heavy lifting, the code can get both smaller
and simpler. At the extremes lie the alternatives of implementing a modern applica-
tion in assembly language or a high-level language, possibly backed by a few frame-
works. But there’s no need to go to the extremes to find examples. Replacing thread
primitives with thread libraries, making use of proper abstractions in object-oriented
languages (rather than strings, integers, or lists), and working with web frameworks
instead of implementing Front Controllers4 and parsing URLs by hand are all exam-
ples of raising the level of abstraction. For certain types of problems and constructs,
employing functional or logic programming greatly raises the level of abstraction,
while reducing the size of the codebase.

The choice of the programming language has a huge impact on the level of
abstraction and plays a crucial role already at the level of toy programs (and scales
accordingly as the complexity of the program increases). Here’s a trivial program
that adds its two command-line arguments together. Whereas the C version needs to
worry about string-to-integer conversion and integer overflow . . .

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int augend = atoi(argv[1]);
 int addend = atoi(argv[2]);

 // Let's hope that we don't overflow...
 printf("*drum roll* ... %d", augend + addend);
}

4. https://en.wikipedia.org/wiki/Front_Controller_pattern

https://en.wikipedia.org/wiki/Front_Controller_pattern

54 Chapter 4 Testability from a Developer’s Perspective

. . . its Ruby counterpart will work just fine for large numbers while being a little more
tolerant with the input as well.

puts "*drum roll* ... #{ARGV[0].to_i + ARGV[1].to_i}"

From a developer testing point of view, the former program would most likely
give rise to more tests, because they’d need to take overflow into account. Gener-
ally, as the level of abstraction is raised, fewer tests that cover fundamental building
blocks, or the “plumbing,” are needed, because such things are handled by the lan-
guage or framework. The user won’t see the difference, but the developer who writes
the tests will.

Efficiency
In this context, efficiency equals the ability to express intent in the programming lan-
guage in an idiomatic way and making use of that language’s functionality to keep the
code expressive and concise. It’s also about applying design patterns and best prac-
tices. Sometimes we see signs of struggle in codebases being left by developers who
have fought valorously reinventing functionality already provided by the language or
its libraries. You know inefficient code when you see it, right after which you delete
20 lines of it and replace them with a one-liner, which turns out idiomatic and simple.

Inefficient implementations increase the size of the codebase without providing
any value. They require their tests, especially unit tests, because such tests need to
cover many fundamental cases. Such cases wouldn’t need testing if they were handled
by functionality in the programming language or its core libraries.

Reuse
Reuse is a close cousin of efficiency. Here, it refers to making use of third-party com-
ponents to avoid reinventing the wheel. A codebase that contains in-house implemen-
tations of a distributed cache or a framework for managing configuration data in text
files with periodic reloading5 will obviously be larger than one that uses tested and
working third-party implementations.

This kind of reuse reduces the need for developer tests, because the functionality
isn’t owned by them and doesn’t need to be tested. Their job is to make sure that it’s
plugged in correctly, and although this, too, requires tests, they will be fewer in number.

5. Now this is a highly personal experience, but pretty much all legacy systems that I’ve seen have
contained home-grown caches and configuration frameworks.

 Summary 55

Mind Maintainability!
All of the aforementioned properties may be abused in a way that mostly hurts
maintainability. Singularity may be taken to the extreme and create too tightly
coupled systems. Too high a level of abstraction may turn into some kind of “meta
programming.” Efficiency may turn into unmotivated compactness, which hurts
readability. Finally, reuse may result in pet languages and frameworks being brought
in, only to lead to fragmentation.

A Reminder about Testability
Have you ever worked on a project where you didn’t know what to implement until
the very last moment? Where there were no requirements or where iteration planning
meetings failed to result in a shared understanding about what to implement in the
upcoming two or three weeks? Where the end users weren’t available?

Or maybe you weren’t able to use the development environment you needed and
had to make do with inferior options. Alternatively, there was this licensed tool that
would have saved the day had but somebody paid for it.

Or try this: the requirements and end users were there and so was the tooling, but
nobody on the team knew how to do cross-device mobile testing.

After having dissected the kind of testability the developer is exposed to the most, I’m
just reminding that there are other facets of testability that we mustn’t lose sight of.

Summary
If the software is designed with testability in mind, it will more than likely be tested.
When software is testable, we can verify its functionality, measure progress while
developing it, and change it safely. In the end, the result is fast and reliable delivery.

Testability can be broken down into the following components:

	Observability—Observe the tested program element in order to verify that it
actually passes the test.

	Controllability—Set the tested program element in a state expected by the test.

	Smallness—The smaller the system or program element—with respect to the
number of features and the size of the codebase—the less to test.

This page intentionally left blank

 295

index

A
Abstraction, level of

high-level considerations for testing, 273
programming language/frameworks

impacting, 53–54
Acceptance test-driven development (ATDD),

15–17
Acceptance tests

end-to-end, as double-loop TDD, 221–222
functional testing via, 27
overview of, 26
of services/components, 248–249

Accessor, in state verification, 173–174
Act, in Triple A test structure, 88–89
Actions

in decision tables, 115
in state transition model, 113–114

Activities, developer testing, 2–5
ACTS (Advanced Combinatorial Testing

System) tool, pairwise testing, 149
Age checks, data types and testability, 72–76
Agile testing

BDD, ATDD, and specification by
example, 15–17

summary, 19
understanding, 13–15

Agile Testing Quadrants, 32–33
Algorithmic errors, in behavior testing,

175–176
Almost unit tests

examples, 152
impact of, 156–157
overview of, 151–152
summary, 157
test-specific mail servers, 153–154
using in-memory databases, 152–153
using lightweight containers, 154–155
of web services, 155–156

APIs (application programming interfaces)
in components, 24
deciding on developer testing strategy, 268
discovering for simple search engine,

193–194
domain-specific languages for, 42
error/exception handling for public, 63
testing web services, 155–156
in tests using in-memory databases, 152
using/testing vendor payment gateways,

250–251
Archetype, considerations for testing, 273
Argument matchers, stubs in mocking

framework, 181–182
Arguments

contracts, 61
stubs in mocking framework, 181–182

Arrange-Act-Assert, Triple A test structure,
88–89

Assert, in Triple A test structure, 88–89
AssertEquals method

as assertion method, 89, 106
data-driven and combinatorial testing,

136–137, 280
generative testing, 143
implementing mockist style TDD, 213–214
mock objects, 164, 167–168
spies, 171
working with test code, 238

Assertions
assumptions vs., 141
constraints and matchers, 94–99
contract verification, 62–63
of equality, 93–94
exceptions to one per test, 90–92
fluent, 96–97

296 Index

Assertions (continued)
methods, 89–90
one per test, 90
overview of, 89
removing need for comments, 238–239
specialized, 94–96
in state-based tests, 173–174
test-driving search engine, 196–197
verbosity of, 92–93
verifying in more complex tests, 266

AssertThat method
data-driven and combinatorial testing,

280–281
defined, 91
fluent assertions, 97
mock objects, 167–168
specialized assertions, 96
spies, 171
tests enclosed in transactions, 246

Assumptions, theory testing, 140–141
Asynchronicity, UI tests failing, 252
ATDD (Acceptance test-driven development),

15–17
Attacks, CIA security triad for resilience to,

29
Audit, security testing as, 28
Authentication, in-memory database,

152–153
Author bias, critique-based testing and, 11
Automation

acceptance test, 17
agile testing, 14
of checks, 9–10
deployment, 50
providing infrastructure for, 5
smoke test, 34
as support testing, 11
unit test, 82

Availability
of CI servers, 157
in CIA security triad model, 29
enforcing contracts, 62
micro-services across tiers for, 132

B
Behavior

benefits of testable software, 39
in characterization testing, 34–35
defining component, 27
mock objects testing. See Mock objects
naming unit test for expected, 87
unit tests specifying tested code, 81
verification, 174–176

Behavior-driven development (BDD)
frameworks

double-loop TDD as, 222
matchers, 103–105
more fluent syntax of, 104
naming tests, 103
overview of, 102
test structure, 102–103
testing style, 15–17
unit testing in some languages with,

103–106
The Big Ball of Mud, testable software vs.,

37–39
Black box testing

implementing system tests, 26
integration test vs., 25
overview of, 22–23
when singularity has been neglected,

52–53
Block copy and paste, 229–230
Blocks, Spock framework, 90
Blueprint, construction phase in traditional

testing, 12
Boundary value testing

defined, 116
edge cases/gotchas for some data types,

111–113
specification-based technique, 110

Broken window syndrome, in duplication,
225, 233

Brown-field business applications, testing,
258

Buffer overflow
developer understanding of, 5
from lenient/missing parameter

checking, 61
strings and, 111

 Index 297

Bugs/defects
copy and paste introducing, 228–232
double-mode faults, 147–148
duplication introducing, 225–226
fixed by developers, 3–4
fixed in agile testing, 14–15
in language of testing, 22
leading to software failures, 22
regression testing and, 30–31
single-mode faults, 146–147

Builders
controlling dependency between

collaborators, 123–125
removing need for comments, 239–240
tests invoking systems via, 256–257
for tests that are not unit tests, 265–266

Business rules
for data types and testability, 72–76
decision tables showing gaps/

inconsistencies in, 115–116
verifying indirect output with mock

objects, 167–169
why duplication introduces bugs, 226

C
Canonical test method, 159–161, 228–229
Capybara acceptance test framework, Ruby,

42
Case insensitivity, creating search engine, 202
Challenges, of test-driven development,

206–209, 211
Change

benefits of testable software, 40
making people responsible for code, 81
oververifying in mocking frameworks,

186
unit tests enabling, 80

Characteristics of tests that are not unit tests
complexity, 258–259
environmental dependence, 261–262
error localization, 260–261
overview of, 257–258
performance, 261
stability, 259–260
target audience, 262–263

testing brown-field business applications,
258

Characterization testing
of legacy code, 3–4
overview of, 34–35
state verification with, 147

Checking
benefits of testable software, 40
developer testing vs., 9–10

CI. See Continuous integration (CI)
CIA security triad, 29
Class invariants, contracts, 59–60
Classes

avoid mocking concrete, 187–188
duplicating similar functionality in

different, 233–234
introducing test-driven development into

legacy code, 206
mocking value-holding, 188
removing need for comments by splitting

test, 240–241
removing need for comments using

factory, 239–240
Classic style TDD. See Test-driven

development (TDD) - classic style
Classification of tests

almost unit tests as unclassified tests, 151
overview of, 23
test levels, 23–26
test types. See Test types

The Clean Coder (Martin), 206
Cleanup methods (teardown), 84
Clients

contract building blocks and, 59–60
implementing contracts, 60–62
overview of, 57–58

Clock, dependencies of system, 127–128
Code Contracts, 63–64
Collaboration

absence of, 15
agile testing, 13–15
dependencies between objects, 119–125,

133
Collaborator isolation, 24
Collaborators

creating stubs in unit tests, 160

298 Index

Collaborators (continued)
defined, 119
fakes replacing, 162–164
implementing mockist style TDD,

215–216
objects replacing. See Test doubles
passing around, 121
verifying indirect input transformations,

169–170
Collections

as edge case worth checking, 112–113
low-level test considerations, 275

Combinatorial testing
beyond double-mode faults, 149
overview of, 145–146
single-mode faults, 146–147
summary, 149

Command/Query Separation principle, 93
Command shell, tests invoking systems via,

255–257
Commenting test code

adjusting test name vs., 237
deleting tests that are commented out, 242
overview of, 237
splitting up test classes vs., 240–241
using asserts with messages vs., 238–239
using factories or builders vs., 239–240
using variables/constant to clarify test vs.,

238
Compile, deleting tests that do not, 242
Complexity, tests that are not unit tests,

258–259
Components

defining behavior of, 27
elusive definition of, 24–25
implementing mockist style TDD, 213–214
introducing TDD into legacy code, 206
poor isolability of, 51
system test of, 26
tests exercising, 248–249, 271

Concrete classes, avoid mocking, 187–188
Condition alternatives, decision tables, 115
Conditions, decision tables, 115
Confidence of team, and testing, 11
Confidentiality, CIA security triad model, 29

Confusion, running almost unit tests with
unit tests, 156

Consistency
of pure functions, 69
of unit tests, 82

Constants, removing need for comments
with, 238

Constraints
assertion, 94–99
enforcing contracts with, 57–60, 62–65
parameterized tests, 139
search engine, 192
verifying interactions in mocking

framework, 183
Construction phase, in traditional testing,

11–13
Constructor

copy and paste, 230–231
creating stubs in unit tests, 160
passing in collaborators, 121
unit testing frameworks, 85

Containers
almost unit tests using lightweight,

154–155
new school approach to embedded, 155
testing brown-field business applications,

258
Context method, BDD-style test

framework, 102–103
Context, naming standard and, 87
Continuous Delivery—Reliable Software

Delivery through Build, Test, and
Deployment Automation (Humble &
Farley), 24

Continuous integration (CI)
developers implementing, 4–5
running almost unit tests with unit tests

and, 155–156
running unit tests in environment of, 82
TDD exposing deficiencies in, 209
in traditional testing, 12–13

Contracts, Programming by Contract
Controllability

defined, 55
deployability and, 48–50

 Index 299

increasing through encapsulation in old
systems, 46

isolability and, 51
overview of, 48
test first or test last and, 209–210
as testability quality attribute, 48–51
UI tests failing, 252

Convergence, as traditional testing risk, 12
Copy and paste programming

of blocks of code, 229–230
breeding duplication, 225–226
of constructors, 230–231
example of, 228–229
generally the wrong thing to do, 227
as mechanical duplication, 228
messing up metrics, 226
method duplication, 231–232
when to use, 227

Coupling
behavior tests introducing, 175–176
black box reducing, 22
singularity introducing, 227
temporal, 71–72
test independence introducing, 263–264
during verification of mock object, 186

CPU performance, 261
Critique

Agile Testing Quadrants for product,
32–33

testing to, 10–11
Cross-checks, high-level tests, 274
Cross–time zone tests, 112
CUnit unit testing framework, 83
Custom constraints, assertions, 94–99
Customer

in BDD, ATDD, and specification by
example, 15–17

registration in mockist style TDD,
214–219

use of term in this book, 17
using ubiquitous language of, 15–17

D
Data

CIA security triad model for, 29

dividing into equivalence partitions,
107–110

UI test failure to control, 252–253
Data-driven and combinatorial testing

beyond double-mode faults/all pairs, 149
and combinatorial testing, 145–149
generative testing, 141–144
high-level considerations on format, 273
overview of, 135–137
parameterized tests, 138–139
source code, 279–282
summary, 149
theories, 139–141

Data helpers, complex tests, 265–266
Data points, in theory tests, 140–142
Data types

edge cases/gotchas for some, 111–113
and testability, 72–76

Databases
almost unit tests using in-memory,

152–153
as piles of state, 70
testing brown-field business applications,

258
tests enclosed in transactions, 247

Date pickers, choosing, 112
Dates

boundary values for, 112
low-level test considerations, 276

Daylight saving time (DST), 112
Debuggers, 44–45
Decision tables, 115–117
Decoupling layers, 131
Defects. See Bugs/defects
Degenerate case, order of tests in TDD, 85
Deleting tests, 241–243
Dependencies

across tiers, 132
between collaborating objects, 119–125
isolability as fan-out of, 51
between layers, 129–132
overview of, 119
summary, 133
on system resources, 125–129
test doubles dealing with. See Test doubles
unit test. See Test doubles

300 Index

Dependency injection frameworks, 131
Dependency inversion, between layers,

131–132
Deployment

adverse effects of poor, 49–50
automated, 50
double-loop TDD forcing, 222
manual instructions for, 49
overview of, 48–49
testing brown-field business applications,

258
Describe function, BDD-style test

framework, 102
Design

duplicating similar functionality in
different classes, 234

duplicating similar functionality in
different methods by, 233

efficiency in patterns of, 54
unit tests for better, 79–80

Destructors, 85
Detail, high-level considerations for test, 273
Developer, clarifying meaning of, 1
Developer mind-set, 10
Developer testing

activities, 2–5
BDD, ATDD, and specification by

example, 15–17
defining, 6–7
deleting learning tests in, 241–242
development process and, 7–8
high-level considerations, 271–274
low-level considerations, 274–276
overview of, 1–2
quality assurance and, 18
strategy for, 267–269
summary, 8
what they usually do not do, 5–6

Development process, 7–8, 32–33
Diagrams, state, 114
Direct input

as drivers of testability, 68
pure functions having no, 69
stubs controlling, 160

Direct output
as drivers of testability, 68

pure functions having no, 69
Document IDs, test-driving search engine

design phase, 192–193
finding words in multiple documents, 197
introducing ranking, 199–202
searching more sophisticated documents,

196–197
searching multiple documents, 195–196

Domain classes, mockist style TDD, 215–216
Domain models, competing duplication in,

234–235
Domain-specific languages (DSLs), testing

with, 42
Domain-to-range ratio (DRR), as driver of

testability, 77–78
Double-loop TDD, 220–222
Double-mode faults, 147–149
Drivers of testability

data types and testability, 72–76
direct input and output, 68
domain-to-range ratio, 77–78
indirect input and output, 68–69
overview of, 67–68
state, 70–71
summary, 68
temporal coupling, 71–72

DRR (domain-to-range ratio), as driver of
testability, 77–78

DRY principle: Don’t Repeat Yourself, 52
DSLs (domain specific languages), 42
DST (daylight savings time), 112
Dummies, 171–173, 176
Duplication

assertions introducing, 92–93
breeding, 225
factory classes introducing, 240
knowledge, 232–235
mechanical, 228–232
overview of, 225
singularity vs., 53
summary, 235
taking advantage of, 227
testable software and, 40–41
why it is bad, 225–227

Dynamic proxies, mocking frameworks, 178

 Index 301

E
E-mails, testing delivery, 153–154
Edge cases, 110, 111–113
Effectiveness, high-level considerations for

test, 271
Efficiency, testability and, 54
Eiffel, 60, 74–76
Elimination of waste, 41–42
Embedded containers, 155
Encapsulated code, 46–47
End-to-end tests

effectiveness of, 271
of features, 52
level of abstraction/detail, 273
overview of, 34
preparing brown-field business

applications for, 258
UI tests as, 252–254

End users
acceptance testing by, 26
observability of output for, 44

Enforcing contracts, 62–65
Environmental dependence, tests that are not

unit tests, 261–262
Equality

in BDD-style frameworks, 104
errors in mocking frameworks, 182
in unit tests, 93–94

Equals method, 93–94, 181–182
Equivalence partitioning, 107–110, 116
Errors

exceptions in unit tests, 99–102
forgetting equals method in unit tests,

93–94
in language of testing, 22
low-level test considerations, 275
order of tests in TDD, 85
temporal coupling, 72
for tests that are not unit tests, 260–261
in unit testing frameworks vs., 90
from violation of contracts, 57

Events, state transition model, 113–114
Exceptions

in copy/paste programming, 227
low-level test considerations, 275
in number of assertions per test, 89–90

stubs in mocking framework, 183
in unit tests, 99–102

Execution speed
critique-based testing of, 10
in tests that are not unit tests, 261
unit testing and, 24, 82

Expectations
configuring stubs, 180–183
setting, 179–180
verifying, 186–187

Expected behavior, naming unit tests, 87
ExpectedException rule, JUnit, 100–101
Experimenting, with test names, 88
Exploratory testing, cross-functional teams, 5
External factory, 123–125
Extract method of refactoring, 229–230

F
Factory classes, removing need for

comments, 239–240
Factory methods

controlling dependency between
collaborators, 122–123

as data helpers for tests outside domain of
unit tests, 265–266

removing need for comments, 239–240
Fail-safe activities, as support testing, 11
Failures

errors in unit tests vs., 90
software bugs/defects leading to. See Bugs/

defects
Faking

in classic style TDD, 211
defined, 176
in mockist style TDD, 216–217
overview of, 205
as test double, 162–164
tests interacting with other systems via,

250–251
Fan-out, isolability as, 51
Fast medium tests, 151
Features

added complexity of, 52
BDD-style frameworks, 105
benefits of testability for, 39–41

302 Index

Features (continued)
double-loop TDD verifying new, 222
fluent assertion, 97
mocking framework, 178
smallness with respect to number of,

52, 55
unit tests enabling change of, 80

Feedback
benefits of double-loop TDD, 221–222
running almost unit tests with unit tests,

155
with short iterations in TDD, 191

File dependencies, 125–127
Find method

discovering API, 193
finding words in multiple documents, 197
happy path, 194–195
removing duplicate matches, 198–199
searching more sophisticated documents,

196–197
searching multiple documents, 195

Floating point numbers, boundary values,
111

Fluent assertions, 96–97
Format, high-level considerations on test, 273
4.x unit testing framework, 83
Fragmentation, as risk in traditional testing,

12
Frameworks

BDD, Behavior–driven development
(BDD) frameworks

dependency injection, 131
mocking. See Mocking frameworks
possibly deleting tests using older,

242–243
TDD exposing deficiencies in testing, 209
test method names mandated by, 83–84,

86
unit testing. See Unit tests

Functional testing
black box testing similar to, 36
nonfunctional testing vs., 28
overview of, 27
security testing as, 30

Functionality
benefits of testable software, 39–40

critique-based testing of, 10
double-loop TDD verifying finished, 222
duplication of different classes with

similar, 233–234
duplication of different methods with

similar, 232–233
efficiency for, 54
environmental dependence of tests that

are not unit tests, 261–262
testing in old systems, 46
tests exercising across several systems,

249–251
Functions

encoding business logic out of
preconditions, 74–76

measuring information loss, 77–78
pure functions vs., 69
state verification of, 174
testing exceptions in higher-order, 101

Fundamental test process, 12

G
General properties, generative test results,

144
Generative testing

defined, 149
high-level considerations on format, 273
overview of, 141–143
verifying results, 143–144

Generators, QuickCheck test, 143
Green bar, test-driven development

defined, 191
implementing mockist style TDD, 216–217
inspiration for, 206
turning from red bar to, 205

Groovy, 90, 101
Growing Object-Oriented Software, Guided by

Tests (Freeman & Price), 221
Guard assertions, 90
Guava, contract programming, 63–64

H
Handovers, agile testing with no, 14
Happy path tests

 Index 303

order of tests in TDD, 85
as positive testing, 35
search engine design, 194–195

Heisenbugs, 45
“Hello World” of smoke testing, 33
Heuristics. See Test ideas and heuristics
High-level test considerations, 271–274
How, nonfunctional tests targeting, 28
HtmlUnitDriver, WebDriver testing, 253,

255
HTTP

tests exercising services/components,
248–249

tests that are not unit tests, 260

I
I/O-related errors, nasty test cases, 6
Ignorance, duplicating similar functionality,

233, 234
Ignored tests, deleting, 242
IllegalStateException, 101, 256
Implementation

in classic style TDD, 205, 211
competing duplication in, 234

In-memory databases
almost unit tests using, 152–153
almost unit tests with unit tests and, 156
tests enclosed in transactions vs. tests of,

246
Index, search engine

creating case insensitivity, 203
dealing with punctuation marks, 203
designing, 192–193
discovering API, 193–194
happy path, 194–195
introducing ranking, 199–202

Indirect input
pure functions having no, 69
testability driven by, 68–69
verifying transformations, 169–170

Indirect output
mock objects verifying, 164–169
pure functions having no, 69
testability driven by, 68–69

Information

hiding, 45–46
order of tests in TDD, 85

Initializer, lifecycle of unit tests, 83–85
Inspiration, TDD, 206
Integration. See Continuous integration (CI)
Integration tests

developer testing via, 2–3
functional tests at level of, 27
increasing observability in old code, 46
preparing brown-field business

applications for, 258
specification-based techniques for. See

Specification-based testing techniques
test level of, 25–26
for tests enclosed in transactions, 246–248

Integrity, CIA security triad model for, 29
Interaction tests

double-loop TDD verifying all, 221–222
test double response to expectations,

179–180
tests of web services, 155–156
verifying indirect output, 164–169

Interactions
arguments against behavior testing,

175–176
in mockist style TDD, 215–217
oververifying in mocking framework,

186–187
spies capturing, 170–171
verifying in mocking framework, 183–185

Interface
mocking, 188
mockist style TDD, 215–216

Intertwining layers, dependencies, 130
Invariants, enforcing contracts, 64–65
Inventory waste, in testing, 42
Inverse functions, 144, 274
Invocation

mockist style TDD, 215–216
test double response to expectations,

179–180
Isolability, 51
Isolation, unit tests, 82, 84

304 Index

It function, naming BDD-style framework
tests, 103

Iterations, 113, 191

J
Jasmine, 104
Jetty, 154–155
JMock, setting expectations, 179–180
JUnit testing framework

exception testing, 101–102
ExpectedException rule, 100–101
matchers determining outcome of

assertions, 94–96
MSTest assertions vs., 89–90
source code, sample TDD session,

282–284
test methods, 83
theory tests, 140

K
Knowledge duplication

competing domain models, 234–235
competing implementations, 234
overview of, 232
similar functionality in different classes,

233–234
similar functionality in different methods,

232–233
summary, 235

Knowledge, order of tests in TDD, 85

L
Large tests, 35
Layers

dependencies, 129–133
using mockist style TDD with, 219–220

Laziness
duplicating functionality in different

methods, 233
reasons for almost unit tests, 151

Legacy code
controlling dependency using factory, 123
defining, 3

developer testing strategy for, 268–269
enforcing contracts in, 61
faking, 163–164
information hiding/observability in,

45–46
introducing TDD into, 206–207
safe way of working with, 3–4
using test double, 179

Level of abstraction, testability and, 53–54
Libraries

as data helpers for more complex tests,
265–266

implementing contract programming,
63–64

resources, 277–278
specialized fluent assertion, 97
TDD exposing deficiencies in, 209
in tests that are not unit tests, 259
UI tests relying on, 252–254

Lifecycle, unit testing framework, 83–85
Lightweight containers, 154–155
Load balancers, 258
Load testing, performance, 28
Log servers, 258
Logging, increasing observability via, 45
Logical concept, unit tests testing single, 82
Login, smoke tests for, 33–34
Low coupling, isolability and, 51
Low-level tests, 52, 274–276

M
Mail servers, in almost unit tests, 153–154
Maintenance

by developers, 3–4
nonfunctional testing of, 28
patching/bug fixing for, 3–4
smallness of test for, 55

Manual testing, of features, 52
Master database, 258
Matchers

assertions in unit tests, 94–99
BDD-style test framework, 103–105
verifying interactions in mocking

framework, 183
Matching arguments, stubs in mocking

framework, 181–182

 Index 305

Math package, testing, 47–48
Maximum values for data types, 111
Mechanical duplication

block copy and paste, 229–230
constructor copy and paste, 230–231
copy and paste, 228–229
method duplication, 231–232
overview of, 228
summary, 235

Medium tests, 35, 151
Memory corruption, 111
Messaging middleware, 258
Metadata, unit test methods via, 83
Method duplication, 231–232
Methods

assertion, 89–90
cleanup, 84
controlling dependency using factory,

122–123
duplication of similar functionality in

different, 232–233
limitations of testing with formal, 42–43
test, 83–84

Metrics, duplication messing up, 226
Micro-services, dependencies across

tiers, 133
Mind-set, in critique-based testing, 10–11
Minimum values for data types, 111
Mirroring business logic, complex stubs, 162
Misuse, of mocking framework, 185–189
Mobile applications, UI tests for, 252–254
Mocha for Java Script, BDD-style test, 102
Mock objects

for behavior verification, 174
defined, 176
implementing with mocking frameworks.

See Mocking frameworks
oververifying in mocking frameworks,

186–187
response to expectations, 179–180
returning mocks, 189
spies vs., 170–171
as test doubles, 164–170
verifying interactions in mocking

framework, 183–185
Mocking frameworks

constructing test doubles, 177–179

misuse, overuse, and other pitfalls, 185
mocking concrete classes, 187–188
mocking value-holding classes, 188
mocks returning mocks, 189
oververifying, 186–187
overview of, 177
setting expectations, 179–180
stubbing, 180–183
summary, 189
verifying interactions, 183–185

Mockist style TDD. See Test-driven
development (TDD) - mockist style

Mockito, 180–184
Modifications, increasing observability, 44
Modularity, isolability and, 51
Moq for C#

configuring stubs in mocking framework,
180–183

constructing test doubles, 178
mocks behaving like spies in, 180
verifying interactions in mocking

framework, 184
MSTest unit testing framework, 83, 89–90
Multitiered applications, dependency across,

133
Mutator, state-based tests, 173–174

N
Naming conventions

BDD-style tests, 103
duplication of similar functionality in

different methods, 232–233
method duplication dangers, 231
removing need for comments, 237

Naming conventions, unit tests
behavior-driven development-style, 86
mandated by framework, 86
overview of, 85–86
picking naming standard, 87–88
structuring unit tests, 88–89
test methods using, 83
unit of work, state under test, expected

behavior, 87
Nasty test cases, 5, 6
Negative testing, 35, 85
Nested contexts, RSpec for Ruby, 102–103

306 Index

Network performance, tests outside domain
of unit tests, 261

Nice mocks, 180
Nomenclature, contract programming, 58
Nonfunctional testing, 28, 30
Normal mocks, 180
Nuking, coding stability for tests that are not

unit tests, 259
Null check, enforcing contracts, 65
Null value, boundary values for strings, 111
Nulls

indicating dummy, 172
low-level test considerations, 274

Numbers
finding boundary values for, 111
low-level test considerations, 275

NUnit testing framework
constraints and assertions, 94–96
exception testing, 101
parameterized tests, 138–139
test methods, 83
theory tests, 140

O
Object equality

asserting in BDD-style tests, 104
unit test assertion checking for, 93–94

Object-oriented languages
contracts blending with, 61
data types/testability in, 72–73
data types/testability in non, 74–76
raising level of abstraction, 53
temporal coupling in, 72

Objectives. See Testing objectives
Objects, dependencies between collaborating,

119–125, 133
Observability

defined, 55
test first or test last, 209–210
as testability quality attribute, 44–48

Obvious implementation, classic style TDD,
205, 211

Optimization, ranking, 201–202
Oracles, 144
Order of tests, TDD, 204

Outcome, naming unit tests to convey
expected, 85

Outgrown tests, deleting, 243
Output

of developers, 1
observability via developer, 44

Overprocessing waste, incurring in
testing, 42

Overuse, mocking framework, 185–189
Overuse, of dummies, 173
Oververifying, in mocking frameworks,

186–187

P
Page Objects, UI tests, 254
Pair programming, and legacy code, 4
Pairwise testing

beyond, 149
for combinatorial explosions, 147–149
defined, 149

Pairwise.pl program, 149
Parallel implementations, 227
Parameterized tests

defined, 149
overview of, 138–139
reporting results from, 141
theories vs., 139–141
using parameterized stubs, 161–162

Parentheses, expressing intervals, 109
Partial verification, unit tests, 98–99
Partitioning

boundary value analysis of, 110
equivalence, 107–110
knowledge duplication with deliberate,

233
Pass-through tests, mockist style TDD,

218–219
Patching, by developers, 3–4
Paving, 259–260
Payment gateways, 250–251
PCI DSS security standard, 250
Penetration tests, 28
Performance testing

impact of assertions on, 63
nonfunctional testing of, 28

 Index 307

not usually done by developers, 5
overview of, 28
of tests that are not unit tests, 261

Persistence operations, tests enclosed in
transactions, 246–248

PHPUnit unit testing framework, 83
Pitfalls, of mocking frameworks, 185–189
Portability

nonfunctional testing of, 28
running almost unit tests with unit tests,

156
of unit tests across all environments, 82

Positive testing, 35
Postconditions, enforcing contracts, 59,

64–65
The Pragmatic Programmer, 52
Pragmatic Unit Testing (Hunt & Thomas), 40
Preconditions

as contract building block, 59
encoding business logic out of, 74–76
enforcing contracts with assertions, 62
enforcing contracts with Guava, 63–64
enforcing contracts with unit tests, 64–65
for tests that are not unit tests, 259

Predicates
configuring stubs in mocking framework,

181–182
determining outcome of assertions, 94
high-level test considerations, 274

Prefixes, naming tests, 86, 87
Primitive integer types, boundary values, 111
Privacy, in CIA security triad model, 29
Proactive role, of tester in agile testing, 14
Processes, traditional testing requiring well-

defined, 12
Program elements, testable, 43
Programming by Contract

contract building blocks, 59–60
contracts defining constraints, 57–58
enforcing with assertions, 62–63
enforcing with specialized libraries, 63–64
enforcing with static analysis, 65
enforcing with unit tests, 64–65
implementing, 60–62
overview of, 57
summary, 65

Programming languages
efficiency (intent) of, 54
level of abstraction, 53–54
minimum and maximum values in, 111

Properties, unit test, 81–82
Provisioning, in tests that are not unit tests,

259–260
Proxies, dynamic, 178
Punctuation marks, search engine, 203
Pure functions, side effects, 69

Q
Quality

attributes, 28, 43–44
developer testing for, 6–7
why we care about testability, 41

Quality assurance
developer testing and, 18
in traditional testing, 12–13

QuickCheck, using test generator, 143

R
Randomness, making tests nondeterministic,

143–144
Range, test considerations, 273, 274
Ranking, test-driving search engine

designing, 192–193
introducing, 199–202
removing duplicate matches to prepare

for, 197–198
Readability, logging and, 45
Red bar, test-driven development

defined, 191
implementing mockist style TDD, 216–217
inspiration for, 206
never refactor in, 199
turning into green bar, 205

Redundant tests, deleting, 242
Refactoring

deleting tests that have not kept up
with, 241

oververifying in mocking frameworks,
186

308 Index

Refactoring, test-driven development
dealing with punctuation marks, 203
defined, 191
introducing ranking, 199–202
legacy code, 206–207
order for adding tests, 210
removing duplicate matches, 198

Regression testing, 30–31, 35
Regression, unit tests preventing, 80, 81
Regulations, critique-based testing of, 10
Relations between objects, dependency as,

119–125, 133
Reliability, performance tests targeting, 28
Repeatability, of unit tests, 82
Reproducibility, controllability paramount

to, 48
Resources, CIA security triad model for

availability of, 29
Responsiveness, performance tests targeting,

28
RESTful web service, 155–156, 248–249
Rewrites, testing brown-field business

applications, 258
Risk, 11, 12
Role, of tester in agile testing, 13–14
Rollbacks, tests enclosed in transactions,

246–247
RSpec for Ruby, BDD-style tests, 102–105

S
Safety, testing for, 11
Scaling, unit tests enabling, 79
Scope

critique-based testing of, 10
in functional testing, 27
unit testing and, 24

Seams, breaking dependencies, 120
Search engine, test-driving

dealing with punctuation marks, 203–204
designing, 192–193
discovering API, 193–194
finding words in multiple documents, 197
happy path, 194–195
ignoring case, 202
introducing ranking, 199–202

more sophisticated documents, 196
removing duplicate matches, 197–199
searching in multiple documents, 195–196

Security, payment gateways, 250
Security testing, 5, 28–30
Semantics, number of assertions per unit

test, 91
Server configuration, 258
Service tests, 248–249, 267–269, 271
Setters, passing in collaborators with, 121
Setup, of higher-level tests, 264–266
Should, starting test name with, 86
Side effects

faking, 162–163
implementing empty stub to get rid of, 162
pure functions and, 69

Simplicity, deleting tests for, 243
Single-mode faults, 146–147, 149
Single Responsibility Principle, 85
Single value, high-level test considerations,

273
Singleton pattern, 69
Singularity

bottleneck/coupling in, 227
testability and, 52–53

Small tests, 35
Smallness

defined, 55
efficiency and, 54
level of abstraction and, 53–54
maintenance and, 55
reuse and, 54
singularity and, 52–53
of test suite in almost unit tests, 151
as testability quality attribute, 51–52

Smoke testing, 33–34
SMTP port, almost unit tests using mail

servers, 153–154
Social dimension, of continuous integration,

4–5
Source code

beyond unit testing, 287
data-driven and combinatorial testing,

279–282
integration tests coupled to, 26
JUnit version, TDD, 282–284

 Index 309

Spock version, TDD, 284–287
test doubles, 279
test levels express proximity to, 23–26
white box vs. black box testing, 22

Special code, in test-driven development, 207
Specialized assertions, unit tests, 94–96
Specification-based testing techniques

based on decision tables, 115–116
boundary value analysis, 110
edge cases/gotchas for some data types,

111–113
equivalence partitioning, 107–110
overview of, 107
state transition testing, 113–114
summary, 116–117

Specification by example
as double-loop TDD, 222
testing style, 15–17
as tests exercising services/components,

248–249
Speed. See Execution speed
Spies

defined, 176
implementing with mocking frameworks,

177
as test doubles, 170–171

Spike testing, performance, 28
Spock framework

differentiating stubs and mocks, 178
mocks behaving like spies in, 180
parameterized tests, 138
source code for TDD, 284–287
using blocks as assertions, 90
verifying interactions in mocking

framework, 185
Spring Boot, starting embedded containers,

155
SQL-compliant in-memory databases,

152–153, 156
Square brackets, expressing intervals, 109
Stability, tests that are not unit tests, 259–260
Stacking, stubs in mocking framework, 182
Startup, complex test, 264
State

controllability and, 48
as driver of testability, 70–71

mock objects shifting focus to, 164
setting up higher-level tests, 264–265
temporal coupling vs., 71–72
unit testing from known, 83–84
verification of, 173–174, 176

State-based tests, 173–174
State transition testing, 113–114, 116
State under test, 87
Statements, verifying tested code with

theories, 139–141
Static analysis, contracts, 65
Stderr (standard err), 255
Stdin (standard input), 255
Stdout (standard output), 255
Steady pace of work, in unit tests, 80
Storage performance, tests outside domain of

unit tests, 261
Stored procedures, tests enclosed in

transactions, 247
Stress testing, of performance, 28
Strict mocks, 180
Strings

finding boundary values for, 111–112
low-level test considerations, 275–276

Structuring
BDD-style tests, 102–103
unit testing frameworks, 88–89

Stubs
configuring in mocking framework,

180–183
defined, 176
flexibility of, 161–162
getting rid of side effects with, 162
implementing with mocking frameworks,

177–179
as test doubles, 159–162

Subsystems, TDD for legacy code, 206
Suppliers, in contract programming

contract building blocks and, 59–60
implementing contracts, 60–62
overview of, 57–58

Support, testing to, 11
Switch coverage, state transition testing, 114
Syntax

BDD-style frameworks with fluent, 105
number of assertions per unit test, 91–92

310 Index

System
CIA security triad model for integrity of,

29
clock, 127–128
resource dependencies, 125–129, 133

System boundary, mockist style TDD,
214–215

System tests
considering effectiveness of, 271
considering level of abstraction/detail, 273
end-to-end testing vs., 34
of features, 52
functional tests at level of, 27
increasing observability in old code, 46
test level of, 26
UI tests as, 252–254

Systems
tests invoking, 255–257
tests that interact with other, 249–251

T
Tables

decision, 115–116
double-mode faults, 147–149
single-mode faults, 147

Tabular/data-driven tests, 273
Target audience, tests that are not unit tests,

262–263
TDD. See Test-driven development (TDD) -

classic style; Test-driven development
(TDD) - mockist style

Team
agile testing experts on development,

13–14
automated acceptance tests written by, 27
TDD exposing deficiencies in, 209

Teardown (cleanup methods), 84
Technical debt, of intertwining layers, 130
Technical side, of continuous integration, 4–5
Technology-facing tests, 32–33
Temporal coupling, 71–72, 263–264
Termination of failed assertions, 61
Test automation pyramid, 267–269
Test classes, lifecycle of unit tests, 84–85
Test code, working with

commenting tests, 237–241
deleting tests, 241–243
overview of, 237
summary, 243–244

Test coverage, deleting duplicated code to
increase, 226–227

Test doubles
behavior verification, 174–176
constructing with mocking frameworks.

See Mocking frameworks
dealing with dependencies in unit tests,

159
dummies, 171–173
fakes, 162–164
mock objects, 164–170
for more complex tests, 267
replacing entire system with, 251
source code, 279
spies, 170–171
state verification, 173–174
stubs, 159–162
summary, 176

Test-driven development (TDD) - classic style
alternatives and inspiration, 206
challenges, 206–209
order of tests, 204
overview of, 191
red to green bar strategies, 205
resources on, 206
Spock version source code, 284–287
summary, 210–211
switching between mockist and, 220
test-driving simple search engine. See

Search engine, test-driving
test first or test last, 209–210

Test-driven development (TDD)—mockist
style

adding more tests, 219–220
different approach to design, 213–214
double-loop TDD, 220–222
focusing on design of system, 213
summary, 223
switching between classic and, 220
test-driving customer registration,

214–219

 Index 311

Test first or test last, TDD, 209–210
Test fixture, unit tests, 83–84
Test ideas and heuristics

high-level considerations, 271–274
low-level considerations, 274–276
overview of, 271

Test initializers
BDD-style frameworks, 103
for tests that are not unit tests, 259
unit tests, 83–85

Test levels
acceptance test, 26
defined, 23
integration test, 25–26
putting to work, 31
system test, 26
unit test, 23–25

Test recipes, high-level considerations, 272
Test types

defined, 26–27
functional testing, 27
nonfunctional testing, 28
performance testing, 28
putting to work, 31
regression testing, 30–31
requiring different amounts of state, 48
security testing, 28–30

Testability
benefits of, 39–43
from developer’s perspective, 37
reminder about, 55
summary, 55
test-driven development exposing

deficiencies in, 209
test first or test last, 209–210
testable software, 37–39

Testability, as quality attribute
controllability, 48–51
observability, 44–48
overview of, 43–44
program elements, 43
smallness, 51–55

Testable software, The Big Ball of Mud vs.,
37–39

Testdriven Development by Example (Beck),
205, 206

Tested object
in behavior verification, 174–175
creating fakes, 162–164
creating stubs in unit tests, 160
in state verification, 173–174
verifying indirect input transformations,

169–170
verifying indirect output with mock

objects, 165
Tester mind-set, 5, 10
Testing behavior, 176
Testing objectives

of test types. See Test types
testing to critique, 10–11
testing to support, 11
testing vs. checking, 9–10

Testing styles
Agile testing, 13–15
BDD, ATDD, and specification by

example, 15–17
traditional testing, 11–13

Tests enclosed in transactions, 246–248
Tests exercising services/components,

248–249
Tests invoking system, 255–257
Theory tests

adding generative testing to, 142–143
defined, 149
overview of, 139–141
reporting results from, 141

Third parties
reuse by implementing, 54
tests interacting with other systems,

250–251
Thread libraries, raising level of abstraction,

53
Throughput

and duplication, 227
performance tests targeting, 28

Tiers, dependencies across, 132, 133
Tight coupling, 175–176
Time

boundary values for, 112
unit tests freeing up testing, 80–81

312 Index

Tools
checking vs. testing, 9–10
resources for, 277–278

Toyota Production System, elimination of
waste, 41–42

Traditional testing, 11–13, 19
Transactions, tests enclosed in, 246–248
Transformation Priority Premise (Martin),

206
Transitions, state, 113–114
Transparency, deleting tests for, 243
Triangulation, 205, 211, 243
Triple A test structure, 88–89
Truthfulness

deleting tests for, 243
of test result, 273

Try-catch statement, testing exceptions in
higher-order functions, 101

Types, limitations of testing with, 43

U
UAT (user acceptance testing), 26
Ubiquitous language, 15–17
UI (user interface) tests, 252–254, 267–269
Unclassifed tests, almost unit tests as, 151
Unicode characters, strings, 112
Unit of work, 24, 87
Unit tests

in agile testing, 15
assertion methods, 89–99
with BDD-style frameworks, 102–105
characteristics of tests that are not,

257–263
in characterization testing, 34
data-driven. See Data-driven and

combinatorial testing
definition of, 81–83
developers writing, 2
effectiveness of, 271
enforcing contracts with, 64–65
for exceptions, 99–102
functional tests as, 27
level of abstraction/detail, 273
lifecycle of, 83–85
naming, 85–88

in old system, 46
overview of, 79
reasons to perform, 79–81
as small tests, 35
specification-based. See Specification-

based testing techniques
structuring, 88–89
summary, 105–106
system tests vs., 26
TDD exposing deficiencies in, 209
in test automation pyramid, 267–269
test level of, 23–25
tests that are almost. See Almost unit tests
in traditional testing, 12–13
unit testing frameworks not running only,

83
Unit tests, beyond

developer testing strategy decisions,
267–269

overview of, 245
pointers and practices, 263–267
source code, 287
summary, 269–270
test independence, 263–264
tests enclosed in transactions, 246–248
tests exercising services/components,

248–249
tests interacting with other systems,

249–251
tests invoking system, 255–257
tests running through user interface,

252–255
tests that are not unit tests, 257–263

@Unroll annotation, parameterized tests,
138

Usability testing
nonfunctional testing, 28
not usually done by developers, 5

User acceptance testing (UAT), 26
User interface (UI) tests, 252–254, 267–269
Users, critique-based testing of, 10
Utility methods, duplication, 231–232,

265–266

 Index 313

V
Validation, contracts not replacing, 57
Value-holding classes, 188
Values

dummies indicated by simple, default,
171–172

high-level test considerations, 273–274
stubs, 160, 161–162

Variable delays, UI tests failing, 252
Variables, removing need for comments, 238
Verbosity, of assertions in unit tests, 92–93
Verification. See also Developer testing

of behavior, 174–175
The Big Ball of Mud preventing, 38–39
of contracts, 62–63
in generative testing, 143–144
of indirect output with mock objects,

164–169
in mocking framework, 183–187
in more complex tests, 266
of state, 173–174
in testable software, 39
with theories, 139–141
in traditional testing, 11–13
in unit testing, 82, 98–99

Verify method, 164–169
Virtualization, tests that are not unit tests,

259–260
Vocabulary, test key terms

Agile Testing Quadrants, 32–33
black box testing, 22–23
characterization testing, 34–35
end-to-end testing, 34
errors, defects, and failures, 22
negative testing, 35

overview of, 21
positive testing, 35
putting test levels/test types to work, 31
small, medium, and large tests, 35
smoke testing, 33–34
summary, 36
test levels, 23–26
test types, 26–31
white box testing, 22–23

W
Waste, elimination of, 41–42
Wasteful, tests as, 41–43
Web applications

reality of layers in, 130
UI tests for, 252–254

Web frameworks, raising level of abstraction,
53

Web services, almost unit tests of, 155–156
WebDriver testing, 253–255, 259
“What,” functional tests targeting, 28
White box testing, 22–23, 52
Word frequency, and ranking, 200–202
Working Effectively with Legacy Code

(Feathers), 3

X
XCTest unit testing framework, 83
XUnit.net framework, 85

Z
Zero-one-many, test coverage of, 274

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword by Jeff Langr
	Foreword by Lisa Crispin
	Preface
	Acknowledgments
	About the Author
	Chapter 4 Testability from a Developer’s Perspective
	Testable Software
	Benefits of Testability
	Testability Defined
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

