
1

White Paper

Powerful new Speech Search technology in Adobe Premiere® Pro CS4 and Adobe
Soundbooth® CS4 transcribes spoken dialogue into text-based metadata that enables the video
asset to be searchable on websites. This new capability turns any spoken word into a keyword
that points precisely to the place in a clip where the word is spoken. This unleashes considerable
power, for both post-production professionals and all of us who watch video online. During the
editing process, use Speech Search to quickly find the relevant points in a particular clip or easily
locate the right clip based on dialogue. Equally importantly, the time-accurate text that corre-
sponds to spoken words is embedded in the output you render from Adobe Premiere Pro CS4 or
Soundbooth CS4, so you can use ActionScript™ in Adobe Flash® CS4 Professional software to
create video that is searchable in Adobe Flash Player.

The searchable video workflow
Search your assets to accelerate editing and find key sections instantly. When you render your
video as an FLV or F4V, the keywords automatically travel with your clip. A customized SWF
video player reads all this information, highlights keywords, and makes your video searchable—
all you have to do is point the search term to your transcribed video.

This guide offers step-by-step instructions how to generate a searchable video online using
Production Premium.

Generate a transcript in Adobe Premiere Pro
1. 	 In Adobe Premiere Pro CS4, open the Metadata panel and import the media clips you 	
		 wish to edit.

2. 	 Select the clip you wish to transcribe first and choose Clip>Audio Options>Transcribe 	
		 to Text from the drop-down menu.

3. 	 In the dialog box, use the menus to select a language and quality setting. For the latter, 	
		 select High (slower), and click OK to begin converting dialogue to text-based metadata.

4. 	 Repeat the above steps for all your clips.

Adobe Media Encoder launches automatically, and your audio file appears in the source file
column, while Speech Transcript appears as the target format. A progress bar across the bottom
of the Adobe Media Encoder screen displays time remaining and other information related to its
progress. When transcribing multiple clips, Adobe Media Encoder will batch process your files
while you continue to edit in Adobe Premiere Pro. The transcription text is stored as timecode-

Creating searchable video
with Adobe® Creative Suite®
Production Premium
Turn spoken dialogue into keywords using
Speech Search to make your video searchable

Table of contents
1	The searchable video workflow
1 Generate a transcript in Adobe
	 Premiere Pro
1 Export using Adobe Media Encoder
2 Export an .XML file in Soundbooth
2 Create a customized video player
2 Loading and streaming progressive 	
	 video
3 Loading and parsing the XML
	 transcription
5 User interface
5 Summary

2

accurate metadata. To edit the transcribed text in the Metadata panel, tab from word to word to
correct, insert, combine, and delete words. This helps ensure that the timecode-accurate nature
of the speech data remains intact.

Export using Adobe Media Encoder
Adobe Media Encoder, a separate software application, saves you time by automating the process
of creating multiple encoded versions of your source files. You can set up multiple items for
encoding, manage priorities, and control advanced settings for each item individually. Use any
combination of sequences and clips as sources, and encode to a wide variety of video formats (see
Figure 1).

After you’ve edited your video in Adobe Premiere Pro, export the file to Adobe Media Encoder in
FLV or F4V format.. The transcript/metadata travels with the video. Although you cannot see
the transcript, it’s inherent in the file. Place the video file in a Media folder on your desktop.

Export an .XML file in Soundbooth
After you have exported your Flash video, you want to import it into Soundbooth CS4 to create
and eXtensible Markup Language (XML) file. An XML is a standardized language used by Web
developers for marking up documents and data. The XML file you generate in Soundbooth
enables you to create customized tags, such as cue points, that you could not create if you were
working in HTML alone. In Soundbooth, open the transcribed video and choose File>Export>
Speech Transcription. Save that file in the Media folder as well.

Create a customized video player
To create a customized video player, you need to have a fundamental knowledge of object-ori-
ented programming, particularly ActionScript 3. How you organize the code in the following
sections is really up to your architecture preference, but these are the code snippets you need to
create the video player. These snippets are the fundamentals to extracting cue points and
associating them to the video player seek bar. If you’re comfortable with Ajax, CSS, and HTML,
you can do much more with the external interface class and to interact with those technologies.

Figure 1. With Adobe Media Encoder, you can automate the process of creating multiple encoded
versions of your source f iles and sequences and encode to a variety of video formats.

3

Loading and streaming/progressive video
In this example, we use the progressive approach—the NetConnection and NetStream classes
public var videoStream:NetStream—to play the video

import flash.net.*;

// Before your Constructor, inside the class – declare your variable-

public var videoStream:NetStream;

private function loadProgressiveVideo(videoURL:String):void

{

	var nc:NetConnection = new NetConnection();

	nc.connect(null);

	videoStream = new NetStream(nc);

	videoStream.addEventListener(NetStatusEvent.NET _ STATUS, netStatusEv-

entHandler);

	videoStream.client = new StreamClient();

	videoStream.client.addEventListener(Event.COMPLETE, xmpHandler);

	videoStream.play(videoURL);

	videoStream.pause();

}

Loading and parsing the XML transcription
To load the XML file into Adobe Flash, use the URLRequest and URLLoader. Each transcripted
cue point looks like this in XML from Soundbooth CS4:

<CuePoint>

 	<Time>899</Time>

 	<Type>event</Type>

 <Name>So</Name>

 	<Parameters>

		 <Parameter>

			 <Name>source</Name>

			 <Value>transcription</Value>

		 </Parameter>

		 <Parameter>

			 <Name>duration</Name>

			 <Value>500</Value>

		 </Parameter>

		 <Parameter>

			 <Name>confidence</Name>

			 <Value>-1</Value>

		 </Parameter>

 	</Parameters>

</CuePoint>

In ActionScript, create a new cue point object, so you can save this information as you’re
extracting it from XML:

public class CuePoint

{

	public var time:Number;

	public var text:String;

	public var duration:Number;

	public function CuePoint(time:Number, text:String,duration:Number):vo

4

id

	{

		 time = _ _ time;

		 text = _ _ text;

		 duration = _ _ duration;

	}

}

Once you have the cue point object set up, you can begin extracting the parameters from the XML
file:

// Declare a cuePoints array

public var cuePoints:Array = new Array();

private function loadXML(xmlURL:String):void

{

		 var request:URLRequest = new URLRequest(xmlURL);

		 var loader:URLLoader = new URLLoader();

 	try

	{

 	 loader.load(request);

 	 }

 	 catch (_ _ error:SecurityError)

 	 {

 	 trace(“A SecurityError has occurred.”);

 	 }

		 loader.addEventListener(Event.COMPLETE,xmlloaderCompleteEventHandler);

}

private function xmlloaderCompleteEventHandler(event:Event):void

{

	var loader:URLLoader = URLLoader(event.target);			

	try

	{

		 var xml:XML = new XML(loader.data);

		 for each (var node in xml.children()) {

			 if (node.Parameters.Parameter[0].Value == “transcription”)

				 cuePoints.push(new CuePoint(node.Time, node.Name, node

Parameters.Parameter[1].Value)

	}

	catch (error:TypeError)

	{

		 trace(“Could not parse XML file”);

	}

}		

You want to loop through each of the transcription nodes and parse out the Node.Time, Node.Name,
and Node.Values and anything from the Soundbooth CS4 XML export transcription that would be
useful. A suggestion is to save theses objects into an Array (cue points—as indicated in the code), so
that further access, such as searching will be easy.

Now that you have the cue points and times extracted, the next step is to write a function to search for
the cue points with a keyword. To search the cue points array we created:

Public function search(keyword:String):Array

{

	var cuePointsFound:Array = new Array();

	for (var i:int = 0; I < cuePoints.length; i++) {

		 if (cuePoints[i].text.toLowerCase() == keyword.toLowerCase()) {		

5

	cuePointsFound.push(new CuePoint(cuePoints[i].time, cuePoints[i].text,

cuePoints[i].duration));

		 }

	}

	return cuePointsFound;

}

User Interface
On the stage of the FLA file, have the video player play your video. On top of the seek bar area,
add cueMarkers that indicate where your keyword exists on the video:

Public class CueMarker extends MovieClip {

	public var time:Number;

	public var text:String;

	public function CueMarker():void {

		 addEventListener(MouseEvent.MOUSE _ OVER, mouseOverEventHandler);

		 addEventListener(MouseEvent.MOUSE _ OUT, mouseOutEventHandler);

		 addEventListener(MouseEvent.CLICK, mouseClickEventHandler);

	}

	private function mouseOverEventHandler(event:MouseEvent):void {

		 dispatchEvent(new Event(“CueMarkSeek”));

	}

	private function mouseOverEventHandler(event:MouseEvent):void {

		 dispatchEvent(new Event(“CueMarkerHover”));

	}

	private function mouseOutEventHandler(event:MouseEvent):void {

		 dispatchEvent(new Event(“CueMarkerNormal”));

	}

}

Public function AttachCueMarkers():void

{

	var marker:CueMarker;

	var markerContainer:MovieClip = new MovieClip();

	for (var i:int = 0; i< cuePointsFound.length; i++) {

		 marker = new CueMarker();

		 marker.time = cuePointsFound[i].time;

		 marker.text = cuePointsFound[i].text;

		 marker.x = Math.floor(Math.min(seekBar.width, seekBar.width *

((cuePointsFound[i].time/1000) / cuePointsFound[i].duration)));

		 markerContainer.addChild(marker);

	}

	seekBar.addChild(markerContainer);

}

Summary
These instructions should help you generate a searchable video from Production Premium and
create a player that will enable website visitors to seach the video on your website. Visit the
Production Premium website for further information as we plan link to customer-created
players when available.

For more information
For more details about Adobe Creative Suite 4
Production Premium,
visit www.adobe.com/go/creativesuiteproduction.

Adobe, the Adobe logo, ActionScript, Adobe Premiere, Creative Suite, Flash, and Soundbooth are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.
© 2009 Adobe Systems Incorporated. All rights reserved. 03/09

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704
USA
www.adobe.com

