
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321718334
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321718334
https://plusone.google.com/share?url=http://www.informit.com/title/9780321718334
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321718334
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321718334/Free-Sample-Chapter

SOFTWARE SYSTEMS
ARCHITECTURE

SECOND EDITION

This page intentionally left blank

SOFTWARE SYSTEMS
ARCHITECTURE

Working with Stakeholders Using
Viewpoints and Perspectives

SECOND EDITION

NICK ROZANSKI
EOIN WOODS

Upper Saddle River, NJ � Boston � Indianapolis � San Francisco
New York � Toronto � Montreal � London � Munich � Paris � Madrid
Capetown � Sydney � Tokyo � Singapore � Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particu-
lar to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Rozanski, Nick.
Software systems architecture : working with stakeholders using viewpoints and

perspectives / Nick Rozanski, Eoin Woods. 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-71833-X (hard cover : alk. paper)

1. Computer software Development. 2. Computer architecture. I. Woods, Eoin. II. Title.

QA76.76.D47R696 2012
005.3 dc23 2011040253

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-71833-4
ISBN-10: 0-321-71833-X
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, September 2012

To my family, Isabel, Sophie, Alex, and Luci
—NR

To my parents, Anne and Desmond,
and to my family, Lynda and Katherine

—EW

This page intentionally left blank

vii

CONTENTS

PREFACE TO THE SECOND EDITION xv
Acknowledgments for the Second Edition xvi

PREFACE TO THE FIRST EDITION xvii
Acknowledgments xx

CHAPTER 1 INTRODUCTION 1
Stakeholders, Viewpoints, and Perspectives 1
The Structure of This Book 7
Who Should Read This Book 7
Conventions Used 8

PART I ARCHITECTURE FUNDAMENTALS 9
CHAPTER 2 SOFTWARE ARCHITECTURE CONCEPTS 11

Software Architecture 11
Architectural Elements 20
Stakeholders 21
Architectural Descriptions 24
Relationships between the Core Concepts 26
Summary 27
Further Reading 28

CHAPTER 3 VIEWPOINTS AND VIEWS 31
Architectural Views 34
Viewpoints 36
Relationships between the Core Concepts 37
The Benefits of Using Viewpoints and Views 38
Viewpoint Pitfalls 39
Our Viewpoint Catalog 39

viii CONTENTS

Summary 43
Further Reading 43

CHAPTER 4 ARCHITECTURAL PERSPECTIVES 45
Quality Properties 45
Architectural Perspectives 47
Applying Perspectives to Views 51
Consequences of Applying a Perspective 54
Relationships between the Core Concepts 56
The Benefits of Using Perspectives 56
Perspective Pitfalls 58
Comparing Perspectives to Viewpoints 58
Our Perspective Catalog 60
Summary 61
Further Reading 62

CHAPTER 5 THE ROLE OF THE SOFTWARE ARCHITECT 63
The Architecture Definition Process 64
The Role of the Architect 68
Interrelationships between the Core Concepts 71
Architectural Specializations 72
The Organizational Context 73
The Architect’s Skills 76
The Architect’s Responsibilities 77
Summary 78
Further Reading 79

PART II THE PROCESS OF SOFTWARE ARCHITECTURE 81
CHAPTER 6 INTRODUCTION TO THE SOFTWARE ARCHITECTURE PROCESS 83

CHAPTER 7 THE ARCHITECTURE DEFINITION PROCESS 85
Guiding Principles 85
Process Outcomes 86
The Process Context 87
Supporting Activities 89
Architecture Definition Activities 92
Process Exit Criteria 97
Architecture Definition in the Software Development Lifecycle 98
Summary 102
Further Reading 103

CHAPTER 8 CONCERNS, PRINCIPLES, AND DECISIONS 105
Problem-Focused Concerns 108
Solution-Focused Concerns 111

CONTENTS ix

Other Real-World Constraints 114
What Makes a Good Concern 116
Architectural Principles 117
Architectural Decisions 122
Using Principles to Link Concerns and Decisions 125
Checklist 128
Summary 128
Further Reading 129

CHAPTER 9 IDENTIFYING AND ENGAGING STAKEHOLDERS 131
Selection of Stakeholders 131
Classes of Stakeholders 133
Examples 138
Proxy Stakeholders 140
Stakeholder Groups 141
Stakeholders’ Responsibilities 141
Checklist 142
Summary 142
Further Reading 143

CHAPTER 10 IDENTIFYING AND USING SCENARIOS 145
Types of Scenarios 146
Uses for Scenarios 147
Identifying and Prioritizing Scenarios 148
Capturing Scenarios 149
What Makes a Good Scenario? 153
Applying Scenarios 154
Effective Use of Scenarios 157
Checklist 159
Summary 159
Further Reading 160

CHAPTER 11 USING STYLES AND PATTERNS 161
Introducing Design Patterns 161
Styles, Patterns, and Idioms 164
Patterns and Architectural Tactics 166
An Example of an Architectural Style 167
The Benefits of Using Architectural Styles 170
Styles and the Architectural Description 172
Applying Design Patterns and Language Idioms 172
Checklist 174
Summary 174
Further Reading 175

x CONTENTS

CHAPTER 12 PRODUCING ARCHITECTURAL MODELS 177
Why Models Are Important 178
Types of Models 181
Modeling Languages 184
Guidelines for Creating Effective Models 187
Modeling with Agile Teams 193
Checklist 194
Summary 195
Further Reading 196

CHAPTER 13 CREATING THE ARCHITECTURAL DESCRIPTION 197
Properties of an Effective Architectural Description 198
Glossaries 206
The ISO Standard 206
Contents of the Architectural Description 207
Presenting the Architectural Description 213
Checklist 215
Summary 216
Further Reading 216

CHAPTER 14 EVALUATING THE ARCHITECTURE 217
Why Evaluate the Architecture? 218
Evaluation Techniques 219
Scenario-Based Evaluation Methods 226
Evaluation during the Software Lifecycle 230
Validating the Architecture of an Existing System 233
Recording the Results of Evaluation 236
Choosing an Evaluation Approach 237
Checklist 238
Summary 238
Further Reading 239

PART III A VIEWPOINT CATALOG 241
CHAPTER 15 INTRODUCTION TO THE VIEWPOINT CATALOG 243

CHAPTER 16 THE CONTEXT VIEWPOINT 247
Concerns 248
Models 255
Problems and Pitfalls 261
Checklist 265
Further Reading 266

CONTENTS xi

CHAPTER 17 THE FUNCTIONAL VIEWPOINT 267
Concerns 268
Models 271
Problems and Pitfalls 285
Checklist 291
Further Reading 292

CHAPTER 18 THE INFORMATION VIEWPOINT 293
Concerns 294
Models 311
Problems and Pitfalls 322
Checklist 330
Further Reading 330

CHAPTER 19 THE CONCURRENCY VIEWPOINT 333
Concerns 335
Models 340
Problems and Pitfalls 351
Checklist 355
Further Reading 355

CHAPTER 20 THE DEVELOPMENT VIEWPOINT 357
Concerns 358
Models 360
Problems and Pitfalls 367
Checklist 370
Further Reading 371

CHAPTER 21 THE DEPLOYMENT VIEWPOINT 373
Concerns 374
Models 378
Problems and Pitfalls 387
Checklist 391
Further Reading 392

CHAPTER 22 THE OPERATIONAL VIEWPOINT 393
Concerns 394
Models 402
Problems and Pitfalls 419
Checklist 423
Further Reading 424

xii CONTENTS

CHAPTER 23 ACHIEVING CONSISTENCY ACROSS VIEWS 425
Relationships between Views 426
Context and Functional View Consistency 427
Context and Information View Consistency 427
Context and Deployment View Consistency 428
Functional and Information View Consistency 428
Functional and Concurrency View Consistency 429
Functional and Development View Consistency 430
Functional and Deployment View Consistency 430
Functional and Operational View Consistency 431
Information and Concurrency View Consistency 431
Information and Development View Consistency 432
Information and Deployment View Consistency 432
Information and Operational View Consistency 432
Concurrency and Development View Consistency 433
Concurrency and Deployment View Consistency 433
Deployment and Operational View Consistency 434

PART IV THE PERSPECTIVE CATALOG 435
CHAPTER 24 INTRODUCTION TO THE PERSPECTIVE CATALOG 437

CHAPTER 25 THE SECURITY PERSPECTIVE 439
Applicability to Views 441
Concerns 442
Activities: Applying the Security Perspective 446
Architectural Tactics 456
Problems and Pitfalls 465
Checklists 473
Further Reading 474

CHAPTER 26 THE PERFORMANCE AND SCALABILITY PERSPECTIVE 475
Applicability to Views 476
Concerns 476
Activities: Applying the Performance and Scalability Perspective 482
Architectural Tactics 491
Problems and Pitfalls 502
Checklists 509
Further Reading 510

CHAPTER 27 THE AVAILABILITY AND RESILIENCE PERSPECTIVE 511
Applicability to Views 512
Concerns 512
Activities: Applying the Availability and Resilience Perspective 516

CONTENTS xiii

Architectural Tactics 526
Problems and Pitfalls 533
Checklists 539
Further Reading 541

CHAPTER 28 THE EVOLUTION PERSPECTIVE 543
Applicability to Views 544
Concerns 545
Activities: Applying the Evolution Perspective 549
Architectural Tactics 552
Problems and Pitfalls 560
Checklists 564
Further Reading 565

CHAPTER 29 OTHER PERSPECTIVES 567
The Accessibility Perspective 568
The Development Resource Perspective 573
The Internationalization Perspective 579
The Location Perspective 585
The Regulation Perspective 591
The Usability Perspective 595

PART V PUTTING IT ALL TOGETHER 603
CHAPTER 30 WORKING AS A SOFTWARE ARCHITECT 605

Architecture in the Project Lifecycle 605
Supporting Different Types of Projects 615

APPENDIX OTHER VIEWPOINT SETS 621
Kruchten “4+1” 621
RM-ODP 623
Siemens (Hofmeister, Nord, and Soni) 623
SEI “Views and Beyond” Views 624
Garland and Anthony 626
IAF 627
Enterprise Architecture Frameworks 627
Other Enterprise Architecture Frameworks 629

BIBLIOGRAPHY 631
ABOUT THE AUTHORS 643
INDEX 645

This page intentionally left blank

xv

PREFACE TO THE SECOND
EDITION

he IT landscape looks significantly different today from when we first
started work on our book ten years ago. The world is a much more con-

nected place, with computers and the Internet being a big part of many peo-
ple’s daily lives both at home and at work. This has led to an even greater
expectation among users and other stakeholders that systems should be func-
tionally rich and complete, easy to use, robust, scalable, and secure. We feel
that the architect has an important role in achieving these goals and are
heartened by the fact that this view seems to have gained fairly widespread
acceptance among software development professionals and senior business
and technology management.

We were delighted by the positive reception to the first edition of our
book from practitioners, aspiring software architects, and academia. Our
readers seemed to find it useful, comprehensive, and informative. However,
architecture is a constantly changing discipline, and the second edition
reflects what we have learned and improved upon in our own practice since
the publication of the first edition. It also incorporates a number of very use-
ful comments and suggestions for improvement from readers, for which we
are extremely grateful.

However, our fundamental messages remain the same. Our primary
focus is on architecture as a service to stakeholders and a way to ensure that
an information system meets their needs. We continue to emphasize the vital
importance of views as a way of representing an architecture’s complexity in
a way its stakeholders can understand. We are also unswerving in our belief
that architecture must define how a system will provide the required quality
properties—such as scalability, resilience, and security—as well as defining
its static and dynamic structure, and that perspectives provide an effective
way to do this.

T

xvi PREFACE TO THE SECOND EDIT ION

Our main audience is practicing or aspiring architects, but we hope that
other IT professionals, who may be working alongside an architect, and stu-
dents, who will one day find themselves in this position, will also find it a
useful read.

The most important changes in this edition are as follows.

� We have introduced a new viewpoint, which we call the Context viewpoint.
This describes the relationships, dependencies, and interactions between
the system and its environment (the people, systems, and external enti-
ties with which it interacts). It extends, formalizes, and standardizes the rel-
atively brief discussion of scope and context that used to be in Chapter 8.

� We have expanded the discussion of different aspects of the role of archi-
tecture in Part II.

� We have revised most of the viewpoint and perspective definitions, par-
ticularly the Functional and Concurrency views and the Performance and
Scalability perspective.

� We have revised and extended the Bibliography and the Further Reading
sections in most chapters.

� We have updated the book to align with the concepts and terminology in
the new international architecture standard ISO 42010 (which derives
from IEEE Standard 1471).

� We have updated our UML modeling advice and examples to reflect the
changes introduced in version 2 of UML.

We hope that you find the second edition of the book a useful improvement and
extension of the first edition, and we invite you to visit to our Web site at
www.viewpoints-and-perspectives.info for further software architecture resources
or to contact us to provide feedback on the book.

ACKNOWLEDGMENTS FOR THE SECOND EDITION

In addition to the people we thanked for the first edition, we would also like to
thank our second-edition reviewers—Paul Clements, Tim Cull, Rich Hilliard,
Philippe Kruchten, and Tommi Mikkonen—and our diligent and thorough copy
editor, Barbara Wood. In particular, we would like to thank Paul for his thor-
ough, insightful, and challenging comments and suggestions for improvement,
which we found extremely useful.

www.viewpoints-and-perspectives

xvii

PREFACE TO THE FIRST
EDITION

he authors of this book are both practicing software architects who have
worked in this role, together and separately, on information system devel-

opment projects for quite a few years. During that time, we have seen a sig-
nificant increase in the visibility of software architects and in the importance
with which our role has been viewed by colleagues, management, and cus-
tomers. No large software development project nowadays would expect to go
ahead without an architect—or a small architectural group—in the vanguard
of the development team.

While there may be an emerging consensus that the software architect’s
role is an important one, there seems to be little agreement on what the job
actually involves. Who are our clients? To whom are we accountable? What
are we expected to deliver? What is our involvement once the architectural
design has been completed? And, perhaps most fundamentally, where are the
boundaries between requirements, architecture, and design?

The absence of a clear definition of the role is all the more problematic
because of the seriousness of the problems that today’s software projects
(and specifically, their architects) have to resolve.

� The expectations of users and other stakeholders in terms of functionality,
capability, time to market, and flexibility have become much more demanding.

� Long system development times result in continual scope changes and conse-
quent changes to the system’s architecture and design.

� Today’s systems are more functionally and structurally complex than ever and
are usually constructed from a mix of off-the-shelf and custom-built
components.

T

xviii PREFACE TO THE FIRST EDIT ION

� Few systems exist in isolation; most are expected to interoperate and exchange
information with many other systems.

� Getting the functional structure—the design—of the system right is only part
of the problem. How the system behaves (i.e., its quality properties) is just as
critical to its effectiveness as what it does.

� Technology continues to change at a pace that makes it very hard for architects
to keep their technical expertise up-to-date.

When we first started to take on the role of software architects, we looked
for some sort of software architecture handbook that would walk us through
the process of developing an architectural design. After all, other architectural
disciplines have behind them centuries of theory and established best practice.

For example, in the first century A.D., the Roman Marcus Vitruvius Pollio
wrote the first ever architectural handbook, De architectura libri decem (“Ten
Books on Architecture”), describing the building architect’s role and required
skills and providing a wealth of material on standard architectural structures.
In 1670, Anthony Deane, a friend of diarist Samuel Pepys, a former mayor of
the English town of Harwich, and later a member of Parliament, published a
groundbreaking textbook, A Doctrine of Naval Architecture, which described
in detail some of the leading methods of the time for large ship design.
Deane’s ideas and principles helped systematize the practice of naval architec-
ture for many years. And in 1901, George E. Davis, a consulting engineer in
the British chemical industry, created a new field of engineering when he
published his text A Handbook of Chemical Engineering. This text was the
first book to define the practical principles underpinning industrial chemical
processes and guided the field for many years afterward.

The existence of such best practices has a very important consequence in
terms of uniformity of approach. If you were to give several architects and
engineers a commission to design a building, a cruise liner, or a chemical
plant, the designs they produced would probably differ. However, the pro-
cesses they used, the ways they represented their designs on paper (or a com-
puter screen), and the techniques they used to ensure the soundness of their
designs would be very similar.

Sadly, our profession has yet to build any significant legacy of main-
stream industrial best practices. When we looked, we found a dearth of intro-
ductory books to guide practicing information systems architects in the details
of doing their jobs.

Admittedly, we have an abundance of books on specific technologies,
whether it’s J2EE, CORBA, or .NET, and some on broader topics such as Web
services or object orientation (although, because of the speed at which soft-
ware technology changes, many of these become out-of-date within a few
years). There are also a number of good general software architecture books,
several of which we refer to in later chapters. But many of these books aim to

PREFACE TO THE FIRST EDIT ION xix

lay down principles that apply across all sorts of systems and so are written in
quite general terms, while most of the more specific texts are aimed at our col-
leagues in the real-time and embedded-systems communities.

We feel that if you are a new software architect for an information sys-
tem, the books that actually tell you how to do your job, learn the important
things you need to know, and make your architectural designs successful are
few and far between. While we don’t presume to replace the existing texts on
software architecture or place ourselves alongside the likes of Vitruvius,
Deane, and Davis, addressing these needs was the driving force behind our
decision to write this book.

Specifically, the book shows you:

� What software architecture is about and why your role is vitally important to
successful project delivery

� How to determine who is interested in your architecture (your stakeholders),
understand what is important to them (their concerns), and design an
architecture that reflects and balances their different needs

� How to communicate your architecture to your stakeholders in an understand-
able way that demonstrates that you have met their concerns (the architec-
tural description)

� How to focus on what is architecturally significant, safely leaving other
aspects of the design to your designers, without neglecting issues like
performance, resilience, and location

� What important activities you most need to undertake as an architect,
such as identifying and engaging stakeholders, using scenarios, creating
models, and documenting and validating your architecture

Throughout the book we primarily focus on the development of large-
scale information systems (by which we mean the computer systems used to
automate the business operations of large organizations). However, we have
tried to present our material in a way that is independent of the type of infor-
mation system you are designing, the technologies the developers will be
using, and the software development lifecycle your project is following. We
have standardized on a few things, such as the use of Unified Modeling Lan-
guage (UML) in most of our diagrams, but we’ve done that only because UML
is the most widely understood modeling language around. You don’t have to
be a UML expert to understand this book.

We didn’t set out to be the definitive guide to developing the architecture
of your information system—such a book would probably never be finished
and would require the collaboration of a huge number of experts across a
wide range of technical specializations. Also, we did not write a book of pre-
scriptive methods. Although we present some activity diagrams that explain

xx PREFACE TO THE FIRST EDIT ION

how to produce your deliverables, these are designed to be compatible with
the wide range of software development approaches in use today.

What we hope we have achieved is the creation of a practical, practitioner-
oriented guide that explains how to design successful architectures for
information systems and how to see these through to their successful imple-
mentation. This is the sort of book that we wish had been available when we
started out as software architects, and one that we expect to refer to even now.

You can find further useful software architecture resources, and
contact us to provide feedback on the book’s content, via our Web page:
www.viewpoints-and-perspectives.info. We look forward to hearing from you.

ACKNOWLEDGMENTS

This book would never have appeared without the advice, assistance, and
support of a lot of people.

We are very grateful to the many reviewers who commented on the text at
various stages of its creation, including Gary Birch, Chris Britton, Kelley But-
ler, Sholom Cohen, Dan Haywood, Sallie Henry, Andy Longshaw, Robert
Nord, Dan Paulish, Martyn Thomas, and Hans van Vliet.

We’d also like to thank the team members at Addison-Wesley for all of
their work to make the book a reality, including Kim Boedigheimer, John
Fuller, Peter Gordon, Chrysta Meadowbrooke, Simon Plumtree, and Elizabeth
Ryan.

Other people who provided us with advice, encouragement, and inspiration at
various times include Felix Bachmann, Dave Borthwick, David Emery, Wolfgang
Emmerich, Rich Hilliard, Philippe Kruchten, Roland Leibundgut, Mike Mackay,
Dave Maher, Mark Maier, Lucia Rapanotti, and Gaynor Redvers-Mutton.

We would also like to thank our families for their constant love, encour-
agement, and support throughout the project.

www.viewpoints-and-perspectives.info

31

3
VIEWPOINTS AND VIEWS

hen you start the daunting task of designing the architecture of your
system, you will find that you have some difficult architectural ques-

tions to answer.

� What are the main functional elements of your architecture?

� How will these elements interact with one another and with the outside
world?

� What information will be managed, stored, and presented?

� What physical hardware and software elements will be required to sup-
port these functional and information elements?

� What operational features and capabilities will be provided?

� What development, test, support, and training environments will be
provided?

A common temptation—one you should strongly avoid—is to try to answer
all of these questions by means of a single, heavily overloaded, all-encompassing
model. This sort of model (and we’ve all seen them) will probably use a mixture
of formal and informal notations to describe a number of aspects of the system
on one huge sheet of paper: the functional structure, software layering, concur-
rency, intercomponent communication, physical deployment environment, and
so on. Let’s see what happens when we try to use an all-encompassing model in
our AD, by means of an example.

As the example shows, this sort of AD is really the worst of all worlds.
Many writers on software architecture have pointed out that it simply isn’t pos-
sible to describe a software architecture by using a single model. Such a model
is hard to understand and is unlikely to clearly identify the architecture’s most

W

32 PART I � ARCHITECTURE FUNDAMENTALS

EXAMPLE Although the airline reservation system we introduced in
Chapter 2 is conceptually fairly simple, in practice some aspects of this
system make it very complicated indeed.

� The system’s data is distributed across a number of systems in different
physical locations.

� A number of different types of data entry devices must be supported.

� The system must be able to present some information in different
languages.

� The system must be able to print tickets and other documents on a wide
range of printers.

� The plethora of international regulations complicates the picture even
further.

After some discussion, the architect draws up a first-cut architecture for
the system, which attempts to represent all of its important aspects in a sin-
gle diagram. This model includes the full range of data entry devices (in-
cluding various dumb terminals, desktop PCs, and wireless devices), the
multiple physical systems on which data is stored or replicated data is
maintained, and some of the printing devices that must be supported (the
model does not cover remote printing because it is done at a separate facil-
ity). The model is heavily annotated with text to indicate, for example,
where multilanguage support is required and where data must be audited,
archived, or analyzed to support regulatory requirements.

However, no details of the network interfaces between the different
components are included—these are abstracted out into a network icon
because they are so complex. (In fact, the network design is probably
the most complicated aspect of the architecture, requiring support for a
number of different and largely incompatible network protocols, routing
over public and private networks, synchronous and asynchronous inter-
actions, and varying levels of service reliability and availability.) Fur-
thermore, the model does not address any of the implications of having
the same data distributed around multiple systems.

Because it is so complex and tries to address a wide mix of concerns in
the same diagram, the model fails to engage any of the stakeholders. The
users find it too complex and difficult to understand (particularly because of
the large number of physical hardware components represented). The tech-
nology stakeholders, on the other hand, tend to disregard it because of the
detail that is left out, such as the network topology. The legal team members
can’t use it to satisfy themselves that the regulatory aspects will be ade-
quately handled, and the sponsor finds it completely incomprehensible.

CHAPTER 3 � VIEWPOINTS AND VIEWS 33

important features. It tends to poorly serve individual stakeholders because
they struggle to understand the aspects that interest them. Worst of all,
because of its complexity, a monolithic AD is often incomplete, incorrect, or
out-of-date.

PRINCIPLE It is not possible to capture the functional features and quality
properties of a complex system in a single comprehensible model that is un-
derstandable by, and of value to, its stakeholders.

We need to represent complex systems in a way that is manageable and
comprehensible by a range of business and technical stakeholders. A widely
used approach—the only successful one we have found—is to attack the
problem from different directions simultaneously. In this approach, the AD is
partitioned into a number of separate but interrelated views, each of which
describes a separate aspect of the architecture. Collectively, the views describe
the whole system.

To help you understand what we mean by a view, let’s consider the ex-
ample of an architectural drawing for one of the elevations of an office block.
This portrays the building from a particular aspect, typically a compass bear-
ing such as northeast. The drawing shows features of the building that are
visible from that vantage point but not from other directions. It doesn’t show
any details of the interior of the building (as seen by its occupants) or of its
internal systems (such as plumbing or air conditioning) that influence the en-
vironment its occupants will inhabit. Thus the blueprint is only a partial rep-
resentation of the building; you have to look at—and understand—the whole
set of blueprints to grasp the facilities and experience that the whole building
will provide.

Another way that a building architect might represent a new building
is to construct a scale model of it and its environs. This shows how the
building will look from all sides but again reveals nothing about the mech-
anisms to be used in its construction, its interior form, or its likely internal
environment.

Furthermore, the architect spends an inordinate amount of time keep-
ing it up-to-date—every time a new type of data entry device or printer is
discussed, for example, the diagram needs to be updated and reprinted on
a very large sheet of paper.

Because of these problems, the diagram soon becomes obsolete and is
eventually forgotten. Unfortunately, the issues that the model fails to
address do not disappear and thus cause many problems and delays
during the implementation and the early stages of live operation.

34 PART I � ARCHITECTURE FUNDAMENTALS

STRATEGY A complex system is much more effectively described by a set of
interrelated views, which collectively illustrate its functional features and
quality properties and demonstrate that it meets its goals, than by a single
overloaded model.

Let’s take a look at what this approach means for software architecture.

ARCHITECTURAL VIEWS

An architectural view is a way to portray those aspects or elements of the ar-
chitecture that are relevant to the concerns the view intends to address—and,
by implication, the stakeholders to whom those concerns are important.

This idea is not new, going back at least as far as the work of David
Parnas in the 1970s and more recently Dewayne Perry and Alexander Wolf
in the early 1990s. However, it wasn’t until 1995 that Philippe Kruchten of
the Rational Corporation published his widely accepted written description
of views, Architectural Blueprints—The “4 + 1” View Model of Software
Architecture. This suggested four different views of a system and the use
of a set of scenarios (use cases) to elucidate its behavior. Kruchten’s ap-
proach has since evolved to form an important part of the Rational Unified
Process (RUP).

IEEE Standard 1471 (the predecessor of ISO Standard 42010) formalized
these concepts in 2000 and brought some welcome standardization of termi-
nology. In fact, our definition of a view is based on and extends the one from
the original IEEE standard.

DEFINITION A view is a representation of one or more structural aspects of
an architecture that illustrates how the architecture addresses one or more
concerns held by one or more of its stakeholders.

When deciding what to include in a view, ask yourself the following
questions.

� View scope: What structural aspects of the architecture are you trying
to represent? For example, are you trying to define the runtime func-
tional elements and their intercommunication, or the runtime environ-
ment and how the system is deployed into it? Do you need to
represent the dynamic or static elements of these structures? (For
example, in the case of the functional element structure, do you wish

CHAPTER 3 � VIEWPOINTS AND VIEWS 35

to show the elements and the connectors between them, or the se-
quence of interactions they perform in order to process an incoming
request, or both?)

� Element types: What type(s) of architectural element are you trying to
categorize? For example, when considering how the system is de-
ployed, do you need to represent individual server machines, or do
you just need to represent a service environment (like Force.com
SiteForce or Google AppEngine) that your system elements are
deployed into?

� Audience: What class(es) of stakeholder is the view aimed at? A view
may be narrowly focused on one class of stakeholder or even a specific
individual, or it may be aimed at a larger group whose members have
varying interests and levels of expertise.

� Audience expertise: How much technical understanding do these
stakeholders have? Acquirers and users, for example, will be experts
in their subject areas but are unlikely to know much about hardware
or software, while the converse may apply to developers or support
staff.

� Scope of concerns: What stakeholder concerns is the view intended to
address? How much do the stakeholders know about the architectural
context and background to these concerns?

� Level of detail: How much do these stakeholders need to know about this
aspect of the architecture? For nontechnical stakeholders such as users,
how competent are they in understanding its technical details?

As with the AD itself, one of your main challenges is to get the right con-
tent into your views. Provide too much irrelevant detail, for example, and
your audience will be overwhelmed; too little information, and you risk your
audience being confused or making assumptions that may not be valid. There
are two key questions you should ask yourself when deciding what to include
in a view. First of all, can the stakeholders that it targets use it to determine
whether their concerns have been met? And second, can those stakeholders
use it to successfully undertake their role in building the system?

We will explore the second question in more detail in Chapter 9, but for
now we will summarize these questions as follows.

STRATEGY Only include in a view information that furthers the objectives of
your AD—that is, information that helps explain the architecture to stake-
holders or demonstrates that the goals of the system (i.e., the concerns of its
stakeholders) are being met.

36 PART I � ARCHITECTURE FUNDAMENTALS

VIEWPOINTS

It would be hard work if every time you were creating a view of your architec-
ture you had to go back to first principles to define what should go into it.
Fortunately, you don’t quite have to do that.

In his introductory paper, Philippe Kruchten defined four standard views,
namely, Logical, Process, Physical, and Development. The IEEE standard
made this idea generic (and did not specify one set of views or another) by
proposing the concept of a viewpoint.

The objective of the viewpoint concept is an ambitious one—no less
than making available a library of templates and patterns that can be used
off the shelf to guide the creation of an architectural view that can be
inserted into an AD. We define a viewpoint (again after IEEE Standard
1471) as follows.

DEFINITION A viewpoint is a collection of patterns, templates, and conven-
tions for constructing one type of view. It defines the stakeholders whose
concerns are reflected in the viewpoint and the guidelines, principles, and
template models for constructing its views.

Architectural viewpoints provide a framework for capturing reusable
architectural knowledge that can be used to guide the creation of a particular
type of (partial) AD. You may find it helpful to compare the relationship
between viewpoints and views to the relationship between classes and
objects in object-oriented development.

� A class definition provides a template for the construction of an object.
An object-oriented system will include at runtime a number of objects,
each of a specified class.

� A viewpoint provides a template for the construction of a view. A viewpoints-
and-views-based architecture definition will include a number of views, each
conforming to a specific viewpoint.

Viewpoints are an important way of bringing much-needed structure and
consistency to what was in the past a fairly unstructured activity. By defining
a standard approach, a standard language, and even a standard metamodel
for describing different aspects of a system, stakeholders can understand any
AD that conforms to these standards once familiar with them.

In practice, of course, we haven’t fully achieved this goal yet. There are
no universally accepted ways to model software architectures, and many
ADs use their own homegrown conventions (or even worse, no particular
conventions at all). However, the widespread acceptance of techniques such

CHAPTER 3 � VIEWPOINTS AND VIEWS 37

as entity-relationship models and of modeling languages such as UML takes
us some way toward this goal.

In any case, it is extremely useful to be able to categorize views according
to the types of concerns and architectural elements they present.

STRATEGY When developing a view, whether or not you use a formally
defined viewpoint, be clear in your own mind what sorts of concerns the view
is addressing, what types of architectural elements it presents, and who the
viewpoint is aimed at. Make sure that your stakeholders understand these as
well.

RELATIONSHIPS BETWEEN THE CORE CONCEPTS

To put views and viewpoints in context, we can now extend the conceptual
model we introduced in Chapter 2 to illustrate how views and viewpoints con-
tribute to the overall picture (see Figure 3–1).

FIGURE 3–1 VIEWS AND VIEWPOINTS IN CONTEXT

Concern

has

1..n

1..n

View

comprises

1..n

Viewpoint
conforms to

0..n

addresses

1..n1..n

Architectural
Element

Interelement
Relationship

Architecture System

Architectural
Description

has an

comprises comprises

relates

1..n

1..n

1..n2..n

can be documented by

0..n

Stakeholder

addresses the needs of

1..n

documents architecture for

1..n

38 PART I � ARCHITECTURE FUNDAMENTALS

We have added the following relationships to the diagram we originally
presented as Figure 2–5.

� A viewpoint defines the aims, intended audience, and content of a
class of views and defines the concerns that views of this class will
address.

� A view conforms to a viewpoint and so communicates the resolution of a
number of concerns (and a resolution of a concern may be communicated
in a number of views).

� An AD comprises a number of views.

THE BENEFITS OF USING VIEWPOINTS AND VIEWS

Using views and viewpoints to describe the architecture of a system benefits
the architecture definition process in a number of ways.

� Separation of concerns: Describing many aspects of the system via a single
representation can cloud communication and, more seriously, can result in
independent aspects of the system becoming intertwined in the model. Sep-
arating different models of a system into distinct (but related) descriptions
helps the design, analysis, and communication processes by allowing you to
focus on each aspect separately.

� Communication with stakeholder groups: The concerns of each stake-
holder group are typically quite different (e.g., contrast the primary con-
cerns of end users, security auditors, and help-desk staff), and
communicating effectively with the various stakeholder groups is quite a
challenge. The viewpoint-oriented approach can help considerably with
this problem. Different stakeholder groups can be guided quickly to dif-
ferent parts of the AD based on their particular concerns, and each view
can be presented using language and notation appropriate to the knowl-
edge, expertise, and concerns of the intended readership.

� Management of complexity: Dealing simultaneously with all of the aspects
of a large system can result in overwhelming complexity that no one person
can possibly handle. By treating each significant aspect of a system sepa-
rately, the architect can focus on each in turn and so help conquer the com-
plexity resulting from their combination.

� Improved developer focus: The AD is of course particularly important for the
developers because they use it as the foundation of the system design. By
separating out into different views those aspects of the system that are par-
ticularly important to the development team, you help ensure that the right
system gets built.

CHAPTER 3 � VIEWPOINTS AND VIEWS 39

VIEWPOINT PITFALLS

Of course, the use of views and viewpoints won’t solve all of your software archi-
tecture problems automatically. Although we have found that using views is really
the only way to make the problem manageable, you need to be aware of some pos-
sible pitfalls when using the view-and-viewpoint-based approach.

� Inconsistency: Using a number of views to describe a system inevitably
brings consistency problems. It is theoretically possible to use architec-
ture description languages to create the models in your views and then
cross-check these automatically (much as graphical modeling tools
attempt to check structured or object-oriented methods models), but
there are no such machine-checkable architecture description languages
in widespread use today. This means that achieving cross-view consis-
tency within an AD is an inherently manual process. To assist with this,
Chapter 23 includes a checklist to help you ensure consistency between
the standard viewpoints presented in our catalog in Part III.

� Selection of the wrong set of views: It is not always obvious which set of
views is suitable for describing a particular system. This is influenced by a
number of factors, such as the nature and complexity of the architecture, the
skills and experience of the stakeholders (and of the architect), and the time
available to produce the AD. There really isn’t an easy answer to this prob-
lem, other than your own experience and skill and an analysis of the most
important concerns that affect your architecture.

� Fragmentation: Having several views of your architecture can make
the AD difficult to understand. Each separate view also involves a sig-
nificant amount of effort to create and maintain. To avoid fragmenta-
tion and minimize the overhead of maintaining unnecessary
descriptions, you should eliminate views that do not address signifi-
cant concerns for the system you are building. In some cases, you may
also consider creating hybrid views that combine models from a num-
ber of views in the viewpoint set (e.g., creating a combined deploy-
ment and concurrency view). Beware, however, of the combined views
becoming difficult to understand and maintain because they address a
combination of concerns.

OUR VIEWPOINT CATALOG

Part III of this book presents our catalog of seven core viewpoints for information
systems architecture: the Context, Functional, Information, Concurrency, Devel-
opment, Deployment, and Operational viewpoints. Although the viewpoints are
(largely) disjoint, we find it convenient to group them as shown in Figure 3–2.

40 PART I � ARCHITECTURE FUNDAMENTALS

� The Context viewpoint describes the relationships, dependencies, and
interactions between the system and its environment (the people, sys-
tems, and external entities with which it interacts).

� The Functional, Information, and Concurrency viewpoints characterize
the fundamental organization of the system.

� The Development viewpoint exists to support the system’s construction.

� The Deployment and Operational viewpoints characterize the system
once in its live environment.

You can use the shape and position of the icons in Figure 3–2 to help un-
derstand how our viewpoints are related to one another. We have put the
Context viewpoint at the top of the diagram to indicate its role as the “over-
arching” viewpoint that informs the scope and content of all the others. We
group the Functional, Information, and Concurrency viewpoints together at
the left, to highlight that between them they define how the system provides
its functionality.

The viewpoints on the right-hand side are to some extent driven by those
on the left; for example, the Development viewpoint defines standards and
models for the construction of the architecture’s functional, information, and
concurrency elements. We have further grouped the Deployment and Opera-
tional viewpoints, since between them, these views define the system’s produc-
tion environment.

Functional Viewpoint

Information Viewpoint

Concurrency Viewpoint

Deployment Viewpoint

Operational Viewpoint

Development Viewpoint

Context Viewpoint

FIGURE 3–2 VIEWPOINT GROUPINGS

CHAPTER 3 � VIEWPOINTS AND VIEWS 41

Viewpoint Overview
Table 3–1 briefly describes our viewpoints.

Of course, not all of these viewpoints may apply to your architecture, and
some will be more important than others. You may not need views of all of
these types in your AD, and in some cases there may be other viewpoints that
you need to identify and add yourself. This means that your first job is to un-
derstand the nature of your architecture, the skills and experience of the
stakeholders, and the time available and other constraints, and then to come
up with an appropriate selection of views.

FIGURE 3–2 VIEWPOINT CATALOG

Viewpoint Definition

Context Describes the relationships, dependencies, and interactions between the
system and its environment (the people, systems, and external entities
with which it interacts). The Context view will be of interest to many of
the system’s stakeholders and plays an important role in helping them to
understand its responsibilities and how it relates to their organization.

Functional Describes the system’s runtime functional elements, their responsibilities,
interfaces, and primary interactions. A Functional view is the cornerstone
of most ADs and is often the first part of the description that stakeholders
try to read. It drives the shape of other system structures such as the infor-
mation structure, concurrency structure, deployment structure, and so on.
It also has a significant impact on the system’s quality properties such as
its ability to change, its ability to be secured, and its runtime performance.

Information Describes the way that the system stores, manipulates, manages, and dis-
tributes information. The ultimate purpose of virtually any computer sys-
tem is to manipulate information in some form, and this viewpoint develops
a complete but high-level view of static data structure and information flow.
The objective of this analysis is to answer the big questions around content,
structure, ownership, latency, references, and data migration.

Concurrency Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the system
that can execute concurrently and how this is coordinated and con-
trolled. This entails the creation of models that show the process and
thread structures that the system will use and the interprocess commu-
nication mechanisms used to coordinate their operation.

Development Describes the architecture that supports the software development pro-
cess. Development views communicate the aspects of the architecture
of interest to those stakeholders involved in building, testing, main-
taining, and enhancing the system.

Continued on next page

While it can be hard to generalize, and it is important to choose your set
of views for the specific context in which you find yourself, Table 3–2 lists the
relative importance that we have often found each view to have for some typ-
ical types of information systems. We suggest you use this table as a starting
point when choosing the views to include in your AD.

Viewpoint Definition

Deployment Describes the environment into which the system will be deployed and
the dependencies that the system has on elements of it. This view cap-
tures the hardware environment that your system needs (primarily the
processing nodes, network interconnections, and disk storage facilities
required), the technical environment requirements for each element,
and the mapping of the software elements to the runtime environment
that will execute them.

Operational Describes how the system will be operated, administered, and sup-
ported when it is running in its production environment. For all but the
simplest systems, installing, managing, and operating the system is a
significant task that must be considered and planned at design time.
The aim of the Operational viewpoint is to identify system-wide strate-
gies for addressing the operational concerns of the system’s stakehold-
ers and to identify solutions that address these.

FIGURE 3–2 VIEWPOINT CATALOG (CONTINUED)

TABLE 3–2 MOST IMPORTANT VIEWS FOR TYPICAL SYSTEM TYPES

OLTP
Information
System

Calculation Service/
Middleware

DSS/MIS
System

High-Volume
Web Site

Enterprise
Package

Context High Low High Medium Medium

Functional High High Low High High

Information Medium Low High Medium Medium

Concurrency Low High Low Medium Varies

Development High High Low High High

Deployment High High High High High

Operational Varies Low Medium Medium High

42 PART I � ARCHITECTURE FUNDAMENTALS

CHAPTER 3 � VIEWPOINTS AND VIEWS 43

SUMMARY

Capturing the essence and the detail of the whole architecture in a single model
is just not possible for anything other than simple systems. If you try to do this,
you will end up with a Frankenstein monster of a model that is unmanageable
and does not adequately represent the system to you or any of the stakeholders.

By far the best way of managing this complexity is to produce a number
of different representations of all or part of the architecture, each of which
focuses on certain aspects of the system, showing how it addresses some of
the stakeholder concerns. We call these views.

To help you decide what views to produce and what should go into any
particular view, you use viewpoints, which are standardized definitions of
view concepts, content, and activities.

The use of views and viewpoints brings many benefits, such as separa-
tion of concerns, improved communication with stakeholders, and manage-
ment of complexity. However, it is not without its pitfalls, such as
inconsistency and fragmentation, and you must be careful to manage these.

In this chapter, we introduced our viewpoint catalog, comprising the Con-
text, Functional, Information, Concurrency, Development, Deployment, and
Operational viewpoints, which we describe in detail in Part III.

FURTHER READING

A lot of useful guidance on creating ADs using views (including a discussion
of when and how to combine views) and thorough guidance for creating the
documentation for a wide variety of types of views can be found in Clements
et al. [CLEM10]. Other references that help to make sense of viewpoints and
views are IEEE Standard 1471 [IEEE00], ISO Standard 42010 [ISO11], and
Kruchten’s “4 + 1” approach [KRUC95]. One of the earliest explicit references
to the need for architectural views appears in Perry and Wolf [PERR92].

Some of the other viewpoint taxonomies that have been developed over
the last decade or so—including Kruchten’s “4 + 1,” RM-ODP, the viewpoint
set by Hofmeister et al. [HOFM00], and the set by Garland and Anthony
[GARL03]—are described in the Appendix, together with recommendations
for further reading in this area.

Part III, where we describe our viewpoint catalog in detail, contains refer-
ences for specific view-related reading.

This page intentionally left blank

645

INDEX

Numbers
“4+1” viewpoint set (Krutchen), 621–622

A
Abstraction

care and precision in the use of, 189
facilitating change, 555
in IAF (Integrated Architecture

Framework), 627
as modeling skill, 179
in SEI viewpoint catalog, 625
using for precision, 205
validation of, 218

Acceptance criteria, in process outcomes, 87
Access control

authentication. See Authentication
authorization. See Authorization
ensuring information secrecy, 460
insider threats and, 469–470
principles, 456–458
resources and, 440
security policies and, 449

Accessibility perspective
activities, 570–571
applicability to views, 569–570
architectural tactics, 571–572
concerns, 570
defined, 568
desired quality, 438
further reading, 572–573
overview of, 568–569
problems and pitfalls, 572
review checklists, 572–573

Accountability
concerns of Security perspective, 444
ensuring information secrecy, 462
security policy for, 448

ACID (Atomic, Consistent, Isolated, and
Durable) transaction properties, 302–303

Acquirers, classes of stakeholders, 133, 135
Action entities, in state model, 348
Actors (participants), representing in UML

use cases, 198
AD (architectural description)

architectural styles and, 172
breaking complex system into interrelated

views, 33–34
checklist for, 215
creating, 197–198
defined, 24, 92, 197
documenting, 177
ISO standard and, 206–207
limitations of monolithic models, 32–33
overburdening, 368
overview of, 24–26
presenting, 213–215
relationships with core concepts, 26–27
sharing models and, 59
summary and further reading, 216
views in, 177–178

AD (architectural description) contents
appendices, 212–213
design decisions, 209–210
Document Control section, 208
Glossary, 206
Introduction and Management Summary

section, 209
issues to be addressed, 212
overview of, 207–208
principles, 209
quality properties, 211
scenarios, 211
Stakeholders section, 209
Table of Contents, 208
views and viewpoints, 210–211

646 INDEX

AD (architectural description) properties
clarity, 203–204
conciseness, 201–203
correctness, 198–199
currency, 204
overview of, 198
precision, 205
sufficiency, 199–200
timeliness, 200–201

Ad hoc diagrams, 485
Ad hoc release management, 563–564
Adaptation, benefits of architectural styles,

170
Adapter design pattern, 162
ADLs (architecture description languages),

184–185, 276
ADM (Architecture Development Method),

of TOGAF, 628
Administration

ensuring adequate facilities for, 466–467
provide security, 464

Administration models, 409–414
Agile Manifesto, 101, 607
Agile methods

deferring decision to “last responsible
moment,” 201

overview of, 193–194
plan-driven methods compared with, 610
in Software development lifecycle,

100–102
team approach in, 193–194

Agile projects, 607–609
Aging, of information, 308–309
Agreements/contracts, evaluation as tool for

creating, 219
Alert notifications

alert starvation or alert flooding, 423
integrating with third-party hosting

environments and, 401
overview of, 397–398

Allocation styles, in SEI viewpoint
catalog, 625

Americans with Disabilities Act, United
States, 570

Appendices, 205, 212–213
Application code, avoiding embedding

security in, 471–472
Architect. See Software architects

Architectural description. See AD
(architectural description)

Architectural elements. See Elements
Architectural models. See Models
Architectural perspective. See Perspectives
Architectural styles or pattern. See Styles
Architectural tactics. See Tactics
Architectural views. See Views
Architecturally significance, 67–68,

124–125
Architecture definition

activities, 92–96
Agile methods in software development,

100–102
aspects of, 64
boundary between design and, 67–68
boundary between requirements analysis

and, 66
evaluation techniques for system

construction phase of lifecycle,
231–232

guiding principles, 85–86
interrelationship with core concepts,

71–72
ISO standard 42010 for, 58
iterative approaches to software

development, 100
models in, 178
overview of, 85
process context, 87–89
process exit criteria, 97–98
process outcomes, 86–87
scenarios providing input to, 147
security administration provided as part

of, 464
separating design from requirements

analysis, 65–66
in software development lifecycle, 98
styles in, 170
summary and further reading, 102–103
supporting activities in, 89–92
timeliness of, 200
waterfall approaches to software

development, 99–100
Architecture description languages (ADLs),

184–185, 276
Architecture Development Method (ADM),

of TOGAF, 628

INDEX 647

Architecture Tradeoff Analysis Method. See
ATAM (Architecture Tradeoff Analysis
Method)

Archiving/retaining information, 309–310
Artifacts, 56, 379–380
ARTS Standard Relational Data Model, 322
Assessors, 133, 135
Assistive technologies, for disabled users,

571–572
Associations, in class models, 312
Assumptions, validation of, 218–219,

504–505
Asynchronous processing, 500
ATAM (Architecture Tradeoff Analysis

Method)
architecture-centric activities, 226–229
overview of, 222–223, 226
stakeholder-centric activities, 229–230

Attack trees, 451–455
Attributes

of architecture elements, 20
in class models, 312

Audience
clarity of AD presentation to, 203
in TARA-style architectural review, 233
targeting classes of, 35
targeting in modeling, 188–189

Auditing
ensuring accountability with, 444, 462
as security mechanism, 445
sensitive events, 458

Authentication
as concern in Security perspective, 442
as security mechanism, 445
of system users, 459

Authorization
of access, 459–460
as concern in Security perspective, 442
ensuring information secrecy, 460
as security mechanism, 445

Authorized criteria, in stakeholder selection,
133

Availability
as concern of Security perspective, 444
protecting, 460–461
as security mechanism, 445

Availability and Resilience perspective
applicability to views, 512–513

assessing against requirements, 524–525
backup and disaster recovery solutions,

532–533
capturing availability requirements,

516–517
cascading failures and, 534–535
clustering and load balancing for high-

availability, 527–528
concerns of, 512–516
designing for failure, 530–531
desired quality of, 437
error detection as problem in, 536–537
fault-tolerant hardware, 526–527
fault-tolerant software, 530
functional availability, 521–524
incompatible technologies and, 539
logging transactions, 528–529
maintaining large information systems

and, 50
overambitious requirements as problem

in, 536
overestimating component resilience,

537–538
overlooking global availability

requirements, 538–539
overview of, 511–512
platform availability, 519–521
producing availability schedule, 517–519
relaxing transactional consistency, 532
replicating components, 531
single point of failure, 533
software availability solutions, 529–530
tactics for reworking architecture,

525–526
unavailability due to overload, 535–536

Availability requirements
assessing architecture against availability

requirements, 524–525
avoiding overambitious availability

requirements, 536
capturing availability requirements,

516–518, 539–540

B
Background, asynchronous processing in,

500
Backout strategy

in installation model, 403–405

648 INDEX

Backout strategy, continued
in migration model, 406
planning for, 419

Backup and restore
benefits of transaction logging, 528–529
as concern of Operational view, 399–401
risk of inadequate models for, 422–423
solutions for, 532–533
in third-party environments, 401

Bandwidth, 586–587, 589
BASE (Basically Available, Soft state,

Eventual consistency), 306
Benchmark tests, 489
Big bang migration approach, 395
Black box approach, 146, 256
Boundary attributes, element, 20
Boxes-and-lines diagrams

for functional structure model, 276–278
for module structure model, 360
for network model, 384
for runtime platform model, 381

Braille display, for visually impaired
users, 571

Brainstorming, in ATAM, 229
Build process

automating, 558
defining in codeline modeling, 367
reducing risk of lost environments, 563

Business analysts, 73
Business continuity, 516
Business drivers. See also Drivers

developing principles based on, 126
presenting in ATAM, 226
as problem-focused concern, 109–110

Business experts, 132
Business goals. See also Goals, 109–110
Business policies, as problem-focused

concern, 111
Business principles, 126
Business standards, 111
Business state, 337
Business strategies, 105, 108

C
Candidate architectures

assessing, 64
defined, 18

internal organization and, 18–19
producing, 95

Capacity planning
for networks, 384
quantitative models and, 183

Cardinality, of entity relationships, 312
Cascading failure, avoiding, 534
Centralized systems

ensuring accountability, 462
ensuring information secrecy, 460

Certificates, user authentication and, 49
Change. See also Evolution perspective

create extensible interfaces, 553–554
data model change control, 302
driven by external factors, 547–548
facilitating with design techniques,

554–555
identify configuration strategy, 408–409
likelihood of change, 546
localizing effects of, 552–553
magnitude and dimensions of, 545–546
metamodel styles supporting, 555–556
preservation of knowledge during, 548
problems and pitfalls, 561
reliability of, 549, 558–559
timescale for, 547
when to pay for, 547

Character sets, internationalization, 581,
583

CIA (confidentiality, integrity and
availability), 444

Clarity property, in effective AD, 203–204
Classes

in class models, 312
comparing views/viewpoints with objects/

classes, 35
of incidents, 414–418
of services, 512–514, 520
of stakeholders, 133–138

Client/server structure, 16–18, 171
Clients

nodes of runtime platform, 378
reducing risk of unsecured, 470–471

Cloud computing, 401, 451
Clustering, for high-availability, 527–528
Coarse-grained operations, improving

performance/scalability with, 502

INDEX 649

Code, presenting AD in, 214
Code viewpoint, in Siemens set, 624
Codeline models

activities, 366
notation of, 366
overview of, 365–366

Codeline, organization of, 359
Coherence, 254–255, 269
Cohesion, in functional design

philosophy, 269
Collusion, insider threat and, 470
Commentary, on view model, 211
Committed criteria, in stakeholder

selection, 133
Common design models

activities, 365
notation of, 363–365
overview of, 362–363

Common processing
defining, 362
example, 363–364
identifying, 358
need for, 365

Communication
models as tool for, 178, 256
scenarios as tool for, 147
skills of software architects, 77
as stakeholder responsibilities, 141
with stakeholders, 86

Communicators, classes of stakeholders,
133, 135

Compartmentalization, as security
principle, 457

Compatibility
internationalization and, 583
of protocols in heterogenous networks, 587
technology-related, 376, 539

Compensating transactions, information
consistency and, 306

Complex systems
breaking into interrelated views, 33–34
limitations of applying monolithic models

to, 32–33
Complexity

evolution support adding to, 548
excessive, 352–353
using views/viewpoints to manage, 38

Component and Connector styles, in SEI
viewpoint catalog, 625

Components
architecture elements as, 21
avoiding cascading failures, 534–535
overreliance on specific hardware/

software, 562
replication of, 531
resilience and, 537–538

Comprehensibility, qualities of good
scenarios, 153

Computational viewpoint, in RM-ODP, 623
Conceptual viewpoint, in Siemens set, 624
Concerns

capturing, 91
driving architecture definition process, 86
ISO documentation recommendations and,

206–207
linking to principles and decisions,

125–128
perspectives defining, 50, 57
problem-focused, 107–111
qualities of good concerns, 116
real-world constraints as, 114–116
relationship with requirements and

architecture, 117
scope of, 35
separating/breaking down, 38, 270
shaping architectural solutions, 105–106
software architects considering wide

range of, 66
solution-focused, 107–114
stakeholders and, 22
summary and further reading, 128–129
understanding/capturing, 68
views addressing different, 45

Concerns, by perspective
Accessibility perspective, 570–571
Availability and Resilience perspective,

512–516
Development Resource perspective,

575–576
Evolution perspective, 545–549
Internationalization perspective, 581–582
Location perspective, 586–587
Performance and Scalability perspective,

477–482

650 INDEX

Concerns, by perspective, continued
Regulation perspective, 592–593
Security perspective, 442–446
Usability perspective, 597–598

Concerns, by viewpoint
Concurrency viewpoint, 335–339
Context viewpoint, 248–255
Deployment viewpoint, 374–377
Development viewpoint, 358–360
Functional viewpoint, 268–271
Information viewpoint, 294–311
Operational viewpoint, 394–402

Conciseness, properties of effective AD,
201–203

Concurrency viewpoint/views
Accessibility perspective applied to, 569
Availability and Resilience perspective

applied to, 513
checklist for, 355
consistency across views, 431–434
contention issues related to, 506
defined, 245
dependencies, 427
Development Resource perspective applied

to, 575
Evolution perspective applied to, 544
further reading, 355–356
Internationalization perspective applied to,

580–581
interprocess communication and,

336–337
Location perspective applied to, 586
mapping functional elements to

tasks, 336
overview of, 40–41, 333–335
Performance and Scalability perspective

applied to, 477
Performance perspective applied to, 51
problems and pitfalls, 351–355
reentrancy, 338–339
Regulation perspective applied to, 592
scalability support, 338
Security perspective applied to, 441
stakeholder concerns, 339
startup and shutdown, 338
state management in, 337
state models. See State models

synchronization and integrity, 337
system-level concurrency models. See

System-level concurrency models
system types and, 40
task failure, 338
task structure in, 335–336
Usability perspective applied to, 596–597

Confidentiality, integrity and availability
(CIA), 444

Configuration management
build variation points into software, 557
as concern in Operational viewpoint, 398
defining in codeline modeling, 367
reliable change via environment, 559
reliable change with software

management, 558
Configuration management models,

406–409
Connectivity

Location perspective concerns, 586
network connections, 383

Connectors
designing, 283
in functional structure model, 272

Consistency
as concern of Context viewpoint, 254–255
in functional design philosophy, 269
of information, 305–306
pitfalls related to view-and-viewpoint

approach, 39
Consistency of views. See Views,

consistency across
Constraints

in AD, 25
as concern of Development Resource

perspective, 575–576
design, 365
in installation model, 403–404
physical, 377
real-world constraints as concerns, 114–116
reducing, 421–422
solutions shaped by, 105
standards and policies as, 107

Construction
evaluation techniques for system

construction phase, 232–233
incremental deliverables in, 88

INDEX 651

Constructive characteristic, of good
principles, 120

Consumers
external interface as, 251
separating information providers from

information consumers, 309
Content equivalence technique, for disabled

users, 572
Contention. See Resource contention
Context model

activities, 258–260
notation for, 257–258
overview of, 255–256

Context viewpoint/views
Accessibility perspective applied to, 569
Availability and Resilience perspective

applied to, 513
completeness, consistency, and coherence,

254–255
consistency across views, 427–428
context model, 255–260
defined, 244
Development Resource perspective applied

to, 575
Evolution perspective applied to, 544
external entities, services, and data in,

249–250
external interfaces in, 251–252
impact of system on its environment,

253–254
interaction scenarios, 260–261
interdependencies between entities,

252–253
Internationalization perspective applied to,

580–581
Location perspective applied to, 586
overview of, 40–41, 247–248
Performance and Scalability perspective

applied to, 477
problems and pitfalls, 261–264
Regulation perspective applied to, 592
Security perspective applied to, 441
stakeholder concerns, 254–255
system scope and responsibilities,

248–249
system types and, 42
Usability perspective applied to, 596–597

Controls
administrative, 409–410
data model change control, 302
operational, 397

Conventions
diagrams. See Semantics
perspective creating, 57

Corporate assets, protecting, 593
Correctness

checking technical correctness of
architecture, 218

properties of effective AD, 198–199
Costs

of accommodating changes that do not
happen, 560–561

auditing, 460
of change, 547
as constraint, 115
of deployment, 575–576
formula for total operation cost, 491
migration and, 395

COTS (custom off-the-shelf) package, 138
Coupling, in functional design philosophy, 270
Credibility, qualities of good scenarios, 153
Cross-cutting concerns, 6, 48
Cryptography

avoiding ad hoc, 472
confidentiality, 444
information secrecy, 461
integrity, 461–462

Cultural norms, internationalization
and, 582

Currency conversion, internationalization
and, 583

Currency, properties of effective AD, 204
Custom off-the-shelf (COTS) package, 138
Customers, as focus in modeling, 194

D
Data

Context viewpoint/views and, 249–250
identifying data entities, 314
improving performance and, 502
information systems and, 296
interface design and, 283
protecting, 593
sharing, 341

652 INDEX

Data flow model, 154
Data marts, star schema for, 312, 314
Data migration

models for, 405–409
operational concerns, 395–397
operational problems and pitfalls, 420
third-party environments and, 401

Data model
change control, 302
configuration management model

as, 407
Data providers, 251
Data stores

backup and restore planning, 401
data migration concerns, 396

Data warehouses
concurrency in, 334
information systems and, 296
star schema for, 312, 314

Databases
configuration management, 398
consistency of distributed, 327–328
contention risk in, 506–507
information storage models, 302–304
locking, 173
overloading, 327

DDoS (distributed denial-of-service)
attacks, 461

De facto standards, 113
Deadlocks, 346, 353–354
Decision logs, 236
Decision points, evaluation tool for

go/no go decisions, 219
Decisions

architecturally significant, 124–125
basing on technology principles, 126
concerns influencing, 107
deferring to "last responsible moment,"

201
design decisions in AD document,

209–210
documenting, 211
linking to principles and concerns,

125–128
overview of, 122–124
stakeholder responsibilities for

making, 142

Decommissioning projects, 619–620
Decomposition

applying to functional elements, 281
structural, 314–315

Defense in depth principle, 457
Definitions

conventions use in this book, 8
including glossary in AD, 206
of terms in models, 191

Deliverables
creating executable, 194
timeliness of, 200–201

Denial-of-service (DoS) attacks, 444, 461
Denormalizing data, 502
Dependencies

analyzing, 558
avoiding too many, 290–291
clarity/accuracy of, 387–388
configuration, 408
identifying, 362, 403–404
implicit dependencies missing, 262
between views, 426–427

Dependency injection (Inversion of Control),
555

Deployment
late consideration of environment for,

389–390
rolling back unsuccessful, 559

Deployment viewpoint/views
Accessibility perspective applied to, 570
authenticating users and, 49
Availability and Resilience perspective

applied to, 513
compatibility issues, 376
consistency across views, 428–434
defined, 42, 245
dependencies between views, 427
determining network capacity and

requirements, 376–377
Development Resource perspective applied

to, 575
Evolution perspective applied to, 545
hardware availability in, 520
intermodel relationships, 386–387
Internationalization perspective applied to,

580–581
Location perspective applied to, 56, 586

INDEX 653

network models, 382–384
overview of, 373–374
Performance and Scalability perspective

applied to, 477
performance-critical structures in,

485–486
physical constraints, 377
platform models, 378–382
problems and pitfalls, 387–391
reducing technology unavailability,

525–526
Regulation perspective applied to, 592
runtime platform required in, 374–375
Security perspective applied to, 442
specifying hardware and hosting

requirements, 375
specifying third-party software

requirements, 375–376
stakeholder concerns, 377
system types and, 40
technology dependency models,

384–386
Usability perspective applied to, 596–597

Descriptive naming, of models, 190
Design

assistive technologies for disabilities,
571–572

avoiding complexity in security, 457
boundary between architecture definition

and, 67–68
creating set of design inputs, 87
decisions in AD document, 209–210
error handling standards in, 537
for failure, 530–531
functional design philosophy, 269–271
improving performance/scalability,

501–502
for security implementation, 453–455
separating design from requirements

analysis, 65–66
Software architects making decisions

regarding, 64
standard approach in common design

models, 363–365
styles benefitting, 170
techniques facilitating change, 554–555

Design authorities, 73–75

Design patterns
applying, 172–174
architectural styles. See Styles
building variation points into software,

556–557
example of, 162–163
identifying and defining, 365
introduction to, 161–162
language idioms. See Language

idioms
software design patterns. See Software

design pattern
standardization with, 358
tactics and, 48, 166–167
techniques facilitating change, 554–555
using, 165–166

Detail
level in views, 35
too much, 367–368
wrong/inappropriate level of, 262–263,

289
Detection, security and, 444–445
Developers

classes of stakeholders, 133, 135–136
expanding focus to include all

stakeholders not just developers, 2
software architect compared with, 75
using views/viewpoints to improve focus

of, 38
Development. See also Evolution perspective

complexity concerns, 548
preservation of knowledge during change,

548
reducing risk of lost environments,

562–563
reliable change and, 560

Development Resource perspective
activities, 576–577
applicability to views, 574–575
concerns, 575–576
defined, 568
desired quality, 438
overview of, 573–574
problems and pitfalls, 577–578
tactics, 577

Development viewpoint, in “4+1” set
(Kruchten), 622

654 INDEX

Development viewpoint/views
Accessibility perspective applied to, 569
administration models, 411
Availability and Resilience perspective

applied to, 513
codeline models, 365–367
common design models, 362–365
concerns, 358–360
consistency across views, 428–433
coordination between development/

operational staff, 419
defined, 41, 245
dependencies between, 427
Development Resource perspective applied

to, 575
Evolution perspective applied to, 544
Internationalization perspective applied to,

580–581
Kruchten's standard views, 35
Location perspective applied to, 586
module structure models, 360–362
overview of, 357–358
Performance and Scalability perspective

applied to, 477
problems and pitfalls, 367–370
Regulation perspective applied to, 592
Security perspective applied to, 441
system types and, 40
Usability perspective applied to,

596–597
Diagrams. See also Notation

conventions. See Semantics
definitions in, 288
for precision in presentation of

information, 205
in TARA-style architectural review of

system, 233
Digital signatures, 460
Dimensional databases, 303
Disabled persons, regulations regarding.

See also Usability perspective, 593
Disaster recovery. See also Backup and

restore
Availability and Resilience perspective,

515–516
failure to specify, 391
identifying solutions for, 532–533

incident recovery analysis, 521–522
location-related tactics, 588

Discovery, architecture definition as, 66
Disks

archiving/retaining information on, 309
availability and time to repair, 515
backup and disaster recovery solutions, 532
mirrored, 526–527, 532–533

Distributed databases, 327–328
Distributed denial-of-service (DDoS)

attacks, 461
Distributed systems

ensuring accountability with
nonrepudiation, 462

ensuring information secrecy, 460–461
Document Control section, in AD, 208
Document sign-off, 237
Documentation

formal presentation of AD, 213
wiki presentation of AD, 213–214

Domain architect, 72
Domain-specific languages (DSL), 186–187
Domains

analysis of, 314
TOGAF, 628–629

DoS (denial-of-service) attacks, 444, 461
Downtime, planned/unplanned, 514–515,

521–524
Drawing tools, for presentation of AD, 214
Drivers

business drivers as problem-focused
concern, 109–110

shaping architectural solutions, 105
technology drivers as solution-focused

concern, 112
DSL (domain-specific languages), 186–187
Dynamic structure

in airline reservation example, 16–17
candidate architectures and, 19
of a system, 13

E
EAI (Enterprise Application Integration),

169, 616
Elements

assigning responsibilities to functional,
281–282

INDEX 655

of common design models, 365
deciding what to include in a view, 35
defined, 20
of functional structure model, 271–272
identifying functional, 280–281
of network models, 382–383
overview of, 20–21
relationships between core concepts, 26–27
replaceability of, 556–557
of runtime platform models, 378–379
system elements and relationships, 12–13

Encapsulation, of change-related effects,
553

Engineering viewpoint, in RM-ODP, 623
Enterprise Application Integration (EAI),

169, 616
Enterprise architect, 73
Enterprise architecture frameworks

overview of, 627
TOGAF (The Open Group Architecture

Framework), 628–629
Zachman framework, 627–628

Enterprise-owned information, 298–299
Enterprise resource planning (ERP), 138
Enterprise viewpoint, in RM-ODP, 623
Enterprise-wide services, 616–617
Entities

in entity-relationship modeling, 312
external. See External entities
identifying, 314
in life history models, 317
in state models, 347–348

Entity-relationship models, 187, 311–313
Environment

designing for deployment, 381
development problems related to,

369–370
impact of system on, 253–254
reduce risk of lost, 562–563
regulation concerns and, 593
reliable change with configuration

management, 559
system quality scenario and, 151

ERP (enterprise resource planning), 138
Error conditions

administration models, 410–411, 413
detection of, 536–537

internationalization and, 583
Escalation process, in support model,

414–415, 418–419
ETL (Extraction, Transformation, and Load)

tools, 396
Evaluation of architecture

applying to existing system, 233–236
choosing approach to, 237–238
formal reviews and structured

walkthroughs, 220–222
overview of, 217–218
presentations for, 219–220
prototypes and proof-of-concept systems,

224–225
reasons for, 218–219
recording results of, 236–237
reports, 236
reworking and, 96
scenarios in, 222–223, 226–230
skeleton systems, 225
during software lifecycle, 230–233
techniques for, 219

Event entities, in state model, 347
Event providers, 251
Events, alert-related, 397–398
Eventual consistency approach, to

information consistency, 306
Evolution perspective

achieving reliable change, 558–559
applicability to views, 51, 544–545
assessing ease of evolution, 551
characterizing evolution needs, 549–551
concerns in, 545–549
containing changes, 552–553
creating extensible interfaces, 553–554
design techniques facilitating change,

554–555
desired quality, 437
maintaining large information systems,

50
metamodel-based architectural styles,

555–556
overview of, 543–544
preserving development environments,

560
problems and pitfalls, 560–564
standard extension points, 557–558

656 INDEX

Evolution perspective, continued
tradeoffs in, 552
variation points in software, 556–557

Execution coordination mechanisms, for
interprocess communication, 341

Execution viewpoint, in Siemens set, 624
Expectations, managing, 577
Expertise, stakeholder, 35
Extensibility

creating extensible interfaces, 553–554
in functional design philosophy, 270

External checks, consistency across
views, 426

External entities
in context model, 256
external interfaces and, 251–252
in functional structure model, 272
identifying, 249–250, 260
implicit dependencies and, 262
interdependencies between system and,

252–253
missing or incorrect, 261
nature and characteristics of, 250
overcomplicated interactions between, 264
trustworthiness of, 458

External hosting
insider threat and, 470
operational concerns, 401
security threats of, 450–453

Extraction, Transformation, and Load (ETL)
tools, 396

Extreme Programming (XP), 101, 547, 607

F
Facilitation skills, of software architects, 76
Fact tables, in star schema, 312
Fail securely principle, 466

of Security perspective, 458
Failover, high-availability clustering, 527
Failure

avoid cascading, 533
avoid single points of, 533
design for, 530–531

Failure scenarios, 158
Fault-tolerance

hardware, 526–527
software, 530

Fault Trees technique, threat model,
451–452

Feature Driven Development, 100
File-based stores, 304
Finance, regulation concerns, 592
Finite state machine (FSM), 318
Finite State Processes language, 350
Fitness for purpose, development resources

and, 577
Flexibility

analyzing, 284
of architectural decisions, 86
critical quality properties and,

560–561
of design patterns, 173
in functional design philosophy, 270
skills of software architects, 77

Flow diagrams, 415
Flow of information, 304
Focus, lack of or unevenness of,

368–369
Formal agreements, 219
Formal notations, 343
Fragmentation, view-and-viewpoint

approach and, 39
FSM (finite state machine), 318
Full-scale live tests, 156–157
Functional availability, 521–525
Functional capabilities, 268
Functional cohesion, 553
Functional differences, internationalization

and, 582
Functional elements

in functional structure model,
271–272

mapping to tasks, 336
Functional evolution, 546
Functional migration, 395
Functional requirements, 260
Functional scenarios

example of, 150–151
information in, 150
types of scenarios, 146
UML sequence diagram of, 154–155

Functional structure models
elements of, 271–272
non-UML notation, 276–280

INDEX 657

types of qualitative models, 181
UML component diagrams, 273–275

Functional viewpoint/views
Accessibility perspective applied to, 569
assigning responsibilities to functional

elements, 281–282
Availability and Resilience perspective

applied to, 513
breaking AD document down by views, 205
checklist for, 291
comparing with Information, and

Operational viewpoints, 46–47
concerns, 268–271
consistency across views, 427–431
defined, 41, 244
dependencies between, 427
designing connectors, 283
designing interfaces, 282–283
Development Resource perspective applied

to, 575
Evolution perspective applied to, 51, 544
example of type of information in AD

document, 210
functional structure model, 271–273
identifying functional elements, 280–281
Internationalization perspective applied to,

580–581
Location perspective applied to, 586
non-UML notation, 276–280
overloading of, 286–288
overview of, 267–268
Performance and Scalability perspective

applied to, 477
problems and pitfalls, 285–291
reducing risk of concurrency-related

contention, 506
Regulation perspective applied to, 592
Security perspective applied to, 441
system types and, 40
UML component diagrams, 273–275
Usability perspective applied to, 596–597
walkthroughs, traceability checks, and

analysis, 284

G
Gane and Sarson information flow

model, 316

Garland and Anthony viewpoint set,
626–627

Generalization
applying to functional elements, 281
in functional design philosophy, 270
patterns facilitating change, 555
styles, patterns, and idioms resulting in,

166
Global availability requirements, 538–539
Glossary, 206, 212
Goals

business goals as problem-focused
concern, 109–110

performance/scalability and, 502–503
reviewing, 259–260
shaping architectural solutions, 105–106
in TARA-style architectural review of

system, 233
technology goals as solution-focused

concern, 112
"God object" problem, 290
Good enough approach, to modeling, 179,

194
Graphical notations. See also UML (unified

modeling language)
of availability schedule, 518
for estimating functional availability, 523
for technology dependency model, 385

Groups
build variation points into software, 557
configuration, 407–408
identifying supported, 414–416
security policy defined by, 448
stakeholder, 141

Growth, as dimension of change, 546

H
Hardware

availability and time to repair, 515
degrade gracefully, 499–500
estimate platform availability, 519–521
fault-tolerant, 526–527
online/offline storage hardware, 378–379
overreliance on specific, 562
in platform evolution, 546
reducing compatibility risks, 539
resource requirements, 481

658 INDEX

Hardware, continued
runtime platform activities related to, 381
scale up or scale out, 498–499
specifying type and quantity of, 375
virtualization tools, 563

Hash functions, cryptographic, 461–462
Headroom provision, in deployment,

390–391
Health and safety regulations, 593
High-availability, 527–528
High-contrast and low-resolution interfaces,

for disabled persons, 571
Hosting requirements, specifying, 375
Hot spots, 506–507

I
IAF (Integrated Architecture Framework),

627
Identifiers, for information, 299–301
Identifying scenarios, 148–149
IDLs (Interface definition languages), 283
IEEE (Institute of Electrical and Electronics

Engineers)
role defining open standards, 113
Standard 1471 (on views), 34

Improvements
perspective resulting in, 55
styles, patterns, and idioms resulting in,

166
In-house development, 615
Incident recovery analysis, 521–522
Informal notations, 343–344
Information

accountability, 462
consistency of, 305–306
disaster recovery of, 515–516
identifiers, 299–301
information, 307–308
integrity of, 461–462
ownership of, 296–298
privacy of, 445
purpose and usage of, 295–296
quality analysis, 320–321
quality of, 597
secrecy of, 460–461
storage models, 302–304
structure and content of, 294–295

synchronization in migration models, 406
timeliness, latency, and aging of, 308–309

Information capture skills, of software
architects, 76

Information flows and ports, 277, 279–280
Information models

information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
metamodels, 321–322
types of qualitative models, 181
volumetric models, 322

Information providers, separating from
information consumers, 309

Information viewpoint, in RM-ODP, 623
Information viewpoint/views

Accessibility perspective applied to, 569
archiving/retaining information, 309–310
Availability and Resilience perspective

applied to, 513
breaking AD document down by views,

205
comparing with Functional and

Operational viewpoints, 46–47
concerns, 294–311
consistency across views, 427–433
consistency of information, 305–306
defined, 41, 244
dependencies between, 427
Development Resource perspective applied

to, 575
enterprise-owned information, 298–299
Evolution perspective applied to, 544
flow of information, 304
identifiers for information, 299–301
information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
Internationalization perspective applied to,

580–581
Location perspective applied to, 586
metamodels, 321–322
models, 311
overview of, 293–294
ownership of information, 296–298

INDEX 659

Performance and Scalability perspective
applied to, 477

problems and pitfalls, 322–329
purpose and usage of information,

295–296
quality of information, 307–308
Regulation perspective applied to, 592
Security perspective applied to, 51, 441
stakeholder concerns, 310–311
static information structure models,

311–315
storage models for information, 302–304
structure and content of information,

294–295
system types and, 40
timeliness, latency, and aging of

information, 308–309
Usability perspective applied to, 596–597
user authentication and, 49
volatility of information semantics,

301–302
volumetric models, 322

Informed criteria, in stakeholder
selection, 133

Infrastructure architect, 72
Inputs, to the architectural design process, 94
Input, provided by scenarios to architectural

assessment, 147
Insider threat, 469–470
Installation groups, 403–404
Installation models, 402–405
Installation, operational concerns, 394
Institute of Electrical and Electronics

Engineers (IEEE)
role defining open standards, 113
Standard 1471 (on views), 34

Instrumentation, 359
Integrated Architecture Framework (IAF), 627
Integration

of architectural decisions, 86
defining in codeline modeling, 367
evolution of, 546
lacking in production environment, 422

Integration hub, for interface complexity
issues, 326

Integrity
defined, 461

identifying security policy
requirements, 449

of information, 461–462
security concerns and, 444
as security mechanism, 445
security policy for, 448
synchronization of threads and, 337

Interaction scenarios, 260–261
Interactions, functional, 284
Interactive modeling, 194
Interface definition languages (IDLs), 283
Interfaces

assistive technologies for disabilities,
571–572

attributes of architecture elements, 20
complexity issues, 325–326
in context model, 256
designing functional, 282–283
extensibility of, 553–554
in functional structure model, 272
poorly defined, 285
usability concerns and, 597–598
usability tactics and, 599

Interfaces, external
functional concerns and, 268
identifying, 251, 260
loose or inaccurate, 262

Internationalization
in common design models, 364–365
design patterns for, 173

Internationalization perspective
activities, 582
applicability to views, 580–581
architectural tactics, 583
concerns, 581–582
defined, 568
desired quality, 438
overview of, 579–580
problems and pitfalls, 583

Internet chat technologies, for hearing
impaired, 571

Internet, enabling project for, 618–619
Internet-scale systems

availability requirements for, 539
location concerns, 587
overloading, 535
relaxing transactional consistency in, 501

660 INDEX

Interprocess communication. See IPC
(interprocess communication)

Introduction and Management Summary
section, in AD document, 209

Intrusion detection, 455
Inversion of Control (dependency injection),

555
IPC (interprocess communication)

defining mechanisms for, 345–346
overview of, 341
types of mechanisms for, 336–337

ISO (International Organization for
Standardization)

financial services messaging
(20022), 322

metadata (11197-3), 321
recommendations for documenting an

architecture (42010), 206–207
role defining open standards, 113
sharing model across views and

(42010), 58
IT strategies, 105, 112
Iterative approach

reliable change with continuous
iterations, 559

to software development, 100
to system delivery, 544

J
Jackson System Development, 276
Jargon, avoiding overuse of, 264

K
Kanji keyboards, 583
Key-matching problem, 324–325
Keys, security, 49
"Knee" in the performance curve, 482,

499–500
Knowledge, preserving of during change,

548

L
Language idioms

applying, 172–174
overview of, 165
types of design patterns, 161
using, 165–166

Languages. See also Internationalization
perspective

internationalization and, 582
patterns creating common, 166

Large programs, 612–614
Latency

estimating for networks, 384
excessive, 328–329
of information, 308–309

Law enforcement, 593
Layered Implementation style, 171
Layering patterns, to facilitate change, 555
Leadership, software architect role and, 70
Lean Software Development, 101
Least amount of privilege, security principle,

457
Legislation

regarding disabilities, 568–570
regulation concerns and, 592–593
usability problems and, 572

Lifecycle
agile methods in, 100–102
architectural decisions in, 86
architecture definition in, 98
evaluation of architecture during,

230–233
information lifecycle models, 317–319
project lifecycle, 605
state compared with, 337

Lightweight processes. See Threads
Likelihood of change, 546, 550–551
Links, network, 379
Lists, for presentation of information, 205
Live system, data migration from, 396–397
Load balancing, for high-availability,

527–528
Load, peak load behavior, 481–482
Local processing

make design compromises, 502
performance differences of remote vs.,

504, 508–509
performance model example, 487

Location perspective
activities, 587–588
applicability to views, 585–586
applied to Deployment view, 56
architectural tactics, 588–589

INDEX 661

concerns, 586–587
defined, 568
desired quality, 438
overview of, 585
problems and pitfalls, 589

Locks, database, 173
Logical views, Kruchten’s standard views, 35
Logs/logging

instrumentation and, 359
log transactions, 528–529

Lookup data, 296

M
Magnetic tape, for backup and disaster

recovery, 532
Magnitude of change, 545, 550–551
Maintainers, classes of stakeholders, 133, 136
Management tools, 420–421
Master data, 296
Mathematics

mathematical model, 183
mathematical notation, 191

Mean time between failures (MTBF), 520
Mean time to repair (MTTR), 520
Measurement/measurability

business goals and drivers and, 109
estimate platform availability, 519–521
identify and estimate for performance

models, 486
measure and estimate performance, 489
performance monitoring requiring, 399
perspective creating, 57
qualities of good concerns, 116
quantitative models and, 183

Meetings, minutes of, 236
Message bus, for interface complexity

issues, 326
Message-oriented interactions, 277,

279–280
Messaging mechanisms, for interprocess

communication, 341
Metamodels

architectural styles based on, 555–556
informational, 321–322

Metasystem approach to change, 547,
555–556

Metrics. See Measurement/measurability

Migration
data, 395–397
functional, 395

Migration models, 405–406
Minutes of meeting, 236
Mirrored disks

backup and disaster recovery solution,
532–533

fault-tolerance of, 526–527
Mock-ups, types of qualitative models, 181
Modeling languages

ADL (architecture description language),
184–185

DSL (domain-specific languages),
186–187

entity-relationship models, 187
for qualitative models, 182
UML (unified modeling language),

185–186
Models

abstraction in, 189
administration models, 409–414
agile approach to, 193–194
in architectural description, 25
availability, 519–521
avoiding overload using performance

models, 536
codeline models, 365–367
common design models, 362–365
configuration management models,

406–409
context models, 255–260
creating performance models, 484–487
descriptive naming in and term

definitions, 190–191
example of performance model, 487
importance of, 178–181
information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
installation models, 402–405
interaction scenarios in, 260–261
intermodel relationships, 386–387
metamodels, 321–322
migration models, 405–406
module structure models, 360–362

662 INDEX

Models, continued
network models, 382–384
notation in, 191–192
overview of, 177–178
performance analysis, 487–488
purposeful approach to creating, 187–188
qualitative, 181–182
quantitative, 182–183
reducing risk of unrealistic performance, 503
reworking architecture to improve

performance, 490
risk-driven approaching to, 189–190
runtime platform models, 378–382
semantics in, 192
simplicity in, 191
sketches, 184
state models, 347–351
static information structure models,

311–315
support models, 414–419
system-level concurrency models,

340–347
targeting an audience with, 188–189
technology dependency models, 384–387
updating, 193
validation of, 193
for views, 210–211
volumetric models, 322
for well-defined security, 468–469

Moderator role, in reviews and
walkthroughs, 221

Module structure models
activities, 362
notation of, 360–361
overview of, 360

Module styles, in SEI viewpoint catalog, 625
Module viewpoint, in Siemens set, 624
Modules, 21, 358
Monitoring

administration models for, 409–410
concerns in third-party environments, 401
operational control and, 397
performance, 399
as security mechanism, 445

Moore's Law, 476
MTBF (Mean time between failures), 520
MTTR (Mean time to repair), 520

N
Naming, descriptive naming of models, 190
Negotiation skills, of software architects, 76
Network models

activities of, 384
elements of, 382–383
example of, 387
notation of, 384

Networks
capacity needs of, 376
connections, 383
designing, 384
failure of, 588
hardware requirements for, 376
links in, 379

Nodes
clustered configurations and, 527
in network models, 378, 382–383

Nonfunctional requirements, issues
addressed by perspectives, 48

Nonrepudiation of messages, 445, 462
Normalization, of information models, 314
NoSQL databases, 303–304
Notation

administration models, 411
codeline models, 366
common design models, 363–365
configuration management models, 407
context models, 257–258
information flow models, 316–317
information lifecycle models, 318
installation models, 403
interaction scenarios, 261
migration models, 405–406
in models generally, 191–192
module structure models, 360–361
network models, 384
non-UML notation, 276–280
overview of, 273
performance models, 485
perspective creating, 57
runtime platform models, 379–381
state models, 348–350
static information structure models,

312–314
system-level concurrency models,

341–344

INDEX 663

technology dependency models, 385–386
UML component diagrams, 273–275

Notifications, alert-related, 397–398
Numbering element of AD, 205

O
Object Constraint Language (OCL), 283
Object ID, 299
Object Modeling Technique, 276
Object-orientation

comparing views/viewpoints with objects/
classes, 35

object ID in, 299
OCL (Object Constraint Language), 283
Off-the-shelf deployment project, 138–139
Office space, development concerns, 576
Offline modes, 588
OLAP (online analytical processing), 296
OLTP (online transactional processing), 295
Online backups, 533
Open standards, 113
Operating systems, configuration

management and, 398
Operational constraints, 115
Operational monitoring, 397, 410
Operational service levels, 516–517
Operational viewpoint/views

Accessibility perspective applied to, 570
administration models, 409–414
alerting, 397–398
Availability and Resilience perspective

applied to, 513
backup and restore, 399–401
comparing with Functional and

Information viewpoints, 46–47
configuration management, 398
configuration management models, 406–409
consistency across views, 431–434
data migration, 395–397
defined, 42, 245
dependencies between, 427
design functional availability schedule,

523–524
Development Resource perspective applied

to, 575
Evolution perspective applied to, 545
functional migration, 395

installation and upgrade, 394
installation models, 402–405
Internationalization perspective applied to,

580–581
Location perspective applied to, 586
migration models, 405–406
operational monitoring and control, 397
overview of, 393–394
Performance and Scalability perspective

applied to, 477
performance monitoring, 399
problems and pitfalls, 419–423
Regulation perspective applied to, 592
Security perspective applied to, 442
stakeholders, 401–402
support concerns, 399
support models, 414–419
system types and, 40
third-party environment and, 401
Usability perspective applied to, 596–597
user authentication and, 49

Optimization
consolidating related workload, 494–495
repeated processing and, 491–492

Organizational context, software architect
role in, 73–75

Organizational or cultural
constraints, 116

Organizational standards, 113
Overhead, transaction, 494–495
Overloading

availability and, 535
of central database, 327
degrade gracefully and, 499–500
functional, 286–288

Overview statement
in functional scenario, 150
in system quality scenario, 151

Ownership
of architecture definition, 68
of information, 296–298

P
Packages, implementing, 618
Paper models, 154–155
Parallel processing, 497–498
Parallel run migration approach, 395

664 INDEX

Partitioning
performance and scalability and, 497–498
reduce risk of inappropriate, 504

Partnered development project, 140
Patterns. See Design patterns and Software

patterns
Peak load behavior

improving, 495–496
performance and scalability and, 481–482

Percentages, availability metrics, 519
Performance

data migration concerns, 395
usability concerns, 598

Performance and Scalability perspective
analyzing performance models, 487–488
applicability to views, 476–477
applied to Concurrency viewpoint, 51
assessing performance against

requirements, 489–490
asynchronous processing, 500
capturing performance requirements,

482–484
conducting practical tests, 488–489
consolidating related workloads, 494–495
creating performance models, 484–487
degrading gracefully, 499–500
design compromises, 501–502
desired quality, 437
distributing processing over time, 495–496
example applying, 55
maintaining large information systems, 49
minimizing resource sharing, 496
optimizing repeated processing, 491–492
overview of, 475–476
partitioning and parallelizing, 497–498
prioritizing processing, 493–494
problems/pitfalls, 502–509
reducing contention, 492–493
relaxing transactional consistency, 501
reusing resources and results, 496–497
reworking architecture to improve

performance, 490
scaling up or out, 498–499

Performance-Critical structures, 485–486
Performance engineering, 399
Performance models

analyzing, 487–488

avoiding overloading, 536
creating, 484–487
example of, 487
reducing risk of unrealistic

performance, 503
reworking architecture to improve

performance, 490
Performance monitoring

administration models, 410–414
operational concerns and, 399
operational monitoring vs., 410

Persistent storage, 515
Perspectives

Accessibility. See Accessibility perspective
applying to models, 178
applying to views, 51–54
Availability and Resilience. See

Availability and Resilience perspective
benefits of, 56–58
catalog of, 60–61, 437–438
comparing with viewpoints and views, 59
consequences of applying, 54–56
defined, 6, 47
Development Resource. See Development

Resource perspective
Evolution. See Evolution perspective
Internationalization. See

Internationalization perspective
Location. See Location perspective
overview of, 48–51, 567–568
Performance and Scalability. See

Performance and Scalability perspective
pitfalls related to, 58
presenting for views, 210–211
quality properties and, 45–47
Regulation. See Regulation perspective
relationships between core concepts, 56
Security. See Security perspective
in software architecture example, 6
system types and, 61
Usability. See Usability perspective
viewpoints compared with, 58–60
views compared with, 45

Petri Nets, 350
Physical constraints

real-world constraints as concerns, 115
taking into account, 377

INDEX 665

Physical environment, 587, 589
Physical sites, ignoring intersite

complexities, 389–390
Physical viewpoint, in “4+1” set

(Kruchten), 622
Physical views, Kruchten’s standard

views, 35
Piloting, development resources and, 577
Pipes and Filters architectural style,

167–169
Plan-driven projects, 609–611
Planned downtime, 514–515
Platform

assumptions, 504–505
evolution, 546

Platform availability
assess against availability requirements,

524–525
create incident recovery analysis,

521–522
estimate, 519–521
reduce risk of incompatible

technologies, 539
select fault-tolerant hardware,

526–527
Policies

business policies as problem-focused
concern, 111

security. See Security policies
shaping architectural solutions, 105
technology policies as solution-focused

concern, 113–114
Politics

high-priority stakeholders, 132
internationalization and, 582

Ports and information flows, 277,
279–280

Power grids, cascading failure of, 534
Practical testing

performance and scalability and,
488–489

reducing risk of unrealistic
performance, 503

simulating runtime environment in, 503
Precision

lack of, 369
properties of effective AD, 205

qualities of good scenarios, 153
of security policy, 448

Predictability, performance and scalability
and, 480–481

Presentations
of AD, 213–215
for evaluation of architecture, 219–220
for scope and option explorations, 231

Presenter role, 221
Primary keys, 299
Principals

authentication of, 459
authorize access for, 459–460
granting least amount of privilege possible

to, 457
grouping for security policy, 448–450
security, 440
Security perspective concerns, 442

Principles
applying recognized, 456–457
conventions use in this book, 8
creating own, 122
definition of, 119
examples of use of, 118–120
general architectural principles in AD

document, 209
linking to concerns and decisions, 125–128
overview of, 117–119
qualities of good principles, 120–121
for translating goals into features, 110
view-specific, 210

Prioritization
of evolutionary dimensions, 560–561
of processing, 493–494
of scenarios, 149, 229–230

Privacy, of information, 445
Privilege, principle of least, 457
Problem escalation, 401
Problem-focused concerns, 107–111
Procedure call mechanisms

for interprocess communication, 341
modeling using UML, 342

Process groups, in system-level concurrency
model, 340

Process viewpoint, in “4+1” set
(Kruchten), 622

Process views, Kruchten’s standard views, 35

666 INDEX

Processes
context in architecture definition, 87–89
exit criteria in architecture definition,

97–98
flow of, 597
interprocess communication, 336–337, 341
outcomes in architecture definition, 86–87
prioritizing, 346
in system-level concurrency model, 340
tasks and, 335

Processing
areas of common processing, 358
asynchronous, 500
build variation points into software, 557
consolidating related workloads, 494–495
distributing over time, 495–496
minimizing resource sharing, 496
optimizing repeated, 491–492
partitioning and parallelizing, 497–498
prioritizing, 493–494
reusing resources and results, 496–497

Processing nodes
in network models, 382
of runtime platform, 378

Processing pipeline, 168
Product architect, 72
Product management, 545
Product ownership, 545
Production engineers, classes of

stakeholders, 133, 136
Production environment

reducing constraints in, 421
reducing lack of integration in, 422

Products
in architectural description, 24–25
development projects, 615–616

Program code, 191
Programming languages, 173–174, 282–283
Project lifecycle, 605
Project managers, 73
Projects

agile, 607–609
decommissioning, 619–620
enabling for Internet, 618–619
for enterprise-wide services, 616–617
for extending existing systems, 617–618
in-house development of, 615

implementing software packages, 618
large programs, 612–614
for new product development, 615–616
plan-driven, 609–611
project lifecycle and, 605
small and low-risk, 606–607

Proof-of-concept systems, 224–225
Proprietary standards, 113
Prototype implementation tests, 156
Prototypes

for architectural definition phase of
lifecycle, 232

for defining scope and exploring options,
231

of development resources, 577
in evaluation of architecture, 224–225
types of qualitative models, 181

Proxy stakeholders, 140–141
Publisher/Subscriber style, 171

Q
Qualitative models, 181–182
Quality attribute tree, in ATAM, 228
Quality management standards, 86
Quality, of information

analyzing, 320–321
overview of, 307–308
poor quality information, 328

Quality properties
in airline reservation example, 15–18
internal organization and, 19
modules and, 362
perspective pitfalls and, 58
perspectives and, 45–47
scale of, 202
in software architecture design, 5–6
summarizing in AD document, 211
types of system properties, 14

Quality triangle, 23
Quantifiability

of business goals and drivers, 109
of concerns, 116

Quantitative goals, 482–484
Quantitative models, 182–183

R
Race conditions, 354–355

INDEX 667

RAID (Redundant Array of Inexpensive or
Independent Disks) architectures,
526–527, 538

Rational Unified Process. See RUP (Rational
Unified Process)

Recommendations, in TARA-style
architectural review of system, 235

Recovery, from disaster. See Disaster
recovery

Recovery, security detection and, 444–445
Redundant Array of Inexpensive or

Independent Disks (RAID) architectures,
526–527, 538

Reentrancy, concurrency and, 338–339
Reference data, in information systems, 296
Regulation perspective

activities, 594
applicability to views, 591–592
architectural tactics, 594
concerns, 592–594
defined, 568
desired quality, 438
in maintaining large information systems,

50
overview of, 591
problems and pitfalls, 594

Regulations
disability requirements, 570
usability and, 572

Relational databases, 302–303
Relationships, in entity-relationship

modeling, 312
Release process

ad hoc management and, 563–564
automating, 559
defining in codeline modeling, 367

Reliability
of change, 549, 558–559
usability and, 598

Remote procedure calls, 342
Remote processing, 504, 508–509
Repeated processing, optimize, 491–492
Replication

applying to functional elements, 281
component, 531
reducing contention via, 492–493

Reporting database, for information

systems, 295
Representative criteria, in stakeholder

selection, 133
Request handling, overloading and, 535
Requirements

assessing architecture against availability
requirements, 524–525

avoiding overambitious availability
requirements, 536

capturing availability requirements,
516–518, 539–540

converting goals and drivers into, 109
development resources, 578
evolution of, 550–551
identifying and prioritizing scenarios, 148
location, 590
performance and scalability and,

482–484, 489–490
as problem-focused concern, 110–111
process outcomes, 86
regulation, 594–595
relationship with concerns and

architecture, 117
revisiting, 96
scenarios for capturing, 145–146
scenarios for finding missing, 147
security, 468–469, 572
TARA-style architectural review of

system, 234–235
usability, 570, 600

Requirements analysis
boundary between architecture definition

and, 66
as context for architecture definition, 88
separating from design, 65–66

Resilience. See Availability and Resilience
perspective

Resource contention
analyzing, 346
concurrency-related, 352–353, 505–506
improving performance by reducing,

492–493
minimizing resource sharing, 496
reducing risk of, 505–507

Resources
authorize access to, 459–460
careless allocation of, 508

668 INDEX

Resources, continued
constraints causing software projects/

delays, 577–578
at core of system security, 440
defining mechanisms for sharing, 345
designing security for sensitive resources,

453–455
development resources, 574–579
ensuring information secrecy, 460–461
identifying for security policy, 446–449
identifying threats to, 453
minimizing sharing, 496
reusing, 496–497
security concerns and, 442

Response time
defined, 477
hardware resources effecting, 481
interrelationship with throughput,

479–480
peak load behavior and, 482
performance and scalability concerns and,

477–479
Performance and Scalability perspective,

477–479
specifying requirements for, 484

Responsibilities
assigning to functional elements, 281–282
attributes of architecture elements, 20
context viewpoint concerns, 248–249
of external entities, 260
poorly understood, 285
of software architects, 77–78
of stakeholders, 141–142

Responsiveness class, response time,
478–479

Restore. See Backup and restore
Reuse, of resources and results, 496–497
Review records, 236
Reviewers

in architecture definition, 98
in reviews and walkthroughs, 221
stakeholder responsibilities, 142

Reviews
for architectural definition phase of

lifecycle, 232
for defining scope and exploring options,

231

formal reviews for evaluating architecture,
220–222

for system construction phase of lifecycle,
232–233

Risk-driven approach, 189–190
Risks

assessing development resources, 576
assessing ease of evolution, 551
assessing performance, 490
due to unfamiliar technology, 202
functional migration and, 395
identifying availability, 525
operations and, 419–423
reducing, 166
risk assessment process, 455–456

RM-ODP (Reference Model for Open
Distributed Processing), 623

Roadmaps, in business strategy, 108
Routine operational procedures,

administration models, 410–412
Runtime containers, 378
Runtime dependencies, 386
Runtime platform, 374–375
Runtime platform models

activities of, 381–382
elements for, 378–379
notation of, 379–381

RUP (Rational Unified Process)
in development resources, 577
iterative approaches to software

development, 100
Kruchten’s approach as basis of, 34
plan-driven methods, 609

S
SAAM (Software Architecture Assessment

Method). See also Scenario-based
evaluation, 223, 226

Safety regulations, 593
Sarbanes-Oxley Act, 592
Scalability. See also Performance and

Scalability perspective
concerns, 480
concurrency and, 338
scaling up or out hardware, 498–499
specifying requirements, 484

Scenario-based evaluation

INDEX 669

in architectural definition phase of
lifecycle, 232

architecture-centric activities, 226–229
overview of, 226
stakeholder-centric activities, 229–230
steps in, 222–223

Scenarios
in AD document, 211
applying, 154
capturing, 149–153
checklist for, 159
documenting, 211
effective use of, 157–159
in evaluation of architecture, 222–223,

226–230
identifying, 94, 148–149
overview of, 145–146
paper models for, 154–155
prioritizing, 148–149, 229–230
qualities of good scenarios, 153–154
simulations of, 156
testing, 156–157
types of, 146
uses for, 147–148
walkthroughs, 155–156, 260, 284

Schedule, availability, 517–519, 522–524
Scope

deciding what to include in a view (view
scope), 34–35

defining in architectural description, 25
defining initial, 91
scenarios in validation of system scope,

147
of stakeholder concerns, 35
system scope as concern, 110–111
techniques for defining, 230–231

Scope creep, 263
Screen magnifier, for visually impaired

users, 571
Screen reader, for visually impaired

users, 571
Scrum, 101, 607
SDL, 350
Secrecy of information, 460–461
Security

data migration concerns, 395
defined, 440

Security infrastructure
assess risks, 455–445
avoid system not designed for failure, 466
design system-wide, 453–455
use third-party, 464–465

Security mechanisms
enforcing policies, 440
Security perspective concerns, 445–446

Security perspective
applicability to views, 441–442
applied to Information viewpoint, 51
concerns, 442–446
desired quality, 437
example of applying, 55
maintaining large information systems,

49
overview of, 439–441

Security perspective activities
assessing risks, 455–456
defining security policy, 448–450
designing security implementation,

453–455
identifying sensitive resources, 446–448
identifying threats, 450–453

Security perspective problems/pitfalls
ad hoc security technology, 472
assuming client is secure, 470–471
complex policies, 465
failure to consider time sources, 467–468
ignoring insider threat, 469–470
lack of administration facilities, 466–467
no clear requirements or models, 468–469
overreliance on security technology, 468
piecemeal security, 472
security as afterthought, 469
security embedded in application code,

471–472
system not designed for failure, 466
technology-driven approach, 467
unproven technologies, 465–466

Security perspective tactics
applying recognized security principles,

456–459
authenticating principals, 459
authorizing access, 459–460
ensuring accountability, 462
ensuring information integrity, 461–462

670 INDEX

Security perspective tactics, continued
ensuring information secrecy, 460–461
integrating security technologies, 463
protecting availability, 462–463
providing security administration, 464
third-party infrastructure, 464–465

Security policies
avoiding complex, 465
concerns, 442–443
defining, 448–450
designing detection and recovery

approach, 455
ensuring well-defined security models and

requirements, 469
providing administration of, 464
resource address, 440

SEI (Software Engineering Institute) “Views
and Beyond” Views, 624–625

Semantics
careful use of implied semantics in

models, 192
representation incompatibilities, 322–324
volatility of information semantics, 301–302

Sensitivity points, in ATAM, 229
Separate responsibilities, security principle

of, 457
Service-level agreements (SLAs), 388–389
Service providers, 251
Services

capturing availability requirements,
516–517

classes of, 512–514
enterprise-wide service projects, 616–617
provided by architecture elements, 20

Shared resources, 496
Sharing information, 194
Shutdown, concurrency design and, 338
Siemens viewpoint set, 623–624
Signatures, cryptographic, 444
Simplicity

in functional design philosophy, 270
in models, 191

Simulations
of scenarios, 156
types of qualitative models, 181

Single point of definition, localizing effects
of change, 553

Single points of failure, 533
Skeleton systems

for architectural definition phase of
lifecycle, 232–233

creating, 92
in evaluation of architecture, 225

Sketches
functional, 277
of functional and deployment views, 234
for informal modeling, 184

Skills
of model builder, 179
real-world constraints as concerns, 115
of software architect role, 76–77

SLAs (service-level agreements), 388–389
Small projects, 606–607
Software

applying availability solutions, 529–530
availability and time to repair, 515
build variation points for system

evolution, 556–557
estimating platform availability, 519–521
fault-tolerant, 530
overreliance on specific, 562
in platform evolution, 546
reducing risk of incompatible

technologies, 539
reliable change and, 558
selecting in common design models,

363, 365
third-party software requirements,

375–376
Software architects

in architectural description (AD), 64
architectural leadership, 70
aspects of, 68
boundary between AD and requirements

analysis, 66
boundary between architecture definition

and design, 67–68
involvement during stages of system

delivery, 69–70
in organizational context, 73–75
overview of, 63
project lifecycle and, 605
relationships between core concepts,

71–72

INDEX 671

responsibilities of, 77–78
separating design from requirements

analysis, 65–66
skills of, 76–77
specialization areas for, 72–73

Software architecture
agile projects and, 607–609
applying metamodel-based styles,

555–556
approaches in ATAM, 228
assessing current ease of evolution, 551
considering evolution tradeoffs, 552
core concepts, 26–27
defined, 11–12
Development Resource perspective and,

574–579
evaluating. See Evaluation of architecture
fundamental system properties, 13–14
importance of, 19–20
ISO recommendations for documenting,

206–207
key activities, 84
in large programs, 612–614
overview of, 11–12
in plan-driven projects, 609–611
presenting in ATAM, 227
principles of design and evolution, 14–15
project lifecycle and, 605
refining, 64
relationship with requirements and

concerns, 117
revising for evolution strategy, 552
reworking to improve performance, 490
scenarios in evaluation of, 147
in small and low-risk projects, 606–607
structures resulting from design

decisions, 64
system elements and relationships, 12–13
system properties and internal

organization, 15–19
tactics for reworking availability, 525–526
usability concerns, 598

Software design patterns
building patterns (Alexander) and, 161
example of use of, 162–163
overview of, 165

Software development lifecycle

Agile methods in, 100–102
evaluation of architecture during,

230–233
iterative approaches to, 100
overview of, 98
waterfall approaches to, 99–100

Software engineering practices, 86
Software packages, implementing, 618
Software product development project,

139–140
Solution architect, 72
Solution-focused concerns, 112–114
Solutions

concerns shaping, 105–106
criticality of problems and, 202
focusing on in modeling, 194
identifying and evaluating, 87
perspectives providing for common

problems, 58
styles for finding related solutions, 170

Source code
codeline organization, 359
designing structure for, 367

Specialists
high-priority stakeholders, 132
lack of (Deployment viewpoint pitfalls),

389
Specializations, for software architect role,

72–73
Specificity, qualities of good scenarios, 153
Spreadsheets, 215
SQL databases, 302
SSADM data flow model, 316
Staged migration approach, 395
Stakeholders

applying Usability perspective, 571
approving security policy, 448
avoiding overambitious availability

requirements, 539
capturing needs of, 64
clarity of, 203
classes of, 133–138
communicating with, 38
concurrency concerns, 339
context viewpoint concerns, 254–255
correctness in representing needs/

concerns of, 199

672 INDEX

Stakeholders, continued
criteria for good, 133
defined, 6, 21, 131
deployment concerns, 377
determining audience class(es) view is

aimed at, 35
development concerns, 359–360
development resource concerns, 576
engaging, 91
evaluating AD with, 220–222
evaluating architecture with, 96
functional concerns, 271
groups, 141
high-priority, 132
identifying and engaging, 68
identifying and prioritizing scenarios, 148
importance of, 23–24
individual, team, or organization, 22
information concerns, 310–311
interests and concerns of, 22–23
involving in scenarios, 158–159
involving in security administration, 464
ISO recommendations for documenting an

architecture, 206–207
managing expectations of, 86–87, 110
in off-the-shelf deployment project

example, 138–139
operational concerns, 397, 401–402
overview of, 21
in partnered development project

example, 140
perspective pitfalls and, 58
presenting complex systems to, 33
proxy stakeholders, 140–141
reconciling needs of multiple, 288–289
relationships between core concepts,

26–27
responsibilities of, 141–142
scenarios for communication with, 147
security examples for, 469
selecting, 131–133
software architects getting input from, 66
in software architecture example, 2–4
in software product development project,

139–140
support models for, 414–419

Stakeholders section, in AD document, 209

Standard extension points, Evolution
perspective, 557–558

Standardization
of design, 358–359
styles, patterns, and idioms as aid

to, 166
of testing, 358–359

Standards
for alerts, 398
business standards as problem-focused

concern, 111
disability requirements, 570
shaping architectural solutions, 105
technology standards as solution-focused

concern, 113–114
Star schema (multidimensional schema or

cube), for modeling data warehouses
and data marts, 312, 314

Startup, concurrency design and, 338
State entity, 347
State machine, 347
State management

Concurrency view for, 337
designing state transitions, 350–351
identifying states, 350–351

State models
activities, 350–351
entities in, 347–348
notation of, 348–350

State transition models (state charts),
317–318, 348–350

Static data, in information systems, 296
Static information structure models

activities in, 314–315
notation of, 312–314
overview of, 311–312

Static structures
in airline reservation example, 16–17
candidate architectures and, 19
of a system, 12–13

Statistics tracking service, 534
Storage hardware, 378
Storage models, 302–304
Store of knowledge

perspective as, 50
styles, patterns, and idioms

for, 165

INDEX 673

Strategies
business strategies as problem-focused

concern, 108
conventions use in this book, 8
IT strategies as solution-focused

concern, 112
migration models, 406
shaping architectural solutions, 105

Structural decomposition. See
Decomposition

Structure, internal, 268–269
Structure of information, 294–295
Styles

architectural description (AD) and, 172
benefits of, 170–171
checklist for, 174
defined, 164
example of use of, 167–169
identifying, 95
overview of, 164
in SEI viewpoint catalog, 624–625
two-tier client server approach, 16
types of design patterns, 161
using, 165–166

Sufficiency, properties of effective AD, 199–200
Suppliers, classes of stakeholders,

134, 136–137
Support models, 414–419
Support, operational concerns, 399
Support providers, 414–417
Support staff, classes of stakeholders,

134, 137
Symbolic notation, 191
Synchronization, integrity and, 337
SysML functional model, 279
System

architecture of, 20
design using styles, 170
elements and relationships, 12–13
fundamental properties, 13–14
impact on its environment, 253–254
projects for extending existing, 617–618
properties for internal organizations, 15–19
relationships between core concepts, 26
required behavior, 151
response required in functional scenario, 150
state, 150–151

System administrators
classes of stakeholders, 134, 137
as customers of administration models,

409–413
performance monitoring by, 399

System availability model, 519–521
System-level concurrency models

activities, 344–347
items in, 340–341
notation of, 341–344

System operations
defining sensitive areas in security

policy, 449
optimizing repeated processing, 491–492

System quality, in TARA-style architectural
review of system, 234–235

System quality scenarios
benefits of, 158
example, 151–152
information in, 151
types of scenarios, 146

System scope
context viewpoint concerns, 248–249
implicit or assumed, 264
as problem-focused concern, 110–111
validating, 147

Systems and Software Engineering-
Recommended Practice for Architectural
Description of Software-Intensive
Systems (ISO 42010), 206–207

T
Table of Contents, in AD document, 208
Tables, for precision in presentation of

information, 205
Tactics

for dealing with business goals and
drivers, 109–110

defined, 48
design patterns and, 166–167
structuring perspective definition by, 51

TARA (Tiny Architectural Review
Approach), 233–236

Tasks, in Concurrency viewpoint
failure of, 338
mapping functional elements to, 336, 344
structure of, 335–336

674 INDEX

Team Software Process, 609
Teams

agile, 607–608
for modeling, 193–194
of stakeholders, 22

Technical constraints, 115
Technical evaluation

conducting for runtime platform
model, 382

conducting for technology dependency
model, 386

Technical integrity, 219
Technical knowledge, 389
Technical state, 337
Technologies

assistive, for disabled users, 571–572
avoiding overambitious availability

requirements, 539
compatibility issues, 376
development resource concerns, 575
identifying/validating environment and

platform assumptions, 504–505
increasing availability, 525–526
reducing risk of incompatible, 539
risks due to unfamiliar technology, 202
technology agnostic architectural

decisions, 86
unproven, 388

Technologies, security
assessing, 455
avoiding ad hoc, 472
avoiding embedding in application code,

471–472
avoiding overreliance on, 468
avoiding technology-driven approach, 467
avoiding unproven, 465
integrating, 455, 463
providing administration of, 464

Technology dependency models
activities of, 386
notation of, 385–386
overview of, 384–385

Technology drivers, as solution-focused
concern, 112

Technology experts, 132
Technology goals, as solution-focused

concern, 112

Technology leadership role, of architects, 70
Technology policies, as solution-focused

concern, 113–114
Technology principles, developing from

business principles, 126
Technology specialists, software architect

compared with, 75
Technology standards, as solution-focused

concern, 113–114
Technology viewpoint, in RM-ODP, 623
Terminology, defining terms and symbols in

models, 191
Testers, classes of stakeholders, 134, 137
Tests/testing

automated, 559
avoiding unavailability through

overload, 536
component resilience, 538
conducting practical, 488–489
driven by scenarios, 147
full-scale live tests, 156–157
prototype implementation tests, 156
scenarios, 156–157
testability of good principles, 120
testability quality of good concerns, 116

Text and tables
administration models in, 411
assessing availability requirements,

524–525
availability requirements in, 516
availability schedule, 518
characterizing evolution needs, 551
codeline models in, 366–367
configuration management model in, 407
functional availability, 523
identify sensitive resources, 447
installation model in, 403
migration model in, 405
performance model in, 484–485
platform availability, 519
runtime platform model in, 381
for security policy, 448–450
support models in, 415
technology dependency model in, 386
threat model in, 451

Text-based approach
assessing current ease of evolution, 551

INDEX 675

considering evolution tradeoffs, 552
presenting internationalization

concerns, 581
Third-party environments

avoiding overambitious availability
requirements, 539

operational concerns, 401
raising and monitoring alerts, 398
reducing risk of incompatible

technologies, 539
security threats of system hosted in, 451
untrusted until proven otherwise, 458
using third-party security infrastructure,

464–465
Third-party software requirements,

375–376
Threads

determining threading design, 345
prioritizing, 346
in system-level concurrency model, 340
tasks and, 335
in thread-based concurrency model, 344

Threat model
avoid overreliance on technology, 468
ensuring well-defined security models and

requirements, 469
Security perspective and, 450–453
using minimum amount of

cryptography, 461
Threats

assessing, 455–456
designing mitigation features, 453–455
insider, 469–470
protecting availability, 462–463
security concerns and, 442–443

Three Peaks model, 87–88
Three-tier client server approach, 18
Throughput

defined, 479
effect of hardware resources on, 481
Performance and Scalability perspective,

479–480
specifying requirements for, 484

Tightly coupled design, 502
Time, real-world constraints as

concerns, 115
Time sources, 467–468

Time to repair, Availability and Resilience
perspective, 515

Time zones, 587, 589
Timeliness

of information, 308–309
properties of effective AD, 200–201

Timeouts for service calls, 499–500
Timescale for change, 547, 550–551
Tiny Architectural Review Approach

(TARA), 233–236
Touch points, for usability, 571
Traceability

checking functional, 284
linking principles together using

rationales and implications, 126
qualities of good concerns, 116

Tradeoff points, in ATAM, 229
Tradeoffs, consider evolution, 552
Training, development resource

concerns, 575
Transaction logs, 528–529
Transaction stores, 295
Transactional consistency

backup and restore planning, 400–401
relax for availability and resilience, 532
relax to improve performance/scalability,

501–502, 507
Transactions

avoiding overhead, 507
as sequence of data updates, 306

Transient scalability, 480
Transition entities, in state model, 347
Trust and permissions model. See also

Security policies, 319
Turnaround time class, response time,

478–479
Twin Peaks model (Nuseibeh), 87
Two-tier client server approach, 16–17

U
UML (unified modeling language)

activity diagram of details in architecture
definition, 93

activity diagram of supporting activities in
architecture definition, 89–90

ATAM process diagram, 227
codeline models in, 366–367

676 INDEX

UML, continued
common design models in, 363
component diagrams for Functional views,

273–275
context diagram, 257
deployment diagram for network

model, 384
deployment diagram for runtime platform

model, 379–381
estimating platform availability, 519
information flow models, 317
as modeling language, 185–186
module structure models in, 360–361
paper-based scenario models, 154–155
presentation of AD, 214
state diagram for information lifecycle

model, 318
statecharts in, 317–318, 348–350
static and dynamic elements represented

in, 183
static information structure models in,

311–313
system-level concurrency models in,

342–343
use cases in, 146, 198

Unplanned downtime, 514–515
Updating

keeping AD current, 204
models, 193
unavoidable multiple updaters, 324

Upgrades
development resource concerns, 575–576
installation model, 402–403
operational concerns, 394

Uptime, global availability requirements
and, 539

Usability perspective
activities, 598–599
applicability to views, 596–597
architectural tactics, 599
concerns, 597–598
defined, 568
desired quality, 438
overview of, 595–596
problems and pitfalls, 599–600

Use cases
for documenting functional scenarios, 146

UML context diagram, 257–258
walkthroughs for context model, 260

Users
authentication of, 49
classes of stakeholders, 134, 137
expanding focus to include all

stakeholders not just end users, 2
visibility of identifiers to, 301

V
Validation

of abstraction, 218
of assumptions, 218–219
of models, 193
perspectives in, 57–58
scenarios in, 147

Value sets, identify configuration, 409–414
Variation points, 556–558
Viewpoint catalog

view relationships in, 243–244
viewpoint definitions in, 244–245

Viewpoints. See also by individual types
in AD, 210–211
benefits of, 38
catalog of core, 39–42
comparing Functional, Information, and

Operational viewpoints, 46–47
comparing views/viewpoints with objects/

classes, 35
comparing with views and perspectives, 59
deciding what to include in a view, 34–35
function of, 6
ISO recommendations for documenting an

architecture, 206–207
overview of, 36–37
perspectives applied to, 51–54
perspectives as means of modifying/

enhancing, 47
perspectives compared with, 58–60
pitfalls of, 39
relationship between core concepts, 37–38
in software architecture example, 4–5
summary and further reading, 43
user authentication and, 49
view relationships, in viewpoint catalog,

243–244
views based on, 178

INDEX 677

Views
in AD, 210–211
AD partitioned into, 33
based on viewpoints, 178
benefits of, 38
comparing views/viewpoints with objects/

classes, 35
comparing with perspectives, 59
comparing with viewpoints and

perspectives, 59
consisting of one or more models, 178
deciding what to include in, 34–35
defined, 34
designing system architecture and, 31–34
example comparing Functional,

Information, and Operational
viewpoints, 46–47

function of, 6
important views for typical systems, 42
ISO recommendations for documenting an

architecture, 206–207
overview of, 34–35
perspectives applied to, 51–54
perspectives as means of modifying/

enhancing, 47
perspectives compared with, 45
pitfall of wrong set of, 39
relationship between core concepts, 37–38
in software architecture example, 4–5
summary and further reading, 43
view relationships, in viewpoint catalog,

243–244
view-specific principles, 210

Views, applying perspectives to
Accessibility perspective, 569–570
Availability and Resilience perspective,

512–513
Development Resource perspective, 574–575
Evolution perspective, 544–545
Internationalization perspective, 580–581
Location perspective, 585–586
Performance and Scalability perspective,

476–477
Regulation perspective, 591–592
Security perspective, 441–442
Usability perspective, 596–597

Views, consistency across

Concurrency and Deployment views,
433–434

Concurrency and Development views, 433
Context and Deployment views, 428
Context and Functional views, 427
Context and Information views, 427–428
Deployment and Operational views, 434
Functional and Concurrency views,

429, 431
Functional and Deployment views,

430–431
Functional and Development views, 430
Functional and Information views,

428–429
Functional and Operational views, 431
Information and Deployment views, 432
Information and Operational views,

432–433
operational monitoring and control

concerns, 425–426
relationships between views, 426–427

Viewtypes, SEI (Software Engineering
Institute) “Views and Beyond”
Views, 624

Visible behaviors
in airline reservation example, 15–18
internal organization and, 19
system properties, 13–14

Voice recognition system, for visually
impaired users, 571

Volumetrics, 329

W
W3C (World Wide Web Consortium), 113
Walkthroughs

activities of Functional viewpoint, 284
for architectural definition, 232
context model and, 260
for defining scope and exploring

options, 231
for evaluating architecture, 220–222
for functional scenarios, 284
for scenarios, 155–156
for system construction, 232

Waterfall approach
plan-driven methods, 610
to software development, 99–100

678 INDEX

Weakest link, securing, 457, 465–466
Wiki documentation of AD, 213–214
Workflows, in addressing information

quality, 308
Workload

analyzing performance models, 488
avoiding unavailability through

overload, 535
consolidating, 494–495, 507
consolidating related, 494–495
degrading gracefully, 499–500
distributing processing over time,

495–496
optimizing repeated processing, 491–492
partitioning by relaxing transactional

consistency, 501

peak load behavior and, 481–482
predicting system performance, 476
prioritizing processing, 493–494
reducing risk of transaction overhead, 507
responsiveness to, 478
scale up or scale out, 498–499
throughput and, 479–480

World Wide Web Consortium (W3C), 113

X
XP (Extreme Programming), 101, 547, 607

Y
Yourdon model, 276

	CONTENTS
	PREFACE TO THE SECOND EDITION
	Acknowledgments for the Second Edition
	PREFACE TO THE FIRST EDITION
	Acknowledgments
	CHAPTER 3 VIEWPOINTS AND VIEWS
	Architectural Views
	Viewpoints
	Relationships between the Core Concepts
	The Benefits of Using Viewpoints and Views
	Viewpoint Pitfalls
	Our Viewpoint Catalog
	Summary
	Further Reading

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

