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Preface

Motivation

Graduate students, researchers, and professionals in the field of computer network-
ing often require a firm conceptual understanding of its theoretical foundations.
Knowledge of optimization, information theory, game theory, control theory, and
queueing theory is assumed by research papers in the field. Yet these subjects are
not taught in a typical computer science undergraduate curriculum. This leaves
only two alternatives: to either study these topics on one’s own from standard texts
or take a remedial course. Neither alternative is attractive. Standard texts pay lit-
tle attention to computer networking in their choice of problem areas, making it a
challenge to map from the text to the problem at hand, and it is inefficient to
require students to take an entire course when all that is needed is an introduction
to the topic.

This book addresses these problems by providing a single source to learn about
the mathematical foundations of computer networking. Assuming only a rudimen-
tary grasp of calculus, the book provides an intuitive yet rigorous introduction to a
wide range of mathematical topics. The topics are covered in sufficient detail so
that the book will usually serve as both the first and ultimate reference. Note that
the topics are selected to be complementary to those found in a typical undergradu-
ate computer science curriculum. The book, therefore, does not cover network foun-
dations, such as discrete mathematics, combinatorics, or graph theory. 



xvi Preface

Each concept in the book is described in four ways: intuitively, using precise
mathematical notation, providing a carefully chosen numerical example, and offer-
ing a numerical exercise to be done by the reader. This progression is designed to
gradually deepen understanding. Nevertheless, the depth of coverage provided here
is not a substitute for that found in standard textbooks. Rather, I hope to provide
enough intuition to allow a student to grasp the essence of a research paper that
uses these theoretical foundations.

Organization

The chapters in this book fall into two broad categories: foundations and theories.
The first five chapters are foundational, covering probability, statistics, linear alge-
bra, optimization, and signals, systems, and transforms. These chapters provide the
basis for the four theories covered in the latter half of the book: queueing theory,
game theory, control theory, and information theory. Each chapter is written to be
as self-contained as possible. Nevertheless, some dependencies do exist, as shown
in Figure P.1, where dashed arrows show weak dependencies and solid arrows show
strong dependencies.

Figure P.1 Chapter organization

Linear algebra

Probability

Statistics

Signals, systems, 
and transforms 

Optimization

Queueing theory

Control theory

Game theory

Information theory
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Using This Book

The material in this book can be completely covered in a sequence of two graduate
courses, with the first course focusing on the first five chapters and the second
course on the latter four. For a single-semester course, some possible alternatives
are to cover

Probability, statistics, queueing theory, and information theory 

Linear algebra; signals, systems, and transforms; control theory; and game 
theory

Linear algebra; signals, systems, and transforms; control theory; selected por-
tions of probability; and information theory

Linear algebra; optimization, probability, queueing theory, and information 
theory

This book is designed for self-study. Each chapter has numerous solved examples
and exercises to reinforce concepts. My aim is to ensure that every topic in the book
is accessible to the perservering reader. 

Acknowledgments

I have benefited immensely from the comments of dedicated reviewers on drafts of
this book. Two reviewers in particular who stand out are Alan Kaplan, whose care-
ful and copious comments improved every aspect of the book, and Johnny Wong,
who not only reviewed multiple drafts of the chapters on probability and statistics
but also used a draft to teach two graduate courses at the University of Waterloo. 

I would also like to acknowledge the support I received from experts who reviewed
individual chapters: Augustin Chaintreau, Columbia (probability and queueing the-
ory); Tom Coleman, Waterloo (optimization); George Labahn, Waterloo (linear alge-
bra); Kate Larson, Waterloo (game theory); Abraham Matta, Boston University
(statistics; signals, systems, and transforms; and control theory); Sriram Narasim-
han, Waterloo (control theory); and David Tse, UC Berkeley (information theory). 

I received many corrections from my University of Waterloo students who took
two courses based on book drafts in Fall 2008 and Fall 2011: Andrew Arnold,
Nasser Barjesteh, Omar Beg, Abhirup Chakraborty, Betty Chang, Leila Chenaei,
Francisco Claude, Andy Curtis, Hossein Falaki, Leong Fong, Bo Hu, Tian Jiang,
Milad Khalki, Robin Kothari, Alexander Laplante, Constantine Murenin, Earl Oliver,
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1
Probability

1.1 Introduction

The concept of probability pervades every aspect of our lives. Weather forecasts are
couched in probabilistic terms, as are economic predictions and even outcomes of
our own personal decisions. Designers and operators of computer networks need to
often think probabilistically, for instance, when anticipating future traffic work-
loads or computing cache hit rates. From a mathematical standpoint, a good grasp
of probability is a necessary foundation to understanding statistics, game theory,
and information theory. For these reasons, the first step in our excursion into the
mathematical foundations of computer networking is to study the concepts and the-
orems of probability. 

This chapter is a self-contained introduction to the theory of probability. We
begin by introducing the elementary concepts of outcomes, events, and sample
spaces, which allows us to precisely define the conjunctions and disjunctions of
events. We then discuss concepts of conditional probability and Bayes’s rule. This is
followed by a description of discrete and continuous random variables, expectations
and other moments of a random variable, and the moment generating function. We
discuss some standard discrete and continuous distributions and conclude with
some useful theorems of probability and a description of Bayesian networks. 

Note that in this chapter, as in the rest of the book, the solved examples are an
essential part of the text. They provide a concrete grounding for otherwise abstract
concepts and are necessary to understand the material that follows.



2 Chapter 1 Probability

1.1.1 Outcomes

The mathematical theory of probability uses terms such as outcome and event with
meanings that differ from those in common practice. Therefore, we first introduce a
standard set of terms to precisely discuss probabilistic processes. These terms are
shown in boldface. We will use the same convention to introduce other mathemati-
cal terms in the rest of the book.

Probability measures the degree of uncertainty about the potential outcomes
of a process. Given a set of distinct and mutually exclusive outcomes of a pro-
cess, denoted , called the sample space S, the probability of any outcome,
denoted P(oi), is a real number between 0 and 1, where 1 means that the outcome
will surely occur, 0 means that it surely will not occur, and intermediate values
reflect the degree to which one is confident that the outcome will or will not occur.1

We assume that it is certain that some element in S occurs. Hence, the elements of
S describe all possible outcomes, and the sum of probability of all the elements of S
is always 1.

EXAMPLE 1.1: SAMPLE SPACE AND OUTCOMES

Imagine rolling a six-faced die numbered 1 through 6. The process is that of
rolling a die, and an outcome is the number shown on the upper horizontal
face when the die comes to rest. Note that the outcomes are distinct and mutu-
ally exclusive because there can be only one upper horizontal face correspond-
ing to each throw. 

The sample space is S = {1, 2, 3, 4, 5, 6}, which has a size . If the die is

fair, each outcome is equally likely, and the probability of each outcome is .

EXAMPLE 1.2: INFINITE SAMPLE SPACE AND ZERO PROBABILITY

Imagine throwing a dart at random onto a dartboard of unit radius. The pro-
cess is that of throwing a dart, and the outcome is the point where the dart
penetrates the dartboard. We will assume that this point is vanishingly small,
so that it can be thought of as a point on a two-dimensional real plane. Then,
the outcomes are distinct and mutually exclusive. 

The sample space S is the infinite set of points that lie within a unit circle
in the real plane. If the dart is thrown truly randomly, every outcome is
equally likely; because the outcomes are infinite, every outcome has a proba-
bility of zero. We need special care in dealing with such outcomes. It turns

1. Strictly speaking, S must be a measurable  field. 

o1 o2

S 6=
1
S
------ 1

6
---=
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out that, in some cases, it is necessary to interpret the probability of the occur-
rence of such an event as being vanishingly small rather than exactly zero. We
consider this situation in greater detail in Section 1.1.5. Note that although
the probability of any particular outcome is zero, the probability associated
with any subset of the unit circle with area a is given by , which tends to zero
as a tends to zero.

1.1.2 Events

The definition of probability naturally extends to any subset of elements of S, which
we call an event, denoted E. If the sample space is discrete, every event E is an ele-
ment of the power set of S, which is the set of all possible subsets of S. The probabil-
ity associated with an event, denoted , is a real number and is
the sum of the probabilities associated with the outcomes in the event. 

EXAMPLE 1.3: EVENTS

Continuing with Example 1.1, we can define the event “the roll of a die results
in an odd-numbered outcome.” This corresponds to the set of outcomes {1,3,5},

which has a probability of . We write P({1,3,5}) = 0.5. 

1.1.3 Disjunctions and Conjunctions of Events

Consider an event E that is considered to have occurred if either or both of two
other events  or  occur, where both events are defined in the same sample
space. Then, E is said to be the disjunction, or logical OR, of the two events
denoted  and read “  or .”

EXAMPLE 1.4: DISJUNCTION OF EVENTS

Continuing with Example 1.1, we define the events  = “the roll of a die
results in an odd-numbered outcome” and  = “the roll of a die results in an
outcome numbered less than 3.” Then,  and  and

.

In contrast, consider event E that is considered to have occurred only if both of
two other events  or  occur, where both are in the same sample space. Then, E

a---

P E 0 P E 1

1
6
--- 1

6
--- 1

6
---+ + 1

2
---=

E1 E2

E E1 E2= E1 E2

E1
E2

E1 1 3 5= E2 1 2=
E E1 E2 1 2 3 5= =

E1 E2
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is said to be the conjunction, or logical AND, of the two events denoted
 and read “  and .” When the context is clear, we abbreviate this

to .

EXAMPLE 1.5: CONJUNCTION OF EVENTS

Continuing with Example 1.4, .

Two events Ei and Ej in S are mutually exclusive if only one of the two
may occur simultaneously. Because the events have no outcomes in common,

= 0. Note that outcomes are always mutually exclusive, but
events need not be so. 

1.1.4 Axioms of Probability

One of the breakthroughs in modern mathematics was the realization that the the-
ory of probability can be derived from just a handful of intuitively obvious axioms.
Several variants of the axioms of probability are known. We present the three axi-
oms as stated by Kolmogorov to emphasize the simplicity and elegance that lie at
the heart of probability theory.

1. ; that is, the probability of an event lies between 0 and 1. 

2. P(S) = 1, that is, it is certain that at least some event in S will occur. 

3. Given a potentially infinite set of mutually exclusive events E1, E2,...

(EQ 1.1)

That is, the probability that any one of the events in the set of mutually exclusive
events occurs is the sum of their individual probabilities. For any finite set of n
mutually exclusive events, we can state the axiom equivalently as

(EQ 1.2)

An alternative form of axiom 3 is:

(EQ 1.3)

This alternative form applies to non–mutually exclusive events. 

E E1 E2= E1 E2
E E1E2=

E E1 E2 E1E2 1= = =

P Ei Ej P=

0 P E 1

P Ei
i 1=

P Ei
i 1=

=

P Ei
i 1=

n
P Ei

i 1=

n

=

P E1 E2 P E1 P E2 P E1 E2–+=
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EXAMPLE 1.6: PROBABILITY OF UNION OF MUTUALLY EXCLUSIVE EVENTS

Continuing with Example 1.1, we define the mutually exclusive events {1, 2} and
{3, 4}, which both have a probability of 1/3. Then, P({1, 2}  {3, 4}) = P({1, 2}) +

P({3, 4}) = .

EXAMPLE 1.7: PROBABILITY OF UNION OF NON–MUTUALLY EXCLUSIVE EVENTS

Continuing with Example 1.1, we define the non–mutually exclusive events
{1, 2} and {2, 3}, which both have a probability of 1/3. Then, P({1, 2}  {2, 3}) =
P({1, 2}) + P({2, 3}) – P({1, 2}  {2, 3}) =  .

1.1.5 Subjective and Objective Probability

The axiomatic approach is indifferent as to how the probability of an event is deter-
mined. It turns out that there are two distinct ways in which to determine the prob-
ability of an event. In some cases, the probability of an event can be derived from
counting arguments. For instance, given the roll of a fair die, we know that only six
outcomes are possible and that all outcomes are equally likely, so that the probabil-
ity of rolling, say, a 1, is 1/6. This is called its objective probability. Another way of
computing objective probabilities is to define the probability of an event as being
the limit of a counting process, as the next example shows.

EXAMPLE 1.8: PROBABILITY AS A LIMIT

Consider a measurement device that measures the packet header types of
every packet that crosses a link. Suppose that during the course of a day, the
device samples 1,000,000 packets, of which 450,000 are UDP packets, 500,000
are TCP packets, and the rest are from other transport protocols. Given the
large number of underlying observations, to a first approximation, we can con-
sider the probability that a randomly selected packet uses the UDP protocol to
be 450,000/1,000,000 = 0.45. More precisely, we state

 ,

where UDPCount(t) is the number of UDP packets seen during a measure-
ment interval of duration t, and TotalPacketCount(t) is the total number of
packets seen during the same measurement interval. Similarly, P(TCP) = 0.5.

1
3
--- 1

3
---+ 2

3
---=

1
3
--- 1

3
--- P 2–+ 2

3
--- 1

6
---– 1

2
---= =

P UDP
Lim
t

UDPCount t TotalPacketCoun t=
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Note that in reality, the mathematical limit cannot be achieved, because no
packet trace is infinite. Worse, over the course of a week or a month, the
underlying workload could change, so that the limit may not even exist.
Therefore, in practice, we are forced to choose “sufficiently large” packet
counts and hope that the ratio thus computed corresponds to a probability.
This approach is also called the frequentist approach to probability.

In contrast to an objective assessment of probability, we can also use probabili-
ties to characterize events subjectively.

EXAMPLE 1.9: SUBJECTIVE PROBABILITY AND ITS MEASUREMENT

Consider a horse race in which a favored horse is likely to win, but this is by
no means assured. We can associate a subjective probability with the event,
say, 0.8. Similarly, a doctor may look at a patient’s symptoms and associate
them with a 0.25 probability of a particular disease. Intuitively, this measures
the degree of confidence that an event will occur, based on expert knowledge of
the situation that is not (or cannot be) formally stated.

How is subjective probability to be determined? A common approach is to
measure the odds that a knowledgeable person would bet on that event. Con-
tinuing with the example, a bettor who really thought that the favorite would
win with a probability of 0.8, should be willing to bet $1 under the terms: If
the horse wins, the bettor gets $1.25; if the horse loses, the bettor gets $0.
With this bet, the bettor expects to not lose money; if the reward is greater
than $1.25, the bettor will expect to make money. We can elicit the implicit
subjective probability by offering a high reward and then lowering it until the
bettor is just about to walk away, which would be at the $1.25 mark.

The subjective and frequentist approaches interpret zero-probability events dif-
ferently. Consider an infinite sequence of successive events. Any event that occurs
only a finite number of times in this infinite sequence will have a frequency that
can be made arbitrarily small. In number theory, we do not and cannot differentiate
between a number that can be made arbitrarily small and zero. So, from this per-
spective, such an event can be considered to have a probability of occurrence of zero
even though it may occur a finite number of times in the sequence.

From a subjective perspective, a zero-probability event is defined as an event E
such that a rational person would be willing to bet an arbitrarily large but finite
amount that E will not occur. More concretely, suppose that this person were to
receive a reward of $1 if E did not occur but would have to forfeit a sum of $F if E
occurred. Then, the bet would be taken for any finite value of F.
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1.2 Joint and Conditional Probability

Thus far, we have defined the terms used in studying probability and considered
single events in isolation. Having set this foundation, we now turn our attention to
the interesting issues that arise when studying sequences of events. In doing so,
it is very important to keep track of the sample space in which the events are
defined: A common mistake is to ignore the fact that two events in a sequence may
be defined on different sample spaces. 

1.2.1 Joint Probability

Consider two processes with sample spaces  and  that occur one after the
other. The two processes can be viewed as a single joint process whose outcomes
are the tuples chosen from the product space . We refer to the subsets of
the product space as joint events. Just as before, we can associate probabilities
with outcomes and events in the product space. To keep things straight, in this sec-
tion, we denote the sample space associated with a probability as a subscript, so
that  denotes the probability of event E defined over sample space , and

 is an event defined over the product space .

EXAMPLE 1.10: JOINT PROCESS AND JOINT EVENTS

Consider sample space  and sample space . Then,

the product space is given by  {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b),

(3, c)}. If these events are equiprobable, the probability of each tuple is . Let

 be an event in  and  be an event in . Then, the

event EF is given by the tuples {(1, b), (2, b)} and has probability . 

We will return to the topic of joint processes in Section 1.8. We now turn our
attention to the concept of conditional probability.

1.2.2 Conditional Probability

Common experience tells us that if a sky is sunny, there is no chance of rain in the
immediate future but that if the sky is cloudy, it may or may not rain soon. Know-
ing that the sky is cloudy, therefore, increases the chance that it may rain soon,
compared to the situation when it is sunny. How can we formalize this intuition?

To keep things simple, first consider the case when two events E and F share a
common sample space  and occur one after the other. Suppose that the probability

S1 S2

S1 S2

PS1
E S1

PS1 S2
E S1 S2

S1 1 2 3= S2 a b c=

1
9
---

E 1 2= S1 F b= S2
1
9
--- 1

9
---+ 2

9
---=

S
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of E is  and the probability of F is . Now, suppose that we are informed
that event E actually occurred. By definition, the conditional probability of the
event F conditioned on the occurrence of event E is denoted  (read “the
probability of F given E”) and computed as

(EQ 1.4)

If knowing that E occurred does not affect the probability of F, E and F are said to
be independent and

EXAMPLE 1.11: CONDITIONAL PROBABILITY OF EVENTS DRAWN FROM THE SAME
SAMPLE SPACE

Consider sample space  and events  and . Let
 and . Clearly, the space S S = {(1, 1), (1, 2), ...,  (3, 2),

(3, 3)}. The joint event . Suppose that . Then,

We interpret this to mean that if event E occurred, the probability that event
F occurs is 0.6. This is higher than the probability of F occurring on its own
(which is 0.25). Hence, the fact the E occurred improves the chances of F
occurring, so the two events are not independent. This is also clear from the
fact that .

The notion of conditional probability generalizes to the case in which events are
defined on more than one sample space. Consider a sequence of two processes with
sample spaces  and  that occur one after the other. (This could be the condi-
tion of the sky now, for instance, and whether it rains after 2 hours.) Let event E be
a subset of  and event F a subset of . Suppose that the probability of E is

 and the probability of F is . Now, suppose that we are informed that
event E occurred. We define the probability as the conditional prob-
ability of the event F conditional on the occurrence of E as

(EQ 1.5)

PS E PS F

PS S F E

PS S F E
PS S E F

PS E
-----------------------------------

PS S EF
PS E

----------------------------= =

PS S EF PS E PS F=

S 1 2 3= E 1= F 3=
PS E 0.5= PS F 0.25=

EF 1 3= PS S EF 0.3=

PS S F E
PS S EF

PS E
---------------------------- 0.3

0.5
-------- 0.6= = =

PS S EF 0.3= PS E PS F 0.125=

S1 S2

S1 S2
PS1

E PS2
F

PS1 S2
F E

PS1 S2
F E

PS1 S2
EF

PS1
E

--------------------------------=
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If knowing that E occurred does not affect the probability of F, E and F are said to
be independent and 

(EQ 1.6)

EXAMPLE 1.12: CONDITIONAL PROBABILITY OF EVENTS DRAWN FROM DIFFERENT
SAMPLE SPACES

Consider sample space  and sample space  with
product space . Let

 be an event in  and  be an event in . Also, let
 = 0.5, and let  = 0.05.

If E and F are independent,

Otherwise,

It is important not to confuse P(F|E) and P(F). The conditional probability is
defined in the product space  and the unconditional probability in the space

. Explicitly keeping track of the underlying sample space can help avoid appar-
ent contradictions such as the one discussed in Example 1.14.

EXAMPLE 1.13: USING CONDITIONAL PROBABILITY

Consider a device that samples packets on a link, as in Example 1.8. Suppose
that measurements show that 20% of the UDP packets have a packet size of
52 bytes. Let P(UDP) denote the probability that the packet is of type UDP,
and let P(52) denote the probability that the packet is of length 52 bytes.
Then, P(52|UDP) = 0.2. In Example 1.8, we computed that P(UDP) = 0.45.
Therefore, P(UDP AND 52) = P(52|UDP) * P(UDP) = 0.2 * 0.45 = 0.09. That
is, if we were to pick a packet at random from the sample, there is a 9% chance
that it is a UDP packet of length 52 bytes, but it has a 20% chance of being of
length 52 bytes if we know already that it is a UDP packet.

PS1 S2
EF PS1

E PS2
F=

S1 1 2 3= S2 a b c=
1 a 1 b 1 c 2 a 2 b 2 c 3 a 3 b 3 c

E 1 2= S1 F b= S2
PS1

E PS1 S2
EF PS1 S2

1 b 2 b=

PS1 S2
EF PS1 S2

1 b 2 b PS1
1 2 PS2

b= =

0.05 0.5 PS2
b=

PS2
b 0.1=

PS1 S2
F E

PS1 S2
EF

PS1
E

-------------------------------- 0.05
0.5
----------- 0.1= = =

S1 S2
S2
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EXAMPLE 1.14: THE MONTY HALL PROBLEM

Consider a television show (loosely modeled on a similar show hosted by
Monty Hall) in which three identical doors hide two goats and a luxury car.
You, the contestant, can pick any door and obtain the prize behind it. Assume
that you prefer the car to the goat. If you did not have any further informa-
tion, your chance of picking the winning door is clearly 1/3. Now, suppose that
after you pick one of the doors—say, Door 1—the host opens one of the other
doors—say, Door 2—and reveals a goat behind it. Should you switch your
choice to Door 3 or stay with Door 1?

Solution:

We can view the Monty Hall problem as a sequence of three processes: (1) the
placement of a car behind one of the doors, (2) the selection of a door by the
contestant, and (3) the revelation of what lies behind one of the other doors.
The sample space for the first process is {Door 1, Door 2, Door 3}, abbreviated
{1, 2, 3}, as are the sample spaces for the second and third processes. So, the
product space is {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1),..., (3, 3, 3)}. 

Without loss of generality, assume that you pick Door 1. The game show
host is now forced to pick either Door 2 or Door 3. Without loss of generality,
suppose that the host picks Door 2, so that the set of possible outcomes that
constitutes the reduced sample space is {(1, 1, 2), (2, 1, 2), (3, 1, 2)}. However,
we know that the game show host will never open a door with a car behind it.
Therefore, the outcome (2, 1, 2) is not possible. So, the reduced sample space is
just the set {(1, 1, 2), (3, 1, 2)}. What are the associated probabilities? 

To determine this, note that the initial probability space is {1, 2, 3} with
equiprobable outcomes. Therefore, the outcomes {(1, 1, 2), (2, 1, 2), (3, 1, 2)} are
also equiprobable. When moving to open Door 2, the game show host reveals
private information that the outcome (2, 1, 2) is impossible, so the probability
associated with this outcome is 0. The show host’s forced move cannot affect
the probability of the outcome (1, 1, 2), because the host never had the choice
of opening Door 1 once you selected it. Therefore, its probability in the reduced
sample space continues to be 1/3. This means that P({(3, 1, 2)}) = 2/3, so it dou-
bles your chances for you to switch doors.

One way to understand this somewhat counterintuitive result is to realize
that the game show host’s actions reveal private information, that is, the loca-
tion of the car. Two-thirds of the time, the prize is behind the door you did not
choose. The host always opens a door that does not have a prize behind it.
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Therefore, the residual probability (2/3) must all be assigned to Door 3.
Another way to think of it is that if you repeat a large number of experiments
with two contestants—one who never switches doors and the other who
always switches doors—the latter would win twice as often.

1.2.3 Bayes’s Rule

One of the most widely used rules in the theory of probability is due to an English
country minister: Thomas Bayes. Its significance is that it allows us to infer “back-
wards” from effects to causes rather than from causes to effects. The derivation of
his rule is straightforward, though its implications are profound.

We begin with the definition of conditional probability (Equation 1.4):

If the underlying sample spaces can be assumed to be implicitly known, we can
rewrite this as

(EQ 1.7)

We interpret this to mean that the probability that both E and F occur is the prod-
uct of the probabilities of two events: first, that E occurs; second, that conditional
on E, F occurs.

Recall that P(F|E) is defined in terms of the event F following event E. Now, con-
sider the converse: F is known to have occurred. What is the probability that E
occurred? This is similar to the problem: If there is fire, there is smoke, but if we see
smoke, what is the probability that it was due to a fire? The probability we want is
P(E|F). Using the definition of conditional probability, it is given by

(EQ 1.8)

Substituting for P(F) from Equation 1.7, we get

(EQ 1.9)

which is Bayes’s rule. One way of interpreting this is that it allows us to compute the
degree to which some effect, or posterior F, can be attributed to some cause, or prior E.

PS S F E
PS S EF

PS E
----------------------------=

P EF P F E P E=

P E F P EF
P F
-----------------=

P E F P F E
P F
-------------------P E=
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EXAMPLE 1.15: BAYES’S RULE

Continuing with Example 1.13, we want to compute the following quantity:
Given that a packet is 52 bytes long, what is the probability that it is a UDP
packet?

Solution:

From Bayes’s rule:

We can generalize Bayes’s rule when a posterior can be attributed to more than
one prior. Consider a posterior F that is due to some set of n priors Ei such that the
priors are mutually exclusive and exhaustive: That is, at least one of them occurs,

and only one of them can occur. This implies that . Then,

(EQ 1.10)

This is also called the law of total probability.

EXAMPLE 1.16: LAW OF TOTAL PROBABILITY

Continuing with Example 1.13, let us compute P(52), that is, the probability
that a packet sampled at random has a length of 52 bytes. To compute this, we
need to know the packet sizes for all other traffic types. For instance, if P(52|
TCP) = 0.9 and all other packets were known to be of length other than 52 bytes,
then P(52) = P(52|UDP) * P(UDP) + P(52|TCP) * P(TCP) + P(52|other) *
P(other) = 0.2 * 0.45 + 0.9 * 0.5 + 0 = 0.54. 

The law of total probability allows one further generalization of Bayes’s rule to
obtain Bayes’s theorem. From the definition of conditional probability, we have

P UDP 52 P 52 UDP P UDP
P 52

-------------------------------------------------------- 0.2 0.45
0.54

------------------------- 0.167= = =

P Ei
i 1=

n

1=

P F P FEi
i 1=

n

P F Ei P Ei
i 1=

n

= =

P Ei F
P EiF
P F
-------------------=
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From Equation 1.7, we have

Substituting Equation 1.10, we get

(EQ 1.11)

This is called the generalized Bayes’s rule, or Bayes’s theorem. It allows us to
compute the probability of any one of the priors Ei, conditional on the occurrence of
the posterior F. This is often interpreted as follows: We have some set of mutually
exclusive and exhaustive hypotheses Ei. We conduct an experiment, whose outcome
is F. We can then use Bayes’s formula to compute the revised estimate for each
hypothesis.

EXAMPLE 1.17: BAYES’S THEOREM

Continuing with Example 1.15, consider the following situation: We pick a
packet at random from the set of sampled packets and find that its length is
not 52 bytes. What is the probability that it is a UDP packet?

Solution:

As in Example 1.6, let UDP refer to the event that a packet is of type UDP and
52 refer to the event that the packet is of length 52 bytes. Denote the comple-

ment of the latter event, that is, that the packet is not of length 52 bytes by 52c.
From Bayes’s rule:

Thus, if we see a packet that is not 52 bytes long, it is quite likely a UDP
packet. Intuitively, this must be true because most TCP packets are 52 bytes
long, and there aren’t very many non-UDP and non-TCP packets.

P Ei F
P F Ei P Ei

P F
-------------------------------------=

P Ei F
P F Ei P Ei

P F Ei P Ei
i 1=

n
----------------------------------------------------=

P UDP 52c P 52c UDP P UDP

P 52c UDP P UDP P 52c TCP P TCP P 52c other P other+ +
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

0.8 0.45
0.8 0.45 0.1 0.5 1 0.05+ +
--------------------------------------------------------------------------------=

0.78=



14 Chapter 1 Probability

1.3 Random Variables

So far, we have restricted ourselves to studying events, which are collections of out-
comes of experiments or observations. However, we are often interested in abstract
quantities or outcomes of experiments that are derived from events and observa-
tions but are not themselves events or observations. For example, if we throw a fair
die, we may want to compute the probability that the square of the face value is
smaller than 10. This is random and can be associated with a probability and,
moreover, depends on some underlying random events. Yet, it is neither an event
nor an observation: It is a random variable. Intuitively, a random variable is a
quantity that can assume any one of a set of values, called its domain D, and
whose value can be stated only probabilistically. In this section, we will study ran-
dom variables and their distributions.

More formally, a real random variable—the one most commonly encountered
in applications having to do with computer networking—is a mapping from events
in a sample space S to the domain of real numbers. The probability associated with
each value assumed by a real random variable2 is the probability of the underlying
event in the sample space, as illustrated in Figure 1.1.

A random variable is discrete if the set of values it can assume is finite and
countable. The elements of D should be mutually exclusive—that is, the random
variable cannot simultaneously take on more than one value—and exhaustive—the
random variable cannot assume a value that is not an element of D.

2. We deal with only real random variables in this text, so at this point will drop the qualifier “real.”

Figure 1.1 The random variable X takes on values from the domain D. Each value 
taken on by the random variable is associated with a probability corresponding 

to an event E, which is a subset of outcomes in the sample space S.

{ }... S

outcome
event

X1 X2 X3 X4

E1 E2 E3 E4

{ } X  D...
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EXAMPLE 1.18: A DISCRETE RANDOM VARIABLE

Consider a random variable I defined as the size of an IP packet rounded up to
closest kilobyte. Then, I assumes values from the domain D = {1,2,3,..., 64}. This
set is both mutually exclusive and exhaustive. The underlying sample space S is
the set of potential packet sizes and is therefore identical to D. The probability
associated with each value of I is the probability of seeing an IP packet of that
size in some collection of IP packets, such as a measurement trace. 

A random variable is continuous if the values it can take on are a subset of the
real line.

EXAMPLE 1.19: A CONTINUOUS RANDOM VARIABLE

Consider a random variable T defined as the time between consecutive packet
arrivals at a port of a switch, also called the packet interarrival time. Although
each packet’s arrival time is quantized by the receiver’s clock, so that the set of
interarrival times are finite and countable, given the high clock speeds of mod-
ern systems, modeling T as a continuous random variable is a good approxima-
tion of reality. The underlying sample space S is the subset of the real line that
spans the smallest and largest possible packet interarrival times. As in the pre-
vious example, the sample space is identical to the domain of T.

1.3.1 Distribution

In many cases, we are not interested in the actual value taken by a random vari-
able but in the probabilities associated with each such value that it can assume. To
make this more precise, consider a discrete random variable  that assumes dis-
tinct values D = {x1, x2,..., xn}. We define the value p(xi) to be the probability of the
event that results in  assuming the value xi. The function p( ), which charac-
terizes the probability that  will take on each value in its domain, is called the
probability mass function of .3 It is also sometimes called the distribution
of . 

3. Note the subtlety in this standard notation. Recall that P(E) is the probability of an event E. In
contrast, p(X) refers to the distribution of a random variable X, and  refers to
the probability that random variable X takes on the value xi.

Xd

Xd Xd
Xd

Xd

p X xi= p xi=

Xd
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EXAMPLE 1.20: PROBABILITY MASS FUNCTION

Consider a random variable H defined as 0 if fewer than 100 packets are
received at a router’s port in a particular time interval T and 1 otherwise. The
sample space of outcomes consists of all possible numbers of packets that
could arrive at the router’s port during T, which is simply the set S = {1, 2,  ..., M},
where M is the maximum number of packets that can be received in time T.
Assuming that M > 99, we define two events E0 = {0, 1, 2, ..., 99} and E1 = {100,
101, ..., M}. Given the probability of each outcome in S, we can compute the
probability of each event, and . By definition, p(H = 0) = p(0) =
P(E0) and . The set  is the probability
mass function of H. Notice how the probability mass function is closely tied to
events in the underlying sample space. 

Unlike a discrete random variable, which has nonzero probability of taking on
any particular value in its domain, the probability that a continuous real random
variable  will take on any specific value in its domain is 0. Nevertheless, in
nearly all cases of interest in the field of computer networking, we will be able to
assume that we can define the density function f(x) of  as follows: The probabil-
ity that  takes on a value between two reals, x1 and x2, , is given by

the integral . Of course, we need to ensure that . Alterna-

tively, we can think of f(x) being implicitly defined by the statement that a variable
x chosen randomly in the domain of  has probability  of lying in the range

 when  is very small. 

EXAMPLE 1.21: DENSITY FUNCTION

Suppose that we know that packet interarrival times are distributed uni-
formly in the range [0.5s, 2.5s]. The corresponding density function is a con-
stant c over the domain. It is easy to see that c = 0.5 because we require

. The probability that the interarrival time is in

the interval  is therefore .

P E0 P E1
p H 1= p 1 P E1= = p 0 p 1
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1.3.2 Cumulative Density Function

The domain of a discrete real random variable  is totally ordered; that is, for any
two values x1 and x2 in the domain, either  or . We define the cumu-
lative density function F( ) by

(EQ 1.12)

Note the difference between F( ), which denotes the cumulative distribution of
random variable , and F(x), which is the value of the cumulative distribution for
the value = x.

Similarly, the cumulative density function of a continuous random variable ,
denoted F( ), is given by

(EQ 1.13)

By definition of probability, in both cases, , .

EXAMPLE 1.22: CUMULATIVE DENSITY FUNCTIONS

Consider a discrete random variable D that can take on values {1, 2, 3, 4, 5}
with probabilities {0.2, 0.1, 0.2, 0.2, 0.3}, respectively. The latter set is also the
probability mass function of D. Because the domain of D is totally ordered, we
compute the cumulative density function F(D) as F(1) = 0.2, F(2) = 0.3, F(3) =
0.5, F(4) = 0.7, F(5) = 1.0.

Now, consider a continuous random variable C defined by the density func-
tion f(x) = 1 in the range [0,1]. The cumulative density function F(C) =

. We see that, although, for example, f(0.1) = 1,

this does not mean that the value 0.1 is certain!
Note that, by definition of cumulative density function, it is necessary that

it achieve a value of 1 at right extreme value of the domain.

1.3.3 Generating Values from an Arbitrary Distribution

The cumulative density function F(X), where X is either discrete or continuous, can
be used to generate values drawn from the underlying discrete or continuous distri-
bution p(Xd) or f(Xc), as illustrated in Figure 1.2. Consider a discrete random

Xd
x1 x2 x2 x1

Xd

F x p xi
i xi x

p Xd x= =

Xd
Xd

Xd
Xc

Xc

F x f y yd
–

x

p Xc x= =

0 F Xd 1 0 F Xc 1

f y yd
–

x

yd
–

x

y 0
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variable  that takes on values  with probabilities . By defini-
tion, . Moreover,  always lies in the range [0,1].
Therefore, if we were to generate a random number u with uniform probability in
the range [0,1], the probability that u lies in the range  is .
Moreover, . Therefore, the procedure to generate values from the dis-
crete distribution p(Xd) is as follows: First, generate a random variable u uniformly
in the range [0,1]; second, compute . 

We can use a similar approach to generate values from a continuous random
variable  with associated density function f(Xc). By definition, F(x + ) = F(x) +
f(x)   for very small values of . Moreover,  always lies in the range [0,1].
Therefore, if we were to generate a random number u with uniform probability in
the range [0,1], the probability that u lies in the range  is ,
which means that  is distributed according to the desired density func-
tion f(Xc). Therefore, the procedure to generate values from the continuous distribu-
tion f(Xc) is as follows: First, generate a random variable u uniformly in the range
[0,1]; second, compute .

1.3.4 Expectation of a Random Variable

The expectation, mean, or expected value E[ ] of a discrete random variable
that can take on n values xi with probability p(xi) is given by

(EQ 1.14)

Similarly, the expectation E[ ] of a continuous random variable  with density
function f(x) is given by

Figure 1.2 Generating values from an arbitrary (a) discrete or (b) continuous distribution
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(EQ 1.15)

Intuitively, the expected value of a random variable is the value we expect it to
take, knowing nothing else about it. For instance, if you knew the distribution of
the random variable corresponding to the time it takes for you to travel from your
home to work, you expect your commute time on a typical day to be the expected
value of this random variable. 

EXAMPLE 1.23: EXPECTATION OF A DISCRETE AND A CONTINUOUS RANDOM VARIABLE

Continuing with the random variables C and D defined in Example 1.22, we find

E[D] = 1*0.2 + 2*0.1 + 3*0.2 + 4*0.2 + 5*0.3 = 0.2 + 0.2 + 0.6 + 0.8 + 1.5 = 3.3. 

Note that the expected value of D is in fact a value it cannot assume! This is
often true of discrete random variables. One way to interpret this is that D
will take on values close to its expected value: in this case, 3 or 4.

Similarly,

C is the uniform distribution, and its expected value is the midpoint of the
domain: 0.5.

The expectation of a random variable gives us a reasonable idea of how it
behaves in the long run. It is important to remember, however, that two random
variables with the same expectation can have rather different behaviors. 

We now state, without proof, four useful properties of expectations.

1. For constants a and b:

E[aX + b] = aE[X] + b (EQ 1.16)

2. E[X+Y] = E[X] + E[Y], or, more generally, for any set of random variables :

(EQ 1.17)

3. For a discrete random variable  with probability mass function p(xi) and 
any function g(.):
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E[g( )] =  (EQ 1.18)

4. For a continuous random variable  with density function f(x) and any func-
tion g(.):

E[g( )] = (EQ 1.19)

Note that, in general, E[g( )] is not the same as g(E[X]); that is, a function can-
not be taken out of the expectation.

EXAMPLE 1.24: EXPECTED VALUE OF A FUNCTION OF A DISCRETE RANDOM VARIABLE

Consider a discrete random variable D that can take on values {1, 2, 3, 4, 5}
with probabilities {0.2, 0.1, 0.2, 0.2, 0.3}, respectively. Then,  =  0.2e1 + 0.1e2

+ 0.2e3 + 0.2e4 + 0.3e5 = 60.74.

EXAMPLE 1.25: EXPECTED VALUE OF A FUNCTION OF A CONTINUOUS RANDOM VARIABLE

Let X be a random variable that has equal probability of lying anywhere in the

interval [0,1]. Then, . E[X2] = .

1.3.5 Variance of a Random Variable

The variance of a random variable is defined by V(X) = E[(X – E[X])2]. Intuitively,
it shows how far away the values taken on by a random variable would be from its
expected value. We can express the variance of a random variable in terms of two

expectations as V(X) = E[X2] – E[X]2. For 

V[X] = E[(X – E[X])2] 

= E[X2  – 2XE[X] + E[X]2] 

= E[X2] – 2E[XE[X]] + E[X]2 

= E[X2] – 2E[X]E[X] + E[X]2 

= E[X2] – E[X]2
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In practical terms, the distribution of a random variable over its domain D—this
domain is also called the population—is not usually known. Instead, the best we
can do is to sample the values it takes on by observing its behavior over some
period of time. We can estimate the variance of the random variable by keeping
running counters for  and . Then,

 , 

where this approximation improves with n, the size of the sample, as a consequence
of the law of large numbers, discussed in Section 1.7.4.

The following properties of the variance of a random variable can be easily
shown for both discrete and continuous random variables.

1. For constant a:

V[X + a] = V[X] (EQ 1.20)

2. For constant a:

V[aX] = a2V[X] (EQ 1.21)

3. If X and Y are independent random variables: 

V[X + Y] = V[X] + V[Y] (EQ 1.22)

1.4 Moments and Moment Generating Functions

Thus far, we have focused on elementary concepts of probability. To get to the next
level of understanding, it is necessary to dive into the somewhat complex topic of
moment generating functions. The moments of a distribution generalize its mean
and variance. In this section, we will see how we can use a moment generating
function (MGF) to compactly represent all the moments of a distribution. The
moment generating function is interesting not only because it allows us to prove
some useful results, such as the central limit theorem but also because it is similar
in form to the Fourier and Laplace transforms, discussed in Chapter 5. 

1.4.1 Moments

The moments of a distribution are a set of parameters that summarize it. Given a
random variable X, its first moment about the origin, denoted , is defined to
be E[X]. Its second moment about the origin, denoted , is defined as the
expected value of the random variable X2, or E[X2]. In general, the rth moment of X
about the origin, denoted , is defined as .

xi xi
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We can similarly define the rth moment about the mean, denoted , by E[(X –
)r]. Note that the variance of the distribution, denoted by 2, or V[X], is the same

as . The third moment about the mean, , is used to construct a measure of
skewness, which describes whether the probability mass is more to the left or the
right of the mean, compared to a normal distribution. The fourth moment about the
mean, , is used to construct a measure of peakedness, or kurtosis, which mea-
sures the “width” of a distribution. 

The two definitions of a moment are related. For example, we have already seen
that the variance of X, denoted V[X], can be computed as V[X] = E[X2] – (E[X])2.
Therefore, . Similar relationships can be found between the
higher moments by writing out the terms of the binomial expansion of (X – )r.

1.4.2 Moment Generating Functions

Except under some pathological conditions, a distribution can be thought to be
uniquely represented by its moments. That is, if two distributions have the same
moments, they will be identical except under some rather unusual circumstances.
Therefore, it is convenient to have an expression, or “fingerprint,” that compactly
represents all the moments of a distribution. Such an expression should have terms

corresponding to  for all values of r.

We can get a hint regarding a suitable representation from the expansion of ex:

(EQ 1.23)

We see that there is one term for each power of x. This suggests the definition of the
moment generating function of a random variable X as the expected value of etX,
where t is an auxiliary variable:

. (EQ 1.24)

To see how this represents the moments of a distribution, we expand M(t) as

(EQ 1.25)
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Thus, the MGF represents all the moments of the random variable X in a single
compact expression. Note that the MGF of a distribution is undefined if one or more
of its moments are infinite. 

We can extract all the moments of the distribution from the MGF as follows: If
we differentiate M(t) once, the only term that is not multiplied by t or a power of t is

. So, . Similarly, . Generalizing, it is easy to

show that to get the rth moment of a random variable X about the origin, we need
to differentiate only its MGF r times with respect to t and then set t to 0.

It is important to remember that the “true” form of the MGF is the series expan-
sion in Equation 1.25. The exponential is merely a convenient representation that
has the property that operations on the series (as a whole) result in corresponding
operations being carried out in the compact form. For example, it can be shown that
the series resulting from the product of

and is

.

This simplifies the computation of operations on the series. However, it is some-
times necessary to revert to the series representation for certain operations. In par-
ticular, if the compact notation of M(t) is not differentiable at t = 0, we must revert
to the series to evaluate M(0), as shown next.

EXAMPLE 1.26: MGF OF A STANDARD UNIFORM DISTRIBUTION

Let X be a uniform random variable defined in the interval [0,1]. This is also
called a standard uniform distribution. We would like to find all its

moments. We find that M(t) = E[etX] = . However,

this function is not defined—and therefore not differentiable—at t = 0.
Instead, we revert to the series:

which is differentiable term by term. Differentiating r times and setting t to 0, we
find that  = 1/(r+1). So, =  = 1/(1+1) = 1/2 is the mean, and = 1/(1+2) =
1/3 = E[X2]. Note that we found the expression for M(t) by using the compact
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notation, but reverted to the series for differentiating it. The justification is that
the integral of the compact form is identical to the summation of the integrals of
the individual terms. 

1.4.3 Properties of Moment Generating Functions

We now prove two useful properties of MGFs. 
First, if X and Y are two independent random variables, the MGF of their sum is

the product of their MGFs. If their individual MGFs are M1(t) and M2(t), respec-
tively, the MGF of their sum is

M(t) = E[et(X+Y)] = E[etXetY] = E[etX]E[etY] (from independence) 
 = M1(t).M2(t) (EQ 1.26)

EXAMPLE 1.27: MGF OF THE SUM

Find the MGF of the sum of two independent [0,1] uniform random variables.

Solution:

From Example 1.26, the MGF of a standard uniform random variable is

, so the MGF of random variable X defined as the sum of two indepen-

dent uniform variables is . 

Second, if random variable X has MGF M(t), the MGF of random variable Y =

a+bX is eatM(bt) because

E[etY] = E[et(a+bX)] = E[eatebXt] = eatE[ebtX] = eatM(bt) (EQ 1.27)

As a corollary, if M(t) is the MGF of a random variable X, the MGF of (X – ) is given
by e tM(t). The moments about the origin of (X – ) are the moments about the
mean of X. So, to compute the rth moment about the mean for a random variable X,
we can differentiate e tM(t) r times with respect to t and set t to 0. 

EXAMPLE 1.28: VARIANCE OF A STANDARD UNIFORM RANDOM VARIABLE

The MGF of a standard uniform random variable X is . So, the MGF

of (X – ) is given by . To find the variance of a standard uniform

random variable, we need to differentiate twice with respect to t and then set t

1
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to 0. Given the t in the denominator, it is convenient to rewrite the expression

as , where the ellipses refer to terms with

third and higher powers of t, which will reduce to 0 when t is set to 0. In this

product, we need consider only the coefficient of t2, which is . Dif-

ferentiating the expression twice results in multiplying the coefficient by 2,

and when we set t to zero, we obtain E[(X – )2] = V[X] = 1/12.

These two properties allow us to compute the MGF of a complex random variable
that can be decomposed into the linear combination of simpler variables. In particu-
lar, it allows us to compute the MGF of independent, identically distributed (i.i.d.)
random variables, a situation that arises frequently in practice.

1.5 Standard Discrete Distributions

We now present some discrete distributions that frequently arise when studying
networking problems.

1.5.1 Bernoulli Distribution

A discrete random variable X is called a Bernoulli random variable if it can take
only two values, 0 or 1, and its probability mass function is defined as p(0) = 1 – a
and p(1) = a. We can think of X as representing the result of some experiment, with
X=1 being success, with probability a. The expected value of a Bernoulli random
variable is a and variance is p(1 – a).

1.5.2 Binomial Distribution

Consider a series of n Bernoulli experiments where the result of each experiment is
independent of the others. We would naturally like to know the number of successes
in these n trials. This can be represented by a discrete random variable X with
parameters (n,a) and is called a binomial random variable. The probability mass
function of a binomial random variable with parameters (n,a) is given by

(EQ 1.28)

If we set b = 1 –  a, then these are just the terms of the expansion (a+b)n. The expected
value of a variable that is binomially distributed with parameters (n,a) is na.
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EXAMPLE 1.29: BINOMIAL RANDOM VARIABLE

Consider a local area network with ten stations. Assume that, at a given
moment, each node can be active with probability p = 0.1. What is the proba-
bility that (a) one station is active, (b) five stations are active, (c) all ten sta-
tions are active?

Solution:

Assuming that the stations are independent, the number of active stations can
be modeled by a binomial distribution with parameters (10, 0.1). From the for-
mula for p(i), we get

a. p(1) = 

b. p(5) = 

c. p(10) = 

This is shown in Figure 1.3. Note how the probability of one station being
active is 0.38, which is greater than the probability of any single station being
active. Note also how rapidly the probability of multiple active stations drops.
This is what drives spatial statistical multiplexing: the provisioning of a
link with a capacity smaller than the sum of the demands of the stations.

Figure 1.3 Example binomial distribution
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1.5.3 Geometric Distribution

Consider a sequence of independent Bernoulli experiments, each of which succeeds
with probability a. In section 1.5.2, we wanted to count the number of successes;
now, we want to compute the probability mass function of a random variable X that
represents the number of trials before the first success. Such a variable is called a
geometric random variable and has a probability mass function

(EQ 1.29)

The expected value of a geometrically distributed variable with parameter a is 1/a.

EXAMPLE 1.30: GEOMETRIC RANDOM VARIABLE

Assume that a link has a loss probability of 10% and that packet losses are
independent, although this is rarely true in practice. Suppose that when a
packet gets lost, this is detected and the packet is retransmitted until it is cor-
rectly received. What is the probability that it would be transmitted exactly
one, two, and three times?

Solution:

Assuming that the packet transmissions are independent events, we note that
the probability of success = p = 0.9. Therefore, p(1) = 0.10 * 0.9 = 0.9; p(2) =
0.11 * 0.9 = 0.09; p(3) = 0.12 * 0.9 = 0.009. Note the rapid decrease in the prob-
ability of more than two transmissions, even with a fairly high packet loss
rate of 10%. Indeed, the expected number of transmissions is only 1/0.9 = .

1.5.4 Poisson Distribution

The Poisson distribution is widely encountered in networking situations, usually
to model the arrival of packets or new end-to-end connections to a switch or a
router. A discrete random variable X with the domain {0, 1, 2, 3,...} is said to be a
Poisson random variable with parameter  if, for some > 0:

(EQ 1.30)

Poisson variables are often used to model the number of events that happen in a
fixed time interval. If the events are reasonably rare, the probability that multiple
events occur in a fixed time interval drops off rapidly, due to the  term in the
denominator. The first use of Poisson variables, indeed, was to investigate the num-
ber of soldier deaths due to being kicked by a horse in Napoleon’s army! 
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The Poisson distribution, which has only a single parameter , can be used to
model a binomial distribution with two parameters (n and a) when n is “large” and
a is “small.” In this case, the Poisson variable’s parameter  corresponds to the
product of the two binomial parameters (i.e., = nBinomial* aBinomial). Recall that a
binomial distribution arises naturally when we conduct independent trials. The
Poisson distribution, therefore, arises when the number of such independent trials
is large, and the probability of success of each trial is small. The expected value of a
Poisson distributed random variable with parameter  is also .

Consider an endpoint sending a packet on a link. We can model the transmission of a
packet by the endpoint in a given time interval as a trial as follows: If the source sends
a packet in a particular interval, we will call the trial a success; if the source does not
send a packet, we will call the trial a failure. When the load generated by each source is
light, the probability of success of a trial defined in this manner, which is just the
packet transmission probability, is small. Therefore, as the number of endpoints grows,
and if we can assume the endpoints to be independent, the sum of their loads will be
well modeled by a Poisson random variable. This is heartening because systems sub-
jected to a Poisson load are mathematically tractable, as we will see in our discussion of
queueing theory. Unfortunately, over the last two decades, numerous measurements
have shown that actual traffic can be far from Poisson. Therefore, this modeling
assumption should be used with care and only as a rough approximation to reality.

EXAMPLE 1.31: POISSON RANDOM VARIABLE

Consider a link that can receive traffic from one of 1,000 independent end-
points. Suppose that each node transmits at a uniform rate of 0.001 packets/
second. What is the probability that we see at least one packet on the link dur-
ing an arbitrary 1-second interval?

Solution:

Given that each node transmits packets at the rate of 0.001 packets/second, the
probability that a node transmits a packet in any 1-second interval is pBinomial =
0.001. Thus, the Poisson parameter = 1000*0.001 = 1. The probability that we
see at least one packet on the link during any 1-second interval is therefore 

1 – p(0)

= 1 – e–110/0!
= 1 – 1/e

 = 0.64

That is, there is a 64% chance that, during an arbitrary 1-second interval, we
will see one or more packets on the link.
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It turns out that a Poisson random variable is a good approximation to a bino-
mial random variable even if the trials are weakly dependent. Indeed, we do not
even require the trials to have equal probabilities, as long as the probability of suc-
cess of each individual trial is “small.” This is another reason why the Poisson ran-
dom variable is frequently used to model the behavior of aggregates.

1.6 Standard Continuous Distributions

This section presents some standard continuous distributions. Recall from Section
1.3 that, unlike discrete random variables, the domain of a continuous random vari-
able is a subset of the real line. 

1.6.1 Uniform Distribution

A random variable X is said to be uniformly randomly distributed in the domain
[a,b] if its density function f(x) = 1/(b – a) when x lies in [a,b] and is 0 otherwise. The
expected value of a uniform random variable with parameters a,b is (a+b)/2.

1.6.2 Gaussian, or Normal, Distribution

A random variable is Gaussian, or normally distributed, with parameters  and
 if its density is given by

(EQ 1.31)

We denote a Gaussian random variable X with parameters  and  as X ~
N( , ), where we read the “~” as “is distributed as.”

The Gaussian distribution can be obtained as the limiting case of the binomial
distribution as n tends to infinity and p is kept constant. That is, if we have a very
large number of independent trials, such that the random variable measures the
number of trials that succeed, the random variable is Gaussian. Thus, Gaussian
random variables naturally occur when we want to study the statistical properties
of aggregates.

The Gaussian distribution is called normal because many quantities, such as the
heights of people, the slight variations in the size of a manufactured item, and the time
taken to complete an activity approximately follow the well-known bell-shaped curve.4

4. With the caveat that many variables in real life are never negative, but the Gaussian distribu-
tion extends from  to .
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When performing experiments or simulations, it is often the case that the same quan-
tity assumes different values during different trials. For instance, if five students were
each measuring the pH of a reagent, it is likely that they would get five slightly differ-
ent values. In such situations, it is common to assume that these quantities, which are
supposed to be the same, are in fact normally distributed about some mean. Generally
speaking, if you know that a quantity is supposed to have a certain standard value but
you also know that there can be small variations in this value due to many small and
independent random effects, it is reasonable to assume that the quantity is a Gaussian
random variable with its mean centered on the expected value. 

The expected value of a Gaussian random variable with parameters  and  is
 and its variance is . In practice, it is often convenient to work with a stan-

dard Gaussian distribution, which has a zero mean and a variance of 1. It is pos-
sible to convert a Gaussian random variable X with parameters  and  to a
Gaussian random variable Y with parameters 0,1 by choosing Y = (X –  )/ .

The Gaussian distribution is symmetric about the mean and asymptotes to 0 at
+  and – . The  parameter controls the width of the central “bell”: The larger this
parameter, the wider the bell, and the lower the maximum value of the density func-
tion as shown in Figure 1.4. The probability that a Gaussian random variable X lies
between  –  and +  is approximately 68.26%; between  –  and  +  is
approximately 95.44%; and between  –  and +  is approximately 99.73%.

It is often convenient to use a Gaussian continuous random variable to approxi-
mately model a discrete random variable. For example, the number of packets
arriving on a link to a router in a given fixed time interval will follow a discrete dis-
tribution. Nevertheless, by modeling it using a continuous Gaussian random vari-
able, we can get quick estimates of its expected extremal values. 

Figure 1.4 Gaussian distributions for different values of the mean and variance
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EXAMPLE 1.32: GAUSSIAN APPROXIMATION OF A DISCRETE RANDOM VARIABLE

Suppose that the number of packets arriving on a link to a router in a 1-second
interval can be modeled accurately by a normal distribution with parameters
(20, 4). How many packets can we expect to see with at least 99% confidence?

Solution:

The number of packets are distributed (20, 4), so that = 20 and = 2. We
have more than 99% confidence that the number of packets seen will be

, or between 14 and 26. That is, if we were to measure packets’ arrivals
over a long period of time, fewer than 1% of the 1-second intervals would have
packet counts fewer than 14 or more than 26. 

The MGF of the normal distribution is given by

where in the last step, we recognize that the integral is the area under a normal
curve, which evaluates to . Note that the MGF of a normal variable with zero
mean and a variance of 1 is therefore

(EQ 1.32)

We can use the MGF of a normal distribution to prove some elementary facts
about it. 

a. If X ~ N( , 2), then a+bX ~ N(a+b , b2 2), because the MGF of a+bX is

which can be seen to be a normally distributed random variable with mean a+
b  and variance b2 2
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b. If X ~ N( , ), then Z = (X –  ~ N(0,1). This is obtained trivially by substi-
tuting for a and b in expression (a). Z is called the standard normal variable.

c. If X ~ N( , ) and Y~ N( 2, ) and X and Y are independent, X+Y ~ N( ,

), because the MGF of their sum is the product of their individual

MGFs . As a generalization, the sum
of any number of independent normal variables is also normally distributed
with the mean as the sum of the individual means and the variance as the
sum of the individual variances. 

1.6.3 Exponential Distribution

A random variable X is exponentially distributed with parameter , where , if
its density function is given by

(EQ 1.33)

Note than when x = 0,  (see Figure 1.5). The expected value of such a random

variable is  and its variance is . The exponential distribution is the continuous

analog of the geometric distribution. Recall that the geometric distribution measures
the number of trials until the first success. Correspondingly, the exponential distribu-

Figure 1.5 Exponentially distributed random variables with = {1, 0.5, 0.25}
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tion arises when we are trying to measure the duration of time before some event hap-
pens (i.e., achieves success). For instance, it is used to model the time between two
consecutive packet arrivals on a link.

The cumulative density function of the exponential distribution, F(X), is given by

(EQ 1.34)

EXAMPLE 1.33: EXPONENTIAL RANDOM VARIABLE

Suppose that measurements show that the average length of a phone call is 3
minutes. Assuming that the length of a call is an exponential random vari-
able, what is the probability that a call lasts more than 6 minutes?

Solution:

Clearly, the  parameter for this distribution is 1/3. Therefore, the probability
that a call lasts more than six minutes is 1 – F(6) = 1 – e–6/3 = 1 – e–2 = 13.5%.

An important property of the exponential distribution is that, like the geometric
distribution, it is memoryless and, in fact, is the only memoryless continuous dis-
tribution. Intuitively, this means that the expected remaining time until the occur-
rence of an event with an exponentially distributed waiting time is independent of
the time at which the observation is made. More precisely, P(X > s+t | X>s) = P(X>t)
for all s, t. From a geometric perspective, if we truncate the distribution to the left
of any point on the positive X axis and then rescale the remaining distribution so
that the area under the curve is 1, we will obtain the original distribution. The fol-
lowing examples illustrate this useful property.

EXAMPLE 1.34: MEMORYLESSNESS 1

Suppose that the time a bank teller takes is an exponentially distributed ran-
dom variable with an expected value of 1 minute. When you arrive at the
bank, the teller is already serving a customer. If you join the queue now, you
can expect to wait 1 minute before being served. However, suppose that you
decide to run an errand and return to the bank. If the same customer is still
being served (i.e., the condition X>s), and if you join the queue now, the
expected waiting time for you to be served would still be 1 minute! 

F X p X x 1 e– x–= =
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EXAMPLE 1.35: MEMORYLESSNESS 2

Suppose that a switch has two parallel links to another switch and that pack-
ets can be routed on either link. Consider a packet A that arrives when both
links are already in service. Therefore, the packet will be sent on the first link
that becomes free. Suppose that this is link 1. Now, assuming that link service
times are exponentially distributed, which packet is likely to finish transmis-
sion first: packet A on link 1 or the packet continuing service on link 2?

Solution:

Because of the memorylessness of the exponential distribution, the expected
remaining service time on link 2 at the time that A starts transmission on link
1 is exactly the same as the expected service time for A, so we expect both to
finish transmission at the same time. Of course, we are assuming that we
don’t know the service time for A. If a packet’s service time is proportional to
its length, and if we know A’s length, we no longer have an expectation for its
service time: We know it precisely, and this equality no longer holds.

1.6.4 Power-Law Distribution

A random variable described by its minimum value xmin and a scale parameter
 is said to obey the power-law distribution if its density function is given by

(EQ 1.35)

Typically, this function needs to be normalized for a given set of parameters to

ensure that .

Note that f(x) decreases rapidly with x. However, the decline is not as rapid as
with an exponential distribution (see Figure 1.6). This is why a power-law distribu-
tion is also called a heavy-tailed distribution. When plotted on a log-log scale,
the graph of f(x) versus x shows a linear relationship with a slope of , which is
often used to quickly identify a potential power-law distribution in a data set.

Intuitively, if we have objects distributed according to an exponential or power
law, a few “elephants” occur frequently and are common, and many “mice” are rela-
tively uncommon. The elephants are responsible for most of the probability mass.
From an engineering perspective, whenever we see such a distribution, it makes
sense to build a system that deals well with the elephants, even at the expense of

1
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xmin
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ignoring the mice. Two rules of thumb that reflect this are the 90/10 rule—90% of
the output is derived from 10% of the input—and the dictum optimize for the com-
mon case.

When , the expected value of the random variable is infinite. A system
described by such a random variable is unstable (i.e., its value is unbounded). On
the other hand, when , the tail probabilities fall rapidly enough that a power-
law random variable can usually be well approximated by an exponential random
variable. 

A widely studied example of power-law distribution is the random variable that
describes the number of users who visit one of a collection of Web sites on the Inter-
net on any given day. Traces of Web site accesses almost always show that all but a
microscopic fraction of Web sites get fewer than one visitor a day: Traffic is gar-
nered mostly by a handful of well-known Web sites. 

1.7 Useful Theorems

This section discusses some useful theorems: Markov’s and Chebyshev’s inequality
theorems allow us to bound the amount of mass in the tail of a distribution, know-
ing nothing more than its expected value (Markov) and variance (Chebyshev).
Chernoff ’s bound allows us to bound both the lower and upper tails of distributions
arising from independent trials. The law of large numbers allows us to relate real-
world measurements with the expectation of a random variable. Finally, the central
limit theorem shows why so many real-world random variables are normally
distributed.

Figure 1.6 A typical power-law distribution with parameters xmin = 0.1 and  = 2.3 
compared to an exponential distribution using a linear-linear (left) and a 

log-log (right) scale
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1.7.1 Markov’s Inequality

If X is a non-negative random variable with mean , then for any constant a > 0,

(EQ 1.36)

Thus, we can bound the probability mass to the right of any constant a by a value
proportional to the expected value of X and inversely proportional to a (Figure 1.7).
Markov’s inequality requires knowledge only of the mean of the distribution. Note
that this inequality is trivial if a <  (why?). Note also that the Markov inequality
does not apply to some standard distributions, such as the normal distribution,
because they are not always non-negative.

EXAMPLE 1.36: MARKOV INEQUALITY

Use the Markov inequality to bound the probability mass to the right of the
value 0.75 of a uniform (0,1) distribution.

Solution:

The mean of this distribution is 0.5, so . The actual

probability mass is only 0.25, so the Markov bound is quite loose. This is typi-
cal of a Markov bound.

1.7.2 Chebyshev’s Inequality

If X is a random variable with a finite mean  and variance , then for any con-
stant a > 0,

Figure 1.7 Markov’s inequality
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(EQ 1.37)

Chebyshev’s inequality bounds the “tails” of a distribution on both sides of the
mean, given the variance. Roughly, the farther away we get from the mean (the
larger a is), the less mass there is in the tail (because the right-hand size decreases
by a factor quadratic in a), as shown in Figure 1.8.

EXAMPLE 1.37: CHEBYSHEV BOUND

Use the Chebyshev bound to compute the probability that a standard normal
random variable has a value greater than 3.

Solution:

For a standard normal variable,  and . We have a = 3. So,

, so that , or about 5.5%. Compare this to the tight

bound of 0.135% (Section 1.6.2). 

1.7.3 Chernoff Bound

Let the random variable  denote the outcome of the ith iteration of a process,
with  denoting success and  denoting failure. Assume that the proba-
bility of success of each iteration is independent of the others (this is critical!).
Denote the probability of success of the ith trial by . Let X be the
number of successful trials in a run of n trials. Clearly,

Figure 1.8 Chebyshev’s inequality
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 . 

Let  be the expected value of X (the expected number of successes). Then,
we can state two Chernoff bounds that tell us the probability that there are too few
or too many successes. 

The lower bound is given by

(EQ 1.38)

This is somewhat hard to compute. A weaker but more tractable bound is

(EQ 1.39)

Note that both equations bound the area under the density distribution of X
between  and . The second form makes it clear that the probability of too
few successes declines quadratically with .

The upper bound is given by

(EQ 1.40)

A weaker but more tractable bound is

(EQ 1.41)

EXAMPLE 1.38: CHERNOFF BOUND

Use the Chernoff bound to compute the probability that a packet source that
suffers from independent packet losses, where the probability of each loss is
0.1, suffers from more than four packet losses when transmitting ten packets.

Solution:

We define a successful event to be a packet loss, with the probability of success
being  . We have . Also, we want to
compute  so that . So,
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As with all bounds, this is looser than the exact value computed from the bino-
mial theorem, given by 

1.7.4 Strong Law of Large Numbers

The law of large numbers relates the sample mean—the average of a set of obser-
vations of a random variable—with the population, or true mean, which is its
expected value. The strong law of large numbers, the better-known variant, states
that if X1, X2,..., Xn are n independent, identically distributed random variables
with the same expected value , then

(EQ 1.42)

No matter how X is distributed, by computing an average over a sufficiently large
number of observations, this average can be made to be as close to the true mean as
we wish. This is the basis of a variety of statistical techniques for hypothesis test-
ing, as described in Chapter 2.

We illustrate this law in Figure 1.9, which shows the average of 1,2,3,..., 500 suc-
cessive values of a random variable drawn from a uniform distribution in the range

Figure 1.9 Strong law of large numbers: As N increases, the average value of sample of 
N random values converges to the expected value of the distribution.
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[0, 1]. The expected value of this random variable is 0.5, and the average converges
to this expected value as the sample size increases.

1.7.5 Central Limit Theorem

The central limit theorem deals with the sum of a large number of independent ran-
dom variables that are arbitrarily distributed. The theorem states that no matter
how each random variable is distributed, as long as its contribution to the total is
small, the sum is well described by a Gaussian random variable. 

More precisely, let X1, X2,..., Xn be n independent, identically distributed random
variables, each with a finite mean  and variance 2. Then, the distribution of the

normalized sum given by  tends to the standard (0,1) normal as

. The central limit theorem is the reason why the Gaussian distribution is
the limit of the binomial distribution. 

In practice, the central limit theorem allows us to model aggregates by a Gauss-
ian random variable if the size of the aggregate is large and the elements of the
aggregate are independent. 

The Gaussian distribution plays an important role in statistics because of the
central limit theorem. Consider a set of measurements of a physical system. Each
measurement can be modeled as an independent random variable whose mean and
variance are those of the population. From the central limit theorem, their sum,
and therefore their mean, which is just the normalized sum, is approximately nor-
mally distributed. As we will study in Chapter 2, this allows us to infer the popula-
tion mean from the sample mean, which forms the foundation of statistical
confidence. We now prove the central limit theorem by using MGFs.

The proof proceeds in three stages. First, we compute the MGF of the sum of n
random variables in terms of the MGFs of each of the random variables. Second, we
find a simple expression for the MGF of a random variable when the variance is
large: a situation we expect when adding together many independent random vari-
ables. Finally, we plug this simple expression back into the MGF of the sum to
obtain the desired result. 

Consider a random variable , the sum of n independent
random variables . Let  and  denote the mean and standard deviation of ,
and let  and  denote the mean and standard deviation of Y. Because all the s
are independent,

(EQ 1.43)
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Define the random variable  to be (  – i): It represents the distance of an
instance of the random variable  from its mean. By definition, the rth moment of

about the origin is the rth moment of  about its mean. Also, because the 
are independent, so are the . Denote the MGF of  by Mi(t) and the MGF of 
by Ni(t).

Note that Y – = –  = . So, the MGF

of Y –  is the product of the MGFs of the  = . Therefore, the MGF of

(Y – / denoted N*(t) is given by

(EQ 1.44)

Consider the MGF Ni(t/ ), which is given by Expanding the exponen-
tial, we find that

(EQ 1.45)

Now, E(Wi) = E(Xi – i) = E(Xi) – i = i – i = 0, so we can ignore the second term in
the expansion. Recall that  is the standard deviation of the sum of n random vari-
ables. When n is large, so too is , which means that, to first order, we can ignore
terms that have 3 and higher powers of  in the denominator in Equation 1.45.
Therefore, for large n, we can write

(EQ 1.46)

where we have used the fact that  which is the variance of
.

Returning to the expression in Equation 1.44, we find that 

(EQ 1.47)

It is easily shown by the Taylor series expansion that when h is small—so that h2

and higher powers of h can be ignored—log(1+h) can be approximated by h. So,
when n is large and  is large, we can further approximate
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(EQ 1.48)

where, for the last simplification, we used Equation 1.43. Thus, log N*(t) is approxi-

mately 1/2 t2, which means that

(EQ 1.49)

But this is just the MGF of a standard normal variable with 0 mean and a vari-
ance of 1 (Equation 1.32). Therefore, (Y – / is a standard normal variable, which

means that Y~N( , 2). We have therefore shown that the sum of a large number of
independent random variables is distributed as a normal variable whose mean is
the sum of the individual means and whose variance is the sum of the individual
variances (Equation 1.43), as desired.

1.8 Jointly Distributed Random Variables

So far, we have considered distributions of one random variable. We now consider
the distribution of two random variables simultaneously. 

EXAMPLE 1.39: JOINT PROBABILITY DISTRIBUTION

Consider the two events: “rain today” and “rain tomorrow.” Let the random
variable X be 0 if it does not rain today and 1 if it does. Similarly, let the ran-
dom variable Y be 0 if it does not rain tomorrow and 1 if it does. The four pos-
sible values for the random variables X and Y considered together are 00, 01,
10, and 11, corresponding to four joint events. We can associate probabilities
with these events with the usual restrictions that these probabilities lie in
[0,1] and that their sum be 1. For instance, consider the following distribution:

p(00) = 0.2,

p(01) = 0.4,

p(10) = 0.3,

p(11) = 0.1,

where the 00 is now interpreted as shorthand for X = 0 AND Y = 0, and so on.
This defines the joint probability distribution of X and Y, which is denoted

 or sometimes p(X,Y). Given this joint distribution, we can extract the
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distribution of X alone, which is the probability of X = 0 and of X = 1, as follows:
p(X = 0) = p(00) + p(01) = 0.2 + 0.4 = 0.6. Similarly, p(X = 1) = 0.3 + 0.1 = 0.4.
As expected, p(X = 0) + p(X = 1) = 1. Similarly, note that p(Y = 0) = 0.5 and
p(Y = 1) = 0.5.

We call the distribution of X alone as the marginal distribution of X and denote
it pX. Similarly, the marginal distribution of Y is denoted pY. Generalizing from the
preceding example, we see that to obtain the marginal distribution of X, we should
set X to each value in its domain and then sum over all possible values of Y. Simi-
larly, to obtain the marginal distribution of Y, we set Y to each value in its domain
and sum over all possible values of X.

An important special case of a joint distribution is when the two variables X and
Y are independent. Then, pXY(xy) = p(X = x AND Y = y) = p(X = x ) * p(Y = y) =
pX(x)pY(y). That is, each entry in the joint distribution is obtained simply as the
product of the marginal distributions corresponding to that value. We sometimes
denote this as = pX(x)pY(y).

EXAMPLE 1.40: INDEPENDENCE

In Example 1.39, pXY(00) = 0.2, pX(0) = 0.6, and pY(0) = 0.5, so X and Y are not
independent: We cannot decompose the joint distribution into the product of
the marginal distributions. 

Given the joint distribution, we define the conditional probability mass func-
tion of X, denoted by pX|Y(x|y) by p(X = x | Y = y) = p(X = x AND Y = y)/p(Y = y) =

.

EXAMPLE 1.41: CONDITIONAL PROBABILITY MASS FUNCTION

Continuing with Example 1.39, suppose that we want to compute the proba-
bility that it will rain tomorrow, given that it rained today: pY|X(1|1) =
pXY(11)/pX(1) = 0.1/0.4 = 0.25. Thus, knowing that it rained today makes it
less probable that it will rain tomorrow because p(Y=1) = 0.5 and p(Y=1|X=1) =
0.25.

pXY xy

pY y
-------------------
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We can generalize the notion of joint probability in three ways. We outline these
generalizations next. Note that the concepts we have developed for the simple pre-
ceding case continue to hold for these generalizations.

1. Instead of having only two values, 0 and 1, X and Y could assume any number 
of finite discrete values. In this case, if there are n values of X and m values of 
Y, we would need to specify, for the joint distribution, a total of nm values. If X
and Y are independent, however, we need to specify only n+m values to com-
pletely specify the joint distribution. 

2. We can generalize this further and allow X and Y to be continuous random 
variables. Then, the joint probability distribution pXY(xy) is implicitly defined 
by

(EQ 1.50)

Intuitively, this is the probability that a randomly chosen two-dimensional 
vector will be in the vicinity of (a,b).

3. As a further generalization, consider the joint distribution of n random vari-
ables, X1, X2,..., Xn, where each variable is either discrete or continuous. If 
they are all discrete, we need to define the probability of each possible choice 
of each value of Xi. This grows exponentially with the number of random vari-
ables and with the size of each domain of each random variable. Thus, it is 
impractical to completely specify the joint probability distribution for a large 
number of variables. Instead, we exploit pairwise independence between the 
variables, using the construct of a Bayesian network, which is described next. 

1.8.1 Bayesian Networks

Bayes’s rule allows us to compute the degree to which one of a set of mutually exclu-
sive prior events contributes to a posterior condition. Suppose that the posterior
condition was itself a prior to yet another posterior, and so on. We could then imag-
ine tracing this chain of conditional causation back from the final condition to the
initial causes. This, in essence, is a Bayesian network. We will study one of the sim-
plest forms of a Bayesian network next.

A Bayesian network with n nodes is a directed acyclic graph whose vertices rep-
resent random variables and whose edges represent conditional causation between
these random variables: There is an edge from a random variable Ei, called the par-
ent, or cause, to every random variable Ej whose outcome depends on it, called its
children, or effects. If there is no edge between Ei and Ej, they are independent.

p a X a + b Y b + pXY xy xd yd
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Each node in the Bayesian network stores the conditional probability distribution
p(Ej|parents(Ej)), also called its local distribution. Note that if the node has no
parents, its distribution is unconditionally known. The network allows us to com-
pute the joint probability p(E1E2...En) as

(EQ 1.51)

That is, the joint distribution is simply the product of the local distributions.
This greatly reduces the amount of information required to describe the joint prob-
ability distribution of the random variables. Choosing the Bayesian graph is a non-
trivial problem and one that we will not discuss further. An overview can be found
in the text by Russell and Norvig cited in Section 1.9. 

Note that, because the Bayesian network encodes the full joint distribution, we
can in principle extract any probability we want from it. Usually, we want to com-
pute something much simpler. A Bayesian network allows us to compute probabili-
ties of interest without having to compute the entire joint distribution, as the next
example demonstrates.

EXAMPLE 1.42: BAYESIAN NETWORK

Consider the Bayesian network in Figure 1.10. Each circle shows a discrete
random variable that can assume only two values: true or false. Each random
variable is associated with an underlying event in the appropriate sample
space, as shown in the figure. The network shows that if L, the random variable

Figure 1.10 A Bayesian network to represent TCP retransmissions
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representing packet loss event, has the value true (the cause), this may lead to
a timeout event at the TCP transmitter (effect), so that the random variable
representing this T, has a higher probability of having the value true. Simi-
larly, the random variable denoting the loss of an acknowledgment packet may
also increase the probability that T assumes the value true. The node marked
T, therefore, stores the probabilty that it assumes the value true conditional
on the parents, assuming the set of values {(true, true), (true, false), (false,
true), (false, false)}. 

The network also represents the fact that a packet loss event affects the
likelihood of a duplicate acknowledgment event. However, packet and ack loss
events are mutually exclusive, as are duplicate acks and timeouts. Finally, if
there is either a duplicate ack or a timeout at the transmitter, it will surely
retransmit a packet.

The joint distribution of the random variables (L, A, D, T, R) would assign a
probability to every possible combination of the variables, such as p(packet loss
AND no ack loss AND no duplicate ack AND timeout AND no retransmission).
In practice, we rarely need the joint distribution. Instead, we may be interested
only in computing the following probability: p(packet loss | retransmission) =
p(L|R). That is, we observe the event that the transmitter has retransmitted a
packet. What is the probability that the event packet loss occurred: What is
p(L|R)?

For notational simplicity, let p(R = true) = p(R) = r, p(L = true) = p(L) = l,
p(T = true) = p(T) = t, p(A = true) = p(A) = a and p(D = true) = p(D) = d. From
the network, it is clear that we can write p(R) as p(R|T)t + p(R|D)d. Simi-
larly, t = p(T|L)l + p(T|A)a and d = p(D|L)l. Therefore, 

p(R) = r = p(R|T)(p(T|L)l + p(T|A)a) + p(R|D)p(D|L)l

If we know a and l and the conditional probabilities stored at each node, we
can therefore compute r.

From the definition of conditional probabilities:

p(L|R) = (EQ 1.52)

We have already seen how to compute the denominator. To compute the
numerator, we sum across all possibilities for L and R as follows: 

p(LR) = p(LRTD) + p(LRT ) + p(LR D) + p(LR )

where the overbar represents the probability that the random variable assumes
the value false. However, note that T and D are mutually exclusive, so 

p LR
r
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p(TD) = 0

p(T ) = p(T)

p( D) = p(D)

Thus, 

p(LR) = p(LRT) + p(LRD) + p(LR )

The last term is 0 because we do not have a retransmission unless there is
either a timeout or a duplicate ack. Thus, p(LR) = P(LRT) + P(LRD).

Replacing this in Equation 1.52, we get

All these variables can be computed by observations over sufficiently long
durations of time. For instance, to compute , we can compute the ratio
of all retransmissions where there was both a packet loss and timeout event to
the number of transmissions. Similarly, to compute p(R|T), we can compute the
ratio of the number of times a retransmission happens due to a timeout to the
number of times a timeout happens. This allows us to compute p(L|R) in practice.

1.9 Further Reading

A number of excellent introductory texts on probability treat this subject in more
detail, such as S. Ross, A First Course in Probability, 7th ed., Prentice Hall, 2006. A
more sophisticated treatment is the classic text by W. Feller, An Introduction to
Probability Theory and Its Applications, 3rd ed., Wiley, 1968. Bayesian analysis is
described in the standard textbook on artificial intelligence: S. Russell and P. Nor-
vig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall, 2010.

1.10 Exercises

1. Sample space

In the IEEE 802.11 protocol, the congestion window (CW) parameter is used as
follows: Initially, a terminal waits for a random time period, or backoff, chosen
in the range [1, 2CW] before sending a packet. If an acknowledgment for the
packet is not received in time, CW is doubled, and the process is repeated until

D

T

TD

p PLR p LRT p LRD+
p R T p T L l p T A a+ p R D p D L l+
-----------------------------------------------------------------------------------------------------------------------------=

p LRT
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CW reaches the value CWMAX. The initial value of CW is CWMIN. What are
the sample spaces for the value of CW and the value of the backoff?

2. Interpretations of probability

Consider the statement: Given the conditions right now, the probability of a
snowstorm tomorrow morning is 25%. How would you interpret this statement
from the perspective of an objective, frequentist, and subjective interpretation
of probability, assuming that these are possible?

3. Conditional probability

Consider a device that samples packets on a link.

a. Suppose that measurements show that 20% of packets are UDP and that 
10% of all packets are UDP packets with a packet size of 100 bytes.What is 
the conditional probability that a UDP packet has size 100 bytes?

b. Suppose that 50% of packets were UDP, and 50% of UDP packets were 100 
bytes long. What fraction of all packets are 100-byte UDP packets?

4. Conditional probability again

Continuing with Exercise 3: How does the knowledge of the protocol type
change the sample space of possible packet lengths? In other words, what is
the sample space before and after you know the protocol type of a packet?

5. Bayes’s rule

For Exercise 3(a), what additional information do you need to compute
P(UDP|100)? Setting that value to x, express P(UDP|100) in terms of x.

6. Cumulative distribution function (CDF)

a. Suppose that discrete random variable D take values {1, 2, 3,...,i,...} with 

probability 1/2i. What is its CDF?

b. Suppose continuous random variable C is uniform in the range [x1, x2].
What is its CDF?

7. Expectations

Compute the expectations of the D and C in Exercise 6.

8. Variance

Prove that V[aX] = a2V[X].
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9. Moments

Prove that .

10. MGFs

Prove that the MGF of a uniform random variable, expressed in terms of its

series expansion, is .

11. MGFs

Prove that the rth moment of the uniform distribution about the origin is 
1/(r+1).

12. MGF of a sum of two variables

Use MGFs to find the variance of the sum of two independent uniform stan-
dard random variables. 

13. MGF of a normal distribution

Prove that if X ~ N( , ), then (X –  ~ N(0,1).

14. Bernoulli distribution

A hotel has 20 guest rooms. Assuming that outgoing calls are independent and
that a guest room makes 10 minutes worth of outgoing calls during the busiest
hour of the day, what is the probability that 5 calls are simultaneously active
during the busiest hour? What is the probability of 15 simultaneous calls? 

15. Geometric distribution

Consider a link that has a packet loss rate of 10%. Suppose that every packet
transmission has to be acknowledged. Compute the expected number of data
transmissions for a successful packet+ack transfer.

16. Poisson distribution

Consider a binomially distributed random variable X with parameters n = 10,
p = 0.1. 

a. Compute the value of P(X = 8), using both the binomial distribution and the 
Poisson approximation. 

b. Repeat for n = 100, p = 0.1.

M3 M0
3 3M0

2M0
1 2 M0
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------------- tx 3
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17. Gaussian distribution

Prove that if X is Gaussian with parameters ( , ), the random variable Y =
aX + b, where a and b are constants, is also Gaussian, with parameters
( , ).    

18. Exponential distribution

Suppose that customers arrive at a bank with an exponentially distributed
interarrival time with mean 5 minutes. A customer walks into the bank at 3 p.m.
What is the probability that the next customer arrives no sooner than 3:15?

19. Exponential distribution

It is late August and you are watching the Perseid meteor shower. You are told
that the time between meteors is exponentially distributed with a mean of 200
seconds. At 10:05 p.m., you see a meteor, after which you head to the kitchen
for a bowl of ice cream, returning outside at 10:08 p.m. How long do you expect
to wait to see the next meteor?

20. Power law

Consider a power-law distribution with xmin = 1 and  and an exponential
distribution with = 2. Fill in the following table:

It should now be obvious why a power-law distribution is called heavy-tailed!

21. Markov’s inequality

Consider a random variable X that exponentially distributed with parameter
 = 2. What is the probability that X > 10 using (a) the exponential distribution

and (b) Markov’s inequality?

x fpower_law(x) fexponential(x)

1

5

10

50

100

2

a b+ a 2

2=
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22. Joint probability distribution

Consider the following probability mass function defined jointly over the ran-
dom variables X, Y, and Z:

p(000) = 0.05; p(001) = 0.05; p(010) = 0.1; p(011) = 0.3; 
p(100) = 0.05; p(101) = 0.05; p(110) = 0.1; p(111) = 0.3. 

a. Write down pX, pY, pZ, pXY, pXZ, pYZ.

b. Are X and Y, X and Z, or Y and Z independent? 

c. What is the probability that X = 0 given that Z = 1.
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Index

A
Absolutely integrable signals, 203
Absorbing state, Markov Chains, 139
Acausal systems, 188
Acceptance function, simulated 

annealing,168
Actions in game theory, 281, 286
Active control system elements, 324
Addition of vectors and matrices, 110–111
Additivity property, systems, 188
Affine transforms, 281
Agents in game theory, 304
Agglomerative clustering, data mining, 102
AGV (d’Asprement-Gerard-Varet) 

mechanism, 314
Algebra, linear. See Linear algebra
Algorithmic Game Theory (Nisan, 

Roughgarden, Tardos, and Vazirani), 
316

Aliasing
experimental design problem, 100
of signals due to sampling, 219–222
when coding message sources, 400

All-pairs shortest paths algorithm, 163–164
Amplitude shift keying, 178
Analog signals, 185

Analog systems, 188
Analysis of variance (ANOVA) technique, 95

multi-way layouts, 98
one-way layout, 95–98
single-factor, 97–98

Analysis problem, control systems, 188
Analytical mistakes in statistics, 103–105
Annealing, simulated, 168
ANOVA (analysis of variance) technique, 95

multi-way layouts, 98
one-way layout, 95–98
single-factor, 97–98

Antilooping algorithms, simplex, 156
Aperiodic signals, 185
Aperiodic state, 247
Arbitrary input, LTI systems with, 193–194
Arrow’s theorem, 303
Art of Computer Systems Performance 

Analysis (Jain), 100
Artificial Intelligence: A Modern Approach

(Russell and Norvig), 47
Associativity

fields, 110
matrix multiplication, 113

Asymptotic equipartitioning property, 388
Asymptotically stable systems, 195, 359
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Atypical sets, information theory, 388
Auctions

combinatorial, 313
English, 302
Vickrey, 305–306

Autocorrelation, 95
Automatic Control Systems (Kuo and 

Golnaraghi), 370
Axioms

fields, 110–111
preferences, 278–279
probability, 4–5

B
Band-pass filters, 221
Band width, 403
Bar graphs, 58–60
Basis sets, vector spaces, 116–117
Battle of the Sexes game, 298, 300
Bayes-Nash equilibrium, 307, 314
Bayesian games, 288–289
Bayesian networks, 44–47
Bayes’s rule, 11–13
Bayes’s theorem, 12–13
Bernoulli distributions, 25
Bernoulli random variables, 25
Best-fit lines, 88–90
Best responses in game theory, 287
Biased samples, 55
BIBO. See Bounded-input, bounded-output 

(BIBO) stability
Binary channels, 387, 398–399
Binary phase shift keying, 178
Binary random variables, 377
Binomial distributions

description, 25
hypothesis testing, 81

Binomial random variables, 25–26
Bin widths for bar graphs, 58
Bipartite matching, 161–162
Birth-death processes, 255

general equilibrium solution, 261–262
pure-birth, 259–260
stationary probability distributions, 

256–257, 260–262
time-evolution, 255–256
transition-rate matrices, 257–258

Birth rates, 255
Bits, information theory, 375

Blocking probability, call, 269
Bonferroni method, 98
Bottom-up approach in dynamic 

programming, 163
Bounded-input, bounded-output (BIBO) 

stability
computer network, 353
description, 339, 351
LTI systems, 353–356
SISO systems, 357
telephone network, 352
vs. zero-input stability, 365

Bremaud, P., Markov Chains, 272
Brouwer fixed-point theorem, 298
Budget balance

game theory design, 308–309
VCG mechanisms, 314

Bulmer, M. G., Principles of Statistics, 105

C
Capacity

communication channels, 386–399
Gaussian channels, 403–407
network-flow problem, 157
noisy typewriter, 398

Capture effect, WiFi, 288
Carrier signals, 173
Cartesian coordinates for vectors, 117, 128
Cascade control, 346–347
Categorical scales, 56
Causal systems, 188
Central limit theorem, 40–42
Centroids

of clusters, 103
regression lines, 89

Channel capacity theorem, 389
Channel coders, 386
Channel decoders, 387
Channel symbols, 386
Channels. See Information theory
Chapman-Kolmogorov equations, 246
Characteristic determinants, 130
Characteristic equations

matrices, 130
systems, 357

Characteristic polynomials
matrices, 130
systems, 191

Chebyshev’s inequality theorem, 35–37
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Chernoff bound, 35, 37–39
Chi-squared tests and variables

to test correlation, 94
for hypothesis testing, 79–81
to fit Poisson distributions, 84–85
test for variable independence, 86–88

Chicken game, 300–301
“Circle” theorem, 134
Clarke Pivot values, 311–312
Classical control systems, 329
Cluster sampling, 56
Clustering

agglomerative, 102
k-means, 102–103

Cochran, W. G., Statistical Methods, 105
Codewords, 380
Coding

digit sequences, 381
English letters, 382
noisy channels, 395
optimal, 384
source, 379–386
turbo and low-density parity, 397

Coefficient matrices, 117
Coefficients, correlation, 93
Cofactors of matrices, 122
Column vectors, 110
Combinations, linear, 114–115
Combinatorial auctions, 313
Common knowledge in game theory, 281
Communication, mathematical model for, 

374–378
Communication channel capacity, 386–399
Completely controllable systems, 362
Completely observable systems, 362
Complex conjugate pairs, 193
Complex conjugate roots, 368–369
Complex conjugates, 176
Complex eigenvalues, 130–131
Complex exponential input, 189–191
Complex exponential signals, 186–187
Complex natural responses in LTI systems, 

193
Complex numbers, 174–176
Compound lotteries, 279
Computer network stability, 353
Concordance in hypothesis testing, 72
Conditional distributions, 391–392, 394–395

Conditional probability, 7–11
Conditional probability mass function of X, 

43
Condorcet paradox, 302–303
Confidence intervals, 67–69

errors in, 103
hypothesis testing, 77
for small samples, 70

Congested systems, 265
Conjugate pairs, complex, 193
Conjugate roots, complex, 368–369
Conjugates of complex numbers, 176
Conjunctions of events, 3–4
Conservation conditions in network-flow 

problem, 157
Constrained optimization, 164–167
Constraint planes, 151
Constraints

feedback control, 339–341
network-flow problem, 157

Contingency tables, 86
Continuity axiom, 278
Continuity of preferences in game theory, 

279
Continuous distributions, 29–35
Continuous message sources, 400–401
Continuous random variables, 15, 19–20
Continuous signals, 185
Continuous-space processes, 242
Continuous stochastic processes, 242–243, 

253
Continuous-time convolution, 182–185
Continuous-time Markov chains, 252–253

residence time, 253
stationary probability distribution, 253–

254
Continuous-time processes, 242–243, 253
Continuous time systems, 188
Contours, 165
Control parameters in system modeling, 147
Control problem in controller design, 364
Control signals, 320
Control systems, 319

cascade control, 346–347
control delay, 347–350
controller design, 362–364
digital control, 364–366
feedback control, 336–341
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Control systems, (continued)
first-order, 329–330
modeling, 323–329
overview, 320–323
partial fraction expansion, 367–369
PID control, 341–346
second-order, 331–336
stability, 350–359
state space-based modeling and control, 

360–364
system roots, 357–358

Control Systems: Principles and Design
(Gopal), 370

Controllability in state space-based 
modeling, 361–362

Controllable systems, 362
Controlled conditions in experiments, 99
Controllers

controlled systems, 320
design, 362–364
PID, 345

Convenience samples, 56
Convergence in Z transforms, 227, 229
Converting ordinal to interval scales, 

104–105
Convex functions, 166
Convolution

continuous-time, 182–185
definition, 182
discrete-time, 179–182
Laplace transforms, 209–211

Convolution property
for Fourier transforms, 208
for Laplace transforms, 214, 232

Coordination games, 298
Correlated equilibria, 299–301
Correlated variables, 91–92
Correlation, 90–95
Course in Game Theory (Osborne and 

Rubinstein), 315
Cover, T., Elements of Information Theory,

407
CPLEX LP Solver, 156
Cramer’s rule, 123
Cramer’s theorem, 123
Critical values

hypothesis testing, 74
ranges, 67

Critically damped second-order control 
systems, 334

Cross products, 112
Crossover in genetic algorithms, 169
CS2 LP Solver, 156
Cumulative density function, 17
Cumulative histograms, 58–60
Customer queues, 237–238, 264

D
Damping ratio, 331, 333
Damping route flapping, 336
Dantzig, G., 155
Data exploration, 100–101
Data mining, 102
DC components of signals, 197
Death rates, 255
Decoders, message, 387
Degrees of freedom in t distributions, 69–70
Delay

control systems, 347–350
queueing, 238

Delay-sensitive WiFi stations, 292
Density functions, 16–17
Derivative-mode control, 344–345
Derivatives in Fourier transforms, 206
Design

of experiments, 99–100
game theory. See Mechanism design in 

game theory
Design of Experiments (Fisher), 99
Determinants

characteristic, 130
matrix algebra, 121–123
nonzero, 116

Deterministic processes, 240–241
Deterministic service times queueing 

systems, 270
DFT (discrete Fourier transform), 222–224
Diagonal matrices, 113

eigenvalues, 131
Dictatorships, in elections, 303
Differential equations, 191
Digital control systems, 364–366
Digital images, 378–379
Digital signals, 185
Digital systems, 188
Dimensions of vectors, 109, 116–117
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Dirac delta function, 182–185
Direct revelation in game theory, 309
Dirichlet conditions

Fourier transforms, 203
Laplace transforms, 210

Discounting future expected payoffs, 290
Discrete distributions

noisy channels, 392–393
standard, 25–29

Discrete exponential signals
discrete-time Fourier transforms, 218
Z transforms, 228

Discrete Fourier transform (DFT), 222–224
Discrete memoryless channels, 387
Discrete random variables, 14–15

expectation, 19
Gaussian approximation, 31

Discrete signals, 185
Discrete-space processes, 242
Discrete stochastic processes, 242–243
Discrete-Time Control Systems (Ogata), 370
Discrete-time convolution, 179–182
Discrete-time Fourier transforms, 217–218
Discrete-time Markov chains, 244
Discrete-time processes, 242
Discrete time systems, 188, 364
Discrimination pricing schemes, 305
Disjunctions of events, 3–4
Distinct roots in partial fraction expansion, 

367–368
Distributions

continuous
exponential, 32-34
Gaussian, 29-32
power-law, 34-35
uniform, 29

discrete
Bernoulli, 25
binomial, 25-26
geometric, 27
Poisson, 27-29

fitting, 82–85
random variables, 15–16
stationary. See Stationary distributions
statistics. See Statistics
t, 69–70
uniform, 23–24

Distributivity of fields, 111

Disturbance rejection, in linear systems, 339
Disturbance signals, 320
Domains of random variables, 14
Dominant and dominated strategies in 

game theory
equilibria, 291–293
iterated removal, 293–294
overview, 287–288

Dominant eigenvalues
power method, 135–136
roles, 133–134

Dominant eigenvectors, 136–137
Dot products, 112
Dr. Euler’s Fabulous Formula (Nahin), 233
Droop, 342
Drop rate, 238
Duality property, Fourier transform, 206
Dynamic programming, 162–164
Dynamic systems, 188

E
EFCN (explicit forward congestion 

notification) bits, 348–350
Effect size, 104
Effects in Bayesian networks, 44
Efficiency property, 308
Efficient unbiased estimators, 61
Effort in modeling systems, 323
Eigenfunctions, 190
Eigenspaces, 130
Eigenvalues of matrices, 126–129

computing, 129–131
diagonal, 131
finding, 134–137
importance, 132–133
LTI systems, 190
power method, 135–136
stochastic, 140–143

Eigenvectors, 126–128
finding, 134–137
power method, 136–137

Elements of Information Theory (Cover and 
Thomas), 407

Elements of vectors, 109
Ellipsoidal method, 156
Energy in modeling systems, 323
English auctions, 302
Enlargement in experiments, 99
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Ensemble averages, 248
Entropy, 373

mathematical models, 374–378
message sources, 387
symbols, 378–379

Equilibria
birth-death process, 261–262
control systems, 351
correlated, 299–301
game solutions, 291–299
Nash, 296–299, 307–308

Equilibrium points, 291
Equilibrium probability in Markov chains, 

250–251
Equiprobable messages, 376
Ergodic matrices, 142
Ergodic stochastic processes, 248
Ergodicity, 248–249
Errors

control systems, 340–341
hypothesis testing, 72–73, 103–104

Essentials of Game Theory (Leyton-Brown 
and Shoham), 316

Estimation problem in controller design, 364
Estimators of population mean, 61
Eternal periodic signals, 196
Euler’s formula, 176–179
Events

disjunctions and conjunctions, 3–4
independent, 8–9
joint, 7
probability, 3–4
sequences, 7

Expectation of random variables, 18–20
Explicit forward congestion notification 

(EFCN) bits, 348–350
Exponential distributions, 32–34
Exponential input, LTI system effects on, 

189–191
Exponential random variables, 33
Exponential signals, 186–187
Exponentiation of matrices, 113–114
Extensive form games, 283–287

F
F tests, 97–98
Fairness

game theory design, 309
VCG mechanisms, 314

Fast Fourier transform (FFT), 224–226
Feasible sets of control parameters, 147
Features of genetic algorithms, 169
Feedback control

constraints, 339–341
control systems, 336–338
system goals, 338

Feedback delay, 347
Feller, W., Introduction to Probability 

Theory and Applications, 47
Fermat’s theorem, 165
FFT (fast Fourier transform), 224–226
Fibonacci sequence, 162
Fields of vectors and matrices, 110
Filters, band-pass, 221
Final value theorem, 214
First Course in Probability (Ross), 47
First moments about the origin, 21
First-order control systems, 329–330
Fisher, R. A., 73, 99

Design of Experiments, 99
null hypothesis, 73
Statistical Methods for Research Workers,

105
Fitting distributions, 82–85
Fixed parameters in system modeling, 147
Fixed quantities, outcomes compared with, 

74–75
Flow in modeling systems, 323
Floyd-Warshall algorithm, 163–164
Fourier series, 196–200
Fourier transforms, 200–203

aliasing, 219–222
convolution, 208
derivatives, 206
discrete Fourier transform, 222–224
discrete-time, 217–218
impulses, 203, 216–217
inverse, 204
properties, 204–207
scaled functions, 205–206
standard, 207

Partial fraction expansion, 367–369
Fractional factorial experiments, 100
Frequency scaling property, Fourier 

transform, 213
Frequency shift keying, 178
Frequency-shifting property, Fourier 

transform, 213
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Frequentist approach to probability, 6
Full factorial design, 100
Fundamental angular frequency, 196
Fundamental period of signals, 185

G
Gain, 321

first-order control systems, 329
proportional-mode control, 341
second-order control systems, 331

Gallager, R., Information Theory and 
Reliable Communication, 407

Game theory, 277–278
Bayesian games, 288–289
limitations, 314–315
mechanism design. See Mechanism 

design in game theory
normal- and extensive-form games, 283–

287
preferences and preference ordering, 

278–281
repeated games, 289–290
responses and best responses, 287
strategies, 282–283, 287–288
terminology, 281–282

Game trees, 285
Games and Decisions (Luce and Raiffa), 315
Gaussian channels, 373, 399–400

capacity, 403–407
continuous message sources, 400–401
overview, 401–403

Gaussian distributions
central limit theorem, 40
overview, 29–32

Gaussian elimination, 118–119
Generalized Bayes’s rule, 13
Genetic algorithms, 169
Geometric distributions, 27
Geometric random variables, 27
Gerschgorin’s “circle” theorem, 134
G/G/1 queueing systems, 270
Gibbard-Satterthwaite theorem, 304, 306
Gibb’s phenomenon, 197
Goals of feedback control, 338
Golnaraghi, F., Automatic Control Systems,

370
Goods in game theory, 278
Google Pagerank algorithm, 142–143

Gopal, M., Control Systems: Principles and 
Design, 370

Graphical game representations, 286
Graphs

bipartite, 161
maximin strategy, 294–295
network-flow problem, 156–157

H
Harmonic frequencies, 197
Heavy-tailed distributions, 34–35
Heteroscedasticity, 90
Heuristic nonlinear optimization, 167–169
Hill climbing technique, 152, 167–169
Histograms, 58–60
Homogeneity

linear systems, 188
stochastic processes, 244–246

Homogeneous systems, 117, 123
Huffman code, 380, 384–386
Hypothesis testing, 70–71

errors, 72–73
formulating hypotheses, 73–74
with nominal scales, 80
outcomes compared with fixed 

quantities, 74–75
to compare outcomes of two experiments, 

76–79
for quantities measured on ordinal 

scales, 79–81

I
Identity matrices, 113
ILP (integer linear programming), 157–158

scheduling problem, 158–159
total unimodularity, 160
weighted bipartite matching, 161–162

Imaginary part of complex numbers, 176
Imperfect information in Bayesian games, 

288
Implementing social-choice functions, 307
Impulse function, 179–182
Impulse responses

control systems, 324, 327
LTI systems, 194

Impulse trains
continuous message sources, 400
Fourier transforms, 216–217



464 Index

Impulses in Fourier transform, 203
Incentive compatible games, 304, 308
Independence

irrelevant alternatives, 303
linear, 115–116
in statistics, 86–88

Independent events, 8–9
Independent variables, 86

entropy, 378
joint distributions, 43

Individual rationality property, 308
Information capacity, 387
Information content, 374
Information in game theory, 282
Information rate of message sources, 

387–388
Information requirements in VCG 

mechanisms, 313
Information sets, 286
Information theory

channel capacity, 178, 386–399, 403–407
Gaussian channels, 399–407
introduction, 373–374
mathematical model, 374–378
message source modeling, 387–389, 

400–401
from messages to symbols, 378–379
noiseless channels, 389
noisy channels, 390–399
source coding, 379–386

Information Theory and Reliable 
Communication (Gallager), 407

Inherited features in genetic algorithms, 
169

Input signals in controlled systems, 320
Input variables in system modeling, 147
Instantaneous codes, 380–381
Integer linear programming (IPL), 157–158

scheduling problem, 158–159
total unimodularity, 160
weighted bipartite matching, 161–162

Integral-mode control, 343–344
Integration property, 214
Interaction effects in multi-way layouts, 98
Interarrival time distribution, 238
Interference

transmission, 403
wireless, 406

Interior point method, 156
Interquartile ranges, 64
Interval scales, 57, 104–105
Introduction to Information Theory (Pierce), 

407
Introduction to Probability Theory and 

Applications (Feller), 47
Inverse Fourier transform, 204
Inverse Laplace transform, 210
Inverses

fields, 111
matrices, 124–125

Irreducibility of stochastic processes, 
246–247

Isoquant lines, 151
Iterated removal in dominated strategies, 

293–294

J
Jackson, J. R., 272
Jacksonian networks, 271–272
Jain, R., Art of Computer Systems 

Performance Analysis, 100
Jenkins-Traub algorithm, 355
Jobs, queueing, 238
Joint events, 7
Joint probability, 7
Joint probability distributions

overview, 42
symbols, 391

Joint processes, 7
Jointly distributed random variables, 42–47
Jordan canonical form, 138, 361
Jordan normal form, 326

K
K-means clustering, 102–103
Karush-Kuhn-Tucker (KKT) conditions, 

164, 166–167
Kearns, M., “Graphical Models for Game 

Theory,” 287, 316
Kendall notation, 263
Keying, 178
KKT (Karush-Kuhn-Tucker) conditions, 

164, 166–167
Kleinrock, L., Queueing Systems, 272
Knowledge in game theory, 281
Kolmogorov, axioms, 4
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Kraft inequality, 383
Kraniuskas, P., Transforms in Signals and 

Systems, 233
Kuo, B. C., Automatic Control Systems, 370
Kurtosis, 22

L
Lagrange multiplier, 165
Lagrangian optimization, 164–166
Laplace transforms, 188, 209–210

BIBO stability, 353–354
control systems, 337–338
poles and zeroes, 210–211
properties, 212–215
solving systems, 215–216
standard, 215
Z transforms relationship, 229–230

Large data sets, 100–103
Large numbers, strong law of, 39–40
Lathi, B. P., Linear Systems and Signals, 233
Law of total probability, 12
Le Boudec, J.-Y., Network Calculus, 272
Least-squares best-fit approach, 90
Left stochastic matrices, 139
Leptokurtic distributions, 64
Level sets for constraints, 165
Leyton-Brown, K., Essentials of Game 

Theory, 316
Likert scale, 56
Limit, probability as, 5–6
Linear algebra, 109

linear combinations, 114–115
linear independence, 115–116
matrices. See Matrices; Matrix algebra
vector spaces, 116–117
vectors, 109–114

Linear and time invariant (LTI) control 
systems, 324

with arbitrary input, 193–194
effects on complex exponential input, 

189–191
stability, 194, 353–356
with zero input, 191–193

Linear combinations, overview, 114–115
Linear differential equations, 191
Linear equations. See Matrix algebra
Linear independence, 115–116
Linear Program (LP) Solver, 156

Linear programs in standard form, 153–154
Linear quadratic controllers, 364
Linear regression, 89–90
Linear systems

optimizing, 152–157
properties, 188
transfer functions, 189

Linear Systems and Signals (Lathi), 233
Linear transformations, matrices as, 

125–126
Linearity constraints, 340
Linearity property

Fourier transforms, 204–205
Laplace transforms, 213
Z transforms, 232

Linearization technique, 189
Linearizing control systems, 326–327
Linearly dependent equations, 120
Linearly independent sets, 133
Little’s theorem, 238–240, 265
Local distributions, 45
logical AND operator, 4
logical OR operator, 3
Lotteries, compound, 279
Low-density parity codes, 397
Lower bounds in Chernoff Bound, 38
LP (Linear Program) Solver, 156
LTI. See Linear and time invariant (LTI) 

control systems
Luce, R. D., Games and Decisions, 315
Lyapunov function, 359
Lyapunov stability, 358–359

M
Machine learning, 102
Making Sense of Data: A Practical Guide to 

Exploratory Data Analysis and Data 
Mining (Myatt), 105

Mann-Whitney U test, 79
Marginal distributions, 43, 391
Marginally stable responses, 344
Markov, A. N., 243
Markov chains

birth-death processes. See Birth-death 
processes

continuous-time, 252–254
ergodic, 249
mean residence time, 252
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Markov chains (continued)
reducible, 246–247
stationary distributions, 251–252
stationary probability, 250–251

Markov Chains (Bremaud), 272
Markov matrices, 138–143
Markov processes, 243–244
Markov property

continuous-time stochastic processes, 253
discrete-time stochastic processes, 243–

244
Markov’s inequality theorems, 35–36
Matching on graphs, 161
Matching Pennies game, 283–284

dominant strategy solution, 291–292
Nash equilibrium, 297

Mathematical models
communication, 374–378
control systems, 324–329
systems, 147–149

Mathematical Theory of Communication
(Shannon and Weaver), 407

Matrices
addition, 111
defined, 110
eigenvalues. See Eigenvalues of matrices
exponentiation, 113–114
inverses, 124–125
as linear transformations, 125–126
multiplication, 112–113
nonsingular, 116, 123
overview, 109–111
payoff, 284
similarity and diagonalization, 137–138
singular, 124
square, 113
state-transition, 361
stochastic, 138–143
transpose, 111
unimodular, 160

Matrix algebra, 117
Cramer’s theorem, 123–124
determinants, 121–123
rank, 120
representation, 117
row operations and Gaussian 

elimination, 118–119

Matrix exponentials, 114
Maximal weighted matching, 161
Maximin equilibrium, 294–296
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