
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321834577
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321834577
https://plusone.google.com/share?url=http://www.informit.com/title/9780321834577
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321834577
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321834577/Free-Sample-Chapter

Praise for Implementing Domain-Driven Design

“With Implementing Domain-Driven Design, Vaughn has made an important con-
tribution not only to the literature of the Domain-Driven Design community, but also
to the literature of the broader enterprise application architecture field. In key chap-
ters on Architecture and Repositories, for example, Vaughn shows how DDD fits with
the expanding array of architecture styles and persistence technologies for enterprise
applications—including SOA and REST, NoSQL and data grids—that has emerged in
the decade since Eric Evans’ seminal book was first published. And, fittingly, Vaughn
illuminates the blocking and tackling of DDD—the implementation of entities, value
objects, aggregates, services, events, factories, and repositories—with plentiful exam-
ples and valuable insights drawn from decades of practical experience. In a word, I
would describe this book as thorough. For software developers of all experience levels
looking to improve their results, and design and implement domain-driven enterprise
applications consistently with the best current state of professional practice, Imple-
menting Domain-Driven Design will impart a treasure trove of knowledge hard won
within the DDD and enterprise application architecture communities over the last cou-
ple decades.”

—Randy Stafford, Architect At-Large, Oracle Coherence Product Development

“Domain-Driven Design is a powerful set of thinking tools that can have a profound
impact on how effective a team can be at building software-intensive systems. The
thing is that many developers got lost at times when applying these thinking tools and
really needed more concrete guidance. In this book, Vaughn provides the missing links
between theory and practice. In addition to shedding light on many of the misunder-
stood elements of DDD, Vaughn also connects new concepts like Command/Query
Responsibility Segregation and Event Sourcing that many advanced DDD practitioners
have used with great success. This book is a must-read for anybody looking to put
DDD into practice.”

—Udi Dahan, Founder of NServiceBus

“For years, developers struggling to practice Domain-Driven Design have been wishing
for more practical help in actually implementing DDD. Vaughn did an excellent job in
closing the gap between theory and practice with a complete implementation reference.
He paints a vivid picture of what it is like to do DDD in a contemporary project, and
provides plenty of practical advice on how to approach and solve typical challenges
occurring in a project life cycle.”

—Alberto Brandolini, DDD Instructor, Certified by Eric Evans and
Domain Language, Inc.

“Implementing Domain-Driven Design does a remarkable thing: it takes a sophisti-
cated and substantial topic area in DDD and presents it clearly, with nuance, fun and
finesse. This book is written in an engaging and friendly style, like a trusted advisor
giving you expert counsel on how to accomplish what is most important. By the time
you finish the book you will be able to begin applying all the important concepts of

DDD, and then some. As I read, I found myself highlighting many sections . . . I will be
referring back to it, and recommending it, often.”

—Paul Rayner, Principal Consultant & Owner, Virtual Genius, LLC., DDD Instruc-
tor, Certified by Eric Evans and Domain Language, Inc., DDD Denver Founder and
Co-leader

“One important part of the DDD classes I teach is discussing how to put all the ideas
and pieces together into a full blown working implementation. With this book, the
DDD community now has a comprehensive reference that addresses this in detail.
Implementing Domain-Driven Design deals with all aspects of building a system using
DDD, from getting the small details right to keeping track of the big picture. This is a
great reference and an excellent companion to Eric Evans seminal DDD book.”

—Patrik Fredriksson, DDD Instructor, Certified by Eric Evans and
Domain Language, Inc.

“If you care about software craftsmanship—and you should—then Domain-Driven
Design is a crucial skill set to master and Implementing Domain-Driven Design is the
fast path to success. IDDD offers a highly readable yet rigorous discussion of DDD’s
strategic and tactical patterns that enables developers to move immediately from under-
standing to action. Tomorrow’s business software will benefit from the clear guidance
provided by this book.”

—Dave Muirhead, Principal Consultant, Blue River Systems Group

“There’s theory and practice around DDD that every developer needs to know, and this
is the missing piece of the puzzle that puts it all together. Highly recommended!”

—Rickard Öberg, Java Champion and Developer at Neo Technology

“In IDDD, Vaughn takes a top-down approach to DDD, bringing strategic patterns
such as bounded context and context maps to the fore, with the building block patterns
of entities, values and services tackled later. His book uses a case study throughout,
and to get the most out of it you’ll need to spend time grokking that case study. But if
you do you’ll be able to see the value of applying DDD to a complex domain; the fre-
quent sidenotes, diagrams, tables, and code all help illustrate the main points. So if you
want to build a solid DDD system employing the architectural styles most commonly in
use today, Vaughn’s book comes recommended.”

—Dan Haywood, author of Domain-Driven Design with Naked Objects

“This book employs a top-down approach to understanding DDD in a way that fluently
connects strategic patterns to lower level tactical constraints. Theory is coupled with
guided approaches to implementation within modern architectural styles. Throughout
the book, Vaughn highlights the importance and value of focusing on the business
domain all while balancing technical considerations. As a result, the role of DDD, as
well as what it does and perhaps more importantly doesn’t imply, become ostensibly
clear. Many a time, my team and I would be at odds with the friction encountered in
applying DDD. With Implementing Domain-Driven Design as our luminous guide we
were able to overcome those challenges and translate our efforts into immediate busi-
ness value.”

—Lev Gorodinski, Principal Architect, DrillSpot.com

Implementing
Domain-Driven Design

This page intentionally left blank

Implementing
Domain-Driven
Design

Vaughn Vernon

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2012954071

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201)
236-3290.

ISBN-13: 978-0-321-83457-7
ISBN-10: 0-321-83457-7
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, July 2013

This book is dedicated to my dearest Nicole and Tristan.
Thanks for your love, your support, and your patience.

This page intentionally left blank

ix

Contents

Foreword . xvii

Preface . xix

Acknowledgments. . xxix

About the Author . xxxiii

Guide to This Book . xxxv

Chapter 1 Getting Started with DDD 1

Can I DDD? . 2

Why You Should Do DDD . 6

How to Do DDD . 20

The Business Value of Using DDD 25

1. The Organization Gains a Useful Model of Its Domain . . . 26

2. A Refined, Precise Definition and Understanding of the
Business Is Developed . 27

3. Domain Experts Contribute to Software Design 27

4. A Better User Experience Is Gained 27

5. Clean Boundaries Are Placed around Pure Models 28

6. Enterprise Architecture Is Better Organized 28

7. Agile, Iterative, Continuous Modeling Is Used 28

8. New Tools, Both Strategic and Tactical, Are Employed . . . 28

The Challenges of Applying DDD 29

Fiction, with Bucketfuls of Reality 38

Wrap-Up . 41

CONTENTSx

Chapter 2 Domains, Subdomains, and Bounded Contexts 43

Big Picture . 43

Subdomains and Bounded Contexts at Work 44

Focus on the Core Domain 50

Why Strategic Design Is So Incredibly Essential 53

Real-World Domains and Subdomains 56

Making Sense of Bounded Contexts 62

Room for More than the Model 66

Size of Bounded Contexts . 68

Aligning with Technical Components 71

Sample Contexts . 72

Collaboration Context. 73

Identity and Access Context 80

Agile Project Management Context 82

Wrap-Up . 84

Chapter 3 Context Maps . 87

Why Context Maps Are So Essential 87

Drawing Context Maps . 89

Projects and Organizational Relationships 91

Mapping the Three Contexts 95

Wrap-Up . 111

Chapter 4 Architecture . 113

Interviewing the Successful CIO 114

Layers . 119

Dependency Inversion Principle 123

Hexagonal or Ports and Adapters 125

Service-Oriented . 130

Representational State Transfer—REST 133

REST as an Architectural Style 133

Key Aspects of a RESTful HTTP Server 135

Key Aspects of a RESTful HTTP Client 136

REST and DDD . 136

Why REST? . 138

 CONTENTS xi

Command-Query Responsibility Segregation, or CQRS 138

Examining Areas of CQRS 140

Dealing with an Eventually Consistent Query Model 146

Event-Driven Architecture . 147

Pipes and Filters . 149

Long-Running Processes, aka Sagas 153

Event Sourcing . 160

Data Fabric and Grid-Based Distributed Computing 163

Data Replication . 164

Event-Driven Fabrics and Domain Events 165

Continuous Queries . 166

Distributed Processing . 167

Wrap-Up . 168

Chapter 5 Entities . 171

Why We Use Entities . 171

Unique Identity . 173

User Provides Identity . 174

Application Generates Identity 175

Persistence Mechanism Generates Identity 179

Another Bounded Context Assigns Identity 182

When the Timing of Identity Generation Matters 184

Surrogate Identity . 186

Identity Stability . 188

Discovering Entities and Their Intrinsic Characteristics 191

Uncovering Entities and Properties 192

Digging for Essential Behavior 196

Roles and Responsibilities 200

Construction . 205

Validation . 208

Change Tracking . 216

Wrap-Up . 217

Chapter 6 Value Objects . 219

Value Characteristics . 221

Measures, Quantifies, or Describes 221

Immutable . 221

CONTENTSxii

Conceptual Whole . 223

Replaceability . 226

Value Equality . 227

Side-Effect-Free Behavior 228

Integrate with Minimalism . 232

Standard Types Expressed as Values 234

Testing Value Objects . 239

Implementation. 243

Persisting Value Objects . 248

Reject Undue Influence of Data Model Leakage. 249

ORM and Single Value Objects 251

ORM and Many Values Serialized into a Single Column . . . 253

ORM and Many Values Backed by a Database Entity. 255

ORM and Many Values Backed by a Join Table. 260

ORM and Enum-as-State Objects 261

Wrap-Up . 263

Chapter 7 Services . 265

What a Domain Service Is (but First, What It Is Not) 267

Make Sure You Need a Service 268

Modeling a Service in the Domain 272

Is Separated Interface a Necessity? 275

A Calculation Process . 277

Transformation Services . 280

Using a Mini-Layer of Domain Services 281

Testing Services. 281

Wrap-Up . 284

Chapter 8 Domain Events . 285

The When and Why of Domain Events 285

Modeling Events . 288

With Aggregate Characteristics 294

Identity . 295

Publishing Events from the Domain Model 296

Publisher . 297

Subscribers . 300

 CONTENTS xiii

Spreading the News to Remote Bounded Contexts 303

Messaging Infrastructure Consistency 303

Autonomous Services and Systems 305

Latency Tolerances . 306

Event Store . 307

Architectural Styles for Forwarding Stored Events 312

Publishing Notifications as RESTful Resources 312

Publishing Notifications through Messaging Middleware . . 317

Implementation . 318

Publishing the NotificationLog 319

Publishing Message-Based Notifications 324

Wrap-Up . 331

Chapter 9 Modules . 333

Designing with Modules . 333

Basic Module Naming Conventions 336

Module Naming Conventions for the Model 337

Modules of the Agile Project Management Context 340

Modules in Other Layers . 343

Module before Bounded Context 344

Wrap-Up . 345

Chapter 10 Aggregates . 347

Using Aggregates in the Scrum Core Domain 348

First Attempt: Large-Cluster Aggregate 349

Second Attempt: Multiple Aggregates 351

Rule: Model True Invariants in Consistency Boundaries 353

Rule: Design Small Aggregates 355

Don’t Trust Every Use Case 358

Rule: Reference Other Aggregates by Identity 359

Making Aggregates Work Together through Identity
References . 361

Model Navigation . 362

Scalability and Distribution 363

Rule: Use Eventual Consistency Outside the Boundary 364

Ask Whose Job It Is . 366

CONTENTSxiv

Reasons to Break the Rules 367

Reason One: User Interface Convenience 367

Reason Two: Lack of Technical Mechanisms 368

Reason Three: Global Transactions 369

Reason Four: Query Performance 369

Adhering to the Rules . 370

Gaining Insight through Discovery. 370

Rethinking the Design, Again 370

Estimating Aggregate Cost 372

Common Usage Scenarios 373

Memory Consumption . 374

Exploring Another Alternative Design 375

Implementing Eventual Consistency 376

Is It the Team Member’s Job? 378

Time for Decisions . 379

Implementation . 380

Create a Root Entity with Unique Identity 380

Favor Value Object Parts 382

Using Law of Demeter and Tell, Don’t Ask 382

Optimistic Concurrency . 385

Avoid Dependency Injection 387

Wrap-Up . 388

Chapter 11 Factories . 389

Factories in the Domain Model 389

Factory Method on Aggregate Root 391

Creating CalendarEntry Instances 392

Creating Discussion Instances 395

Factory on Service . 397

Wrap-Up . 400

Chapter 12 Repositories . 401

Collection-Oriented Repositories 402

Hibernate Implementation 407

Considerations for a TopLink Implementation 416

 CONTENTS xv

Persistence-Oriented Repositories 418

Coherence Implementation 420

MongoDB Implementation 425

Additional Behavior . 430

Managing Transactions . 432

A Warning . 437

Type Hierarchies . 437

Repository versus Data Access Object 440

Testing Repositories . 441

Testing with In-Memory Implementations 445

Wrap-Up . 448

Chapter 13 Integrating Bounded Contexts 449

Integration Basics . 450

Distributed Systems Are Fundamentally Different 451

Exchanging Information across System Boundaries 452

Integration Using RESTful Resources 458

Implementing the RESTful Resource 459

Implementing the REST Client Using an Anticorruption
Layer . 463

Integration Using Messaging 469

Staying Informed about Product Owners and Team
Members . 469

Can You Handle the Responsibility? 476

Long-Running Processes, and Avoiding Responsibility 481

Process State Machines and Time-out Trackers 493

Designing a More Sophisticated Process 503

When Messaging or Your System Is Unavailable 507

Wrap-Up . 508

Chapter 14 Application. 509

User Interface . 512

Rendering Domain Objects 512

Render Data Transfer Object from Aggregate Instances . . . 513

Use a Mediator to Publish Aggregate Internal State 514

Render Aggregate Instances from a Domain Payload Object 515

CONTENTSxvi

State Representations of Aggregate Instances 516

Use Case Optimal Repository Queries. 517

Dealing with Multiple, Disparate Clients 517

Rendition Adapters and Handling User Edits 518

Application Services . 521

Sample Application Service 522

Decoupled Service Output 528

Composing Multiple Bounded Contexts 531

Infrastructure . 532

Enterprise Component Containers 534

Wrap-Up . 537

Appendix A Aggregates and Event Sourcing: A+ES 539

Inside an Application Service 541

Command Handlers . 549

Lambda Syntax . 553

Concurrency Control . 554

Structural Freedom with A+ES 558

Performance . 558

Implementing an Event Store 561

Relational Persistence . 565

BLOB Persistence . 568

Focused Aggregates . 569

Read Model Projections . 570

Use with Aggregate Design 573

Events Enrichment . 573

Supporting Tools and Patterns 576

Event Serializers . 576

Event Immutability . 577

Value Objects . 577

Contract Generation . 580

Unit Testing and Specifications 582

Event Sourcing in Functional Languages 583

Bibliography . 585

Index . 589

xvii

Foreword

In this new book, Vaughn Vernon presents the whole of Domain-Driven
Design (DDD) in a distinctive way, with new explanations of the concepts,
new examples, and an original organization of topics. I believe this fresh, alter-
native approach will help people grasp the subtleties of DDD, particularly the
more abstract ones such as Aggregates and Bounded Contexts. Not only do
different people prefer different styles—subtle abstractions are hard to absorb
without multiple explanations.

Also, the book conveys some of the insights of the past nine years that have
been described in papers and presentations but have not appeared in a book
before now. It places Domain Events alongside Entities and Value Objects as
the building blocks of a model. It discusses the Big Ball of Mud and places
it into the Context Map. It explains the hexagonal architecture, which has
emerged as a better description of what we do than the layered architecture.

My first exposure to the material in this book came almost two years ago
(although Vaughn had been working on his book for some time by then). At
the first DDD Summit, several of us committed to writing about certain topics
about which we felt there were fresh things to say or there was a particular
need in the community for more specific advice. Vaughn took up the challenge
of writing about Aggregates, and he followed through with a series of excellent
articles about Aggregates (which became a chapter in this book).

There was also a consensus at the summit that many practitioners would
benefit from a more prescriptive treatment of some of the DDD patterns.
The honest answer to almost any question in software development is, “It
depends.” That is not very useful to people who want to learn to apply a tech-
nique, however. A person who is assimilating a new subject needs concrete
guidance. Rules of thumb don’t have to be right in all cases. They are what
usually works well or the thing to try first. Through their decisiveness, they
convey the philosophy of the approach to solving the problem. Vaughn’s book
has a good mix of straightforward advice balanced with a discussion of trade-
offs that keep it from being simplistic.

FOREWORDxviii

Not only have additional patterns, such as Domain Events, become a main-
stream part of DDD—people in the field have progressed in learning how to
apply those patterns, not to mention adapting them to newer architectures and
technologies. Nine years after my book, Domain-Driven Design: Tackling
Complexity in the Heart of Software, was published, there’s actually a lot to
say about DDD that is new, and there are new ways to talk about the funda-
mentals. Vaughn’s book is the most complete explanation yet of those new
insights into practicing DDD.

—Eric Evans
Domain Language, Inc.

xix

Preface

 All the calculations show it can’t work. There’s only one thing to do:
make it work.

—Pierre-Georges Latécoère,
early French aviation entrepreneur

And make it work we shall. The Domain-Driven Design approach to software
development is far too important to leave any capable developer without clear
directions for how to implement it successfully.

Getting Grounded, Getting Airborne

When I was a kid, my father learned to pilot small airplanes. Often the whole
family would go up flying. Sometimes we flew to another airport for lunch,
then returned. When Dad had less time but longed to be in the air, we’d go out,
just the two of us, and circle the airport doing “touch-and-goes.”

We also took some long trips. For those, we always had a map of the route
that Dad had earlier charted. Our job as kids was to help navigate by looking
out for landmarks below so we could be certain to stay on course. This was
great fun for us because it was a challenge to spot objects so far below that
exhibited little in the way of identifying details. Actually, I’m sure that Dad
always knew where we were. He had all the instruments on the dashboard,
and he was licensed for instrument flight.

The view from the air really changed my perspective. Now and then Dad
and I would fly over our house in the countryside. At a few hundred feet up,
this gave me a context for home that I didn’t have before. As Dad would cruise
over our house, Mom and my sisters would run out into the yard to wave at
us. I knew it was them, although I couldn’t look into their eyes. We couldn’t

PREFACExx

converse. If I had shouted out the airplane window, they would never have
heard me. I could see the split-rail fence in the front dividing our property from
the road. When on the ground I’d walk across it as if on a balance beam. From
the air, it looked like carefully woven twigs. And there was the huge yard that
I circled row by row on our riding lawn mower every summer. From the air, I
saw only a sea of green, not the blades of grass.

I loved those moments in the air. They are etched in my memory as if Dad
and I were just taxiing in after landing to tie down for the evening. As much
as I loved those flights, they sure were no substitute for being on the ground.
And as cool as they were, the touch-and-goes were just too brief to make me
feel grounded.

Landing with Domain-Driven Design

Getting in touch with Domain-Driven Design (DDD) can be like flight to a
kid. The view from the air is stunning, but sometimes things look unfamiliar
enough to prevent us from knowing exactly where we are. Getting from point
A to point B appears far from realistic. The DDD grownups always seem to
know where they are. They’ve long ago plotted a course, and they are com-
pletely in tune with their navigational instruments. A great number of oth-
ers don’t feel grounded. What is needed is the ability to “land and tie down.”
Next, a map is needed to guide the way from where we are to where we need
to be.

In the book Domain-Driven Design: Tackling Complexity in the Heart of
Software [Evans], Eric Evans brought about what is a timeless work. It is my
firm belief that Eric’s work will guide developers in practical ways for decades
to come. Like other pattern works, it establishes flight far enough above the
surface to give a broad vision. Yet, there may be a bit more of a challenge when
we need to understand the groundwork involved in implementing DDD, and
we usually desire more detailed examples. If only we could land and stay on
the surface a bit longer, and even drive home or to some other familiar place.

Part of my goal is to take you in for a soft landing, secure the aircraft, and
help you get home by way of a well-known surface route. That will help you
make sense of implementing DDD, giving you examples that use familiar tools
and technologies. And since none of us can stay home all the time, I will also
help you venture out onto other paths to explore new terrain, taking you to
places that perhaps you’ve never been before. Sometimes the path will be steep,
but given the right tactics, a challenging yet safe ascent is possible. On this
trip you’ll learn about alternative architectures and patterns for integrating

 MAPPING THE TERRAIN AND CHARTING FOR FLIGHT xxi

multiple domain models. This may expose you to some previously unexplored
territory. You will find detailed coverage of strategic modeling with multiple
integrations, and you’ll even learn how to develop autonomous services.

My goal is to provide a map to help you take both short jaunts and long,
complicated treks, enjoying the surrounding detail, without getting lost or
injured along the way.

Mapping the Terrain and Charting for Flight

It seems that in software development we are always mapping from one thing
to another. We map our objects to databases. We map our objects to the user
interface and then back again. We map our objects to and from various appli-
cation representations, including those that can be consumed by other systems
and applications. With all this mapping, it’s natural to want a map from the
higher-level patterns of Evans to implementation.

Even if you have already landed a few times with DDD, there is probably
more to benefit from. Sometimes DDD is first embraced as a technical tool set.
Some refer to this approach to DDD as DDD-Lite. We may have homed in on
Entities, Services, possibly made a brave attempt at designing Aggregates, and
tried to manage their persistence using Repositories. Those patterns felt a bit
like familiar ground, so we put them to use. We may even have found some use
for Value Objects along the way. All of these fall within the catalog of tacti-
cal design patterns, which are more technical. They help us take on a serious
software problem with the skill of a surgeon with a scalpel. Still, there is much
to learn about these and other places to go with tactical design as well. I map
them to implementation.

Have you traveled beyond tactical modeling? Have you visited and even lin-
gered with what some call the “other half” of DDD, the strategic design pat-
terns? If you’ve left out the use of Bounded Context and Context Maps, you
have probably also missed out on the use of the Ubiquitous Language.

If there is a single “invention” Evans delivers to the software development
community, it is the Ubiquitous Language. At a minimum he brought the Ubiq-
uitous Language out of the dusty archives of design wisdom. It is a team pat-
tern used to capture the concepts and terms of a specific core business domain
in the software model itself. The software model incorporates the nouns, adjec-
tives, verbs, and richer expressions formally spoken by the development team,
a team that includes one or more business domain experts. It would be a mis-
take, however, to conclude that the Language is limited to mere words. Just as
any human language reflects the minds of those who speak it, the Ubiquitous

PREFACExxii

Language reflects the mental model of the experts of the business domain you
are working in. Thus, the software and the tests that verify the model’s adher-
ence to the tenets of the domain both capture and adhere to this Language, the
same conceived and spoken by the team. The Language is equally as valuable
as the various strategic and tactical modeling patterns and in some cases has a
more enduring quality.

Simply stated, practicing DDD-Lite leads to the construction of inferior
domain models. That’s because the Ubiquitous Language, Bounded Context,
and Context Mapping have so much to offer. You get more than a team lingo.
The Language of a team in an explicit Bounded Context expressed as a domain
model adds true business value and gives us certainty that we are implement-
ing the correct software. Even from a technical standpoint, it helps us create
better models, ones with more potent behaviors, that are pure and less error
prone. Thus, I map the strategic design patterns to understandable example
implementations.

This book maps the terrain of DDD in a way that allows you to experience
the benefits of both strategic and tactical design. It puts you in touch with its
business value and technical strengths by peering closely at the details.

It would be a disappointment if all we ever did with DDD is stay on the
ground. Getting stuck in the details, we’d forget that the view from flight
teaches us a lot, too. Don’t limit yourself to rugged ground travel. Brave the
challenge of getting in the pilot’s seat and see from a height that is telling. With
training flights on strategic design, with its Bounded Contexts and Context
Maps, you will be prepared to gain a grander perspective on its full realization.
When you reward yourself with DDD flight, I will have reached my goal.

Summary of Chapters

The following highlights the chapters of this book and how you can benefit
from each one.

Chapter 1: Getting Started with DDD

This chapter introduces you to the benefits of using DDD and how to achieve
the most from it. You will learn what DDD can do for your projects and your
teams as you grapple with complexity. You’ll find out how to score your proj-
ect to see if it deserves the DDD investment. You will consider the common
alternatives to DDD and why they often lead to problems. The chapter lays the
foundations of DDD as you learn how to take the first steps on your project,

 SUMMARY OF CHAPTERS xxiii

and it even gives you some ways to sell DDD to your management, domain
experts, and technical team members. That will enable you to face the chal-
lenges of using DDD armed with the knowledge of how to succeed.

You are introduced to a project case study that involves a fictitious company
and team, yet one with real-world DDD challenges. The company, with the
charter to create innovative SaaS-based products in a multitenant environment,
experiences many of the mistakes common to DDD adoption but makes vital
discoveries that help the teams solve their issues and keep the project on track.
The project is one that most developers can relate to, as it involves developing
a Scrum-based project management application. This case study introduction
sets the stage for subsequent chapters. Each strategic and tactical pattern is
taught through the eyes of the team, both as they err and as they make strides
toward maturity in implementing DDD successfully.

Chapter 2: Domains, Subdomains, and Bounded Contexts

What is a Domain, a Subdomain, and a Core Domain? What are Bounded Con-
texts, and why and how should you use them? These questions are answered
in the light of mistakes made by the project team in our case study. Early on
in their first DDD project they failed to understand the Subdomain they were
working within, its Bounded Context, and a concise Ubiquitous Language. In
fact, they were completely unfamiliar with strategic design, only leveraging the
tactical patterns for their technical benefits. This led to problems in their ini-
tial domain model design. Fortunately, they recognized what had happened
before it became a hopeless morass.

A vital message is conveyed, that of applying Bounded Contexts to distin-
guish and segregate models properly. Addressed are common misapplications
of the pattern along with effective implementation advice. The text then leads
you through the corrective steps the team took and how that resulted in the
creation of two distinct Bounded Contexts. This led to the proper separation
of modeling concepts in their third Bounded Context, the new Core Domain,
and the main sample used in the book.

This chapter will strongly resonate with readers who have felt the pain of
applying DDD only in a technical way. If you are uninitiated in strategic design,
you are pointed in the right direction to start out on a successful journey.

Chapter 3: Context Maps

Context Maps are a powerful tool to help a team understand their business
domain, the boundaries between distinct models, and how they are currently,
or can be, integrated. This technique is not limited to drawing a diagram of

PREFACExxiv

your system architecture. It’s about understanding the relationships between
the various Bounded Contexts in an enterprise and the patterns used to map
objects cleanly from one model to another. Use of this tool is important to suc-
ceeding with Bounded Contexts in a complex business enterprise. This chapter
takes you through the process used by the project team as they applied Context
Mapping to understand the problems they created with their first Bounded
Context (Chapter 2). It then shows how the two resulting clean Bounded Con-
texts were leveraged by the team responsible for designing and implementing
the new Core Domain.

Chapter 4: Architecture

Just about everyone knows the Layers Architecture. Are Layers the only way to
house a DDD application, or can other diverse architectures be used? Here we
consider how to use DDD within such architectures as Hexagonal (Ports and
Adapters), Service-Oriented, REST, CQRS, Event-Driven (Pipes and Filters,
Long-Running Processes or Sagas, Event Sourcing), and Data Fabric/Grid-
Based. Several of these architectural styles were put to use by the project team.

Chapter 5: Entities

The first of the DDD tactical patterns treated is Entities. The project team
first leaned too heavily on these, overlooking the importance of designing with
Value Objects when appropriate. This led to a discussion of how to avoid wide-
spread overuse of Entities because of the undue influence of databases and per-
sistence frameworks.

Once you are familiar with ways to distinguish their proper use, you see
lots of examples of how to design Entities well. How do we express the Ubiq-
uitous Language with an Entity? How are Entities tested, implemented, and
persisted? You are stepped through how-to guidance for each of these.

Chapter 6: Value Objects

Early on the project team missed out on important modeling opportunities
with Value Objects. They focused too intensely on the individual attributes
of Entities when they should have been giving careful consideration to how
multiple related attributes are properly gathered as an immutable whole. This
chapter looks at Value Object design from several angles, discussing how to
identify the special characteristics in the model as a means to determine when
to use a Value rather than an Entity. Other important topics are covered, such
as the role of Values in integration and modeling Standard Types. The chapter
then shows how to design domain-centric tests, how to implement Value types,

 SUMMARY OF CHAPTERS xxv

and how to avoid the bad influence persistence mechanisms can have on our
need to store them as part of an Aggregate.

Chapter 7: Services

This chapter shows how to determine when to model a concept as a fine-
grained, stateless Service that lives in the domain model. You are shown when
you should design a Service instead of an Entity or Value Object, and how
Domain Services can be implemented to handle business domain logic as well
as for technical integration purposes. The decisions of the project team are
used to exemplify when to use Services and how they are designed.

Chapter 8: Domain Events

Domain Events were not formally introduced by Eric Evans as part of DDD
until after his book was published. You’ll learn why Domain Events published
by the model are so powerful, and the diverse ways that they can be used,
even in supporting integration and autonomous business services. Although
various kinds of technical events are sent and processed by applications, the
distinguishing characteristics of Domain Events are spotlighted. Design and
implementation guidance is provided, instructing you on available options and
trade-offs. The chapter then teaches how to create a Publish-Subscribe mech-
anism, how Domain Events are published to integrated subscribers across the
enterprise, ways to create and manage an Event Store, and how to properly
deal with common messaging challenges faced. Each of these areas is discussed
in light of the project team’s efforts to use them correctly and to their best
advantage.

Chapter 9: Modules

How do we organize model objects into right-sized containers with limited
coupling to objects that are in different containers? How do we name these
containers so they reflect the Ubiquitous Language? Beyond packages and
namespaces, how can we use the more modern modularization facilities, such
as OSGi and Jigsaw, provided by languages and frameworks? Here you will see
how Modules were put to use by the project team across a few of their projects.

Chapter 10: Aggregates

Aggregates are probably the least well understood among DDD’s tactical
tools. Yet, if we apply some rules of thumb, Aggregates can be made simpler
and quicker to implement. You will learn how to cut through the complexity

PREFACExxvi

barrier to use Aggregates that create consistency boundaries around small
object clusters. Because of putting too much emphasis on the less important
aspects of Aggregates, the project team in our case study stumbled in a few
different ways. We step through the team’s iterations with a few modeling chal-
lenges and analyze what went wrong and what they did about it. The result
of their efforts led to a deeper understanding of their Core Domain. We look
in on how the team corrected their mistakes through the proper application
of transactional and eventual consistency, and how that led them to design
a more scalable and high-performing model within a distributed processing
environment.

Chapter 11: Factories

[Gamma et al.] has plenty to say about Factories, so why bother with treating
them in this book? This is a simple chapter that does not attempt to reinvent
the wheel. Rather, its focus is on understanding where Factories should exist.
There are, of course, a few good tips to share about designing a worthy Fac-
tory in a DDD setting. See how the project team created Factories in their Core
Domain as a way to simplify the client interface and protect the model’s con-
sumers from introducing disastrous bugs into their multitenant environment.

Chapter 12: Repositories

Isn’t a Repository just a simple Data Access Object (DAO)? If not, what’s the
difference? Why should we consider designing Repositories to mimic collec-
tions rather than databases? Learn how to design a Repository that is used
with an ORM, one that supports the Coherence grid-based distributed cache,
and one that uses a NoSQL key-value store. Each of these optional persistence
mechanisms was at the disposal of the project team because of the power and
versatility behind the Repository building block pattern.

Chapter 13: Integrating Bounded Contexts

Now that you understand the higher-level techniques of Context Mapping and
have the tactical patterns on your side, what is involved in actually implement-
ing the integrations between models? What integration options are afforded
by DDD? This chapter uncovers a few different ways to implement model inte-
grations using Context Mapping. Instruction is given based on how the project
team integrated the Core Domain with other supporting Bounded Contexts
introduced in early chapters.

 JAVA AND DEVELOPMENT TOOLS xxvii

Chapter 14: Application

You have designed a model per your Core Domain’s Ubiquitous Language.
You’ve developed ample tests around its usage and correctness, and it works.
But how do other members of your team design the areas of the application
that surround the model? Should they use DTOs to transfer data between the
model and the user interface? Or are there other options for conveying model
state up to the presentation components? How do the Application Services
and infrastructure work? This chapter addresses those concerns using the now
familiar project to convey available options.

Appendix A: Aggregates and Event Sourcing: A+ES

Event Sourcing is an important technical approach to persisting Aggregates
that also provides the basis for developing an Event-Driven Architecture.
Event Sourcing can be used to represent the entire state of an Aggregate as a
sequence of Events that have occurred since it was created. The Events are used
to rebuild the state of the Aggregate by replaying them in the same order in
which they occurred. The premise is that this approach simplifies persistence
and allows capturing concepts with complex behavioral properties, besides the
far-reaching influence the Events themselves can have on your own and exter-
nal systems.

Java and Development Tools

The majority of the examples in this book use the Java Programming Lan-
guage. I could have provided the examples in C#, but I made a conscious deci-
sion to use Java instead.

First of all, and sad to say, I think there has been a general abandonment
of good design and development practices in the Java community. These days
it may be difficult to find a clean, explicit domain model in most Java-based
projects. It seems to me that Scrum and other agile techniques are being used
as substitutes for careful modeling, where a product backlog is thrust at devel-
opers as if it serves as a set of designs. Most agile practitioners will leave their
daily stand-up without giving a second thought to how their backlog tasks will
affect the underlying model of the business. Although I assume this is needless
to say, I must assert that Scrum, for example, was never meant to stand in
place of design. No matter how many project and product managers would
like to keep you marching on a relentless path of continuous delivery, Scrum

PREFACExxviii

was not meant only as a means to keep Gantt chart enthusiasts happy. Yet, it
has become that in so many cases.

I consider this a big problem, and a major theme I have is to inspire the Java
community to return to domain modeling by giving a reasonable amount of
thought to how sound, yet agile and rapid, design techniques can benefit their
work.

Further, there are already some good resources for using DDD in a .NET
environment, one being Applying Domain-Driven Design and Patterns: With
Examples in C# and .NET by Jimmy Nilsson [Nilsson]. Due to Jimmy’s good
work and that of others promoting the Alt.NET mindset, there is a high tide of
good design and development practices going on in the .NET community. Java
developers need to take notice.

Second, I am well aware that the C#.NET community will have no problem
whatsoever understanding Java code. Due to the fact that much of the DDD
community uses C#.NET, most of my early book reviewers are C# developers,
and I never once received a complaint about their having to read Java code. So,
I have no concern that my use of Java in any way alienates C# developers.

I need to add that at the time of this writing there was a significant shift
toward interest in using document-based and key-value storage over rela-
tional databases. This is for good reason, for even Martin Fowler has aptly
nicknamed these “aggregate-oriented storage.” It’s a fitting name and well
describes the advantages of using NoSQL storage in a DDD setting.

Yet, in my consulting work I find that many are still quite married to
relational databases and object-relational mapping. Therefore, I think that
in practical terms there has been no disservice to the community of NoSQL
enthusiasts by my including guidance on using object-relational mapping tech-
niques for domain models. I do acknowledge, however, that this may earn me
some scorn from those who think that the object-relational impedance mis-
match makes it unworthy of consideration. That’s fine, and I accept the flames,
because there is a vast majority who must still live with the drudgeries of this
impedance mismatch on a day-to-day basis, however unenlightened they may
seem to the minority.

Of course, I also provide guidance in Chapter 12, “Repositories,” on the use
of document-based, key-value, and Data Fabric/Grid-Based stores. As well, in
several places I discuss where the use of a NoSQL store would tend to influence
an alternative design of Aggregates and their contained parts. It’s quite likely
that the trend toward NoSQL stores will continue to spur growth in that sec-
tor, so in this case object-relational developers need to take notice. As you can
see, I understand both sides of the argument, and I agree with both. It’s all part
of the ongoing friction created by technology trends, and the friction needs to
happen in order for positive change to happen.

xxix

Acknowledgments

I am grateful to the fine staff at Addison-Wesley for giving me the opportu-
nity to publish under their highly respected label. As I have stated before in
my classes and presentations, I see Addison-Wesley as a publisher that under-
stands the value of DDD. Both Christopher Guzikowski and Chris Zahn
(Dr. Z) have supported my efforts throughout the editorial process. I will not
forget the day that Christopher Guzikowski called to share the news that he
wanted to sign me as one of his authors. I will remember how he encouraged
me to persevere through the doubts that most authors must experience, until
publication was in sight. Of course, it was Dr. Z who made sure the text was
put into a publishable state. Thanks to my production editor, Elizabeth Ryan,
for coordinating the book’s publication details. And thanks to my intrepid
copyeditor, Barbara Wood.

Going back a ways, it was Eric Evans who devoted a major portion of five
years of his career to write the first definitive work on DDD. Without his
efforts, the wisdom that grew out of the Smalltalk and patterns communities,
and that Eric himself refined, many more developers would just be hacking
their way to delivering bad software. Sadly, this problem is more common than
it should be. As Eric says, the poor quality of software development, and the
uncreative joylessness of the teams that produce the software, nearly drove him
to exit the software industry for good. We owe Eric hearty thanks for concen-
trating his energy into educating rather than into a career change.

At the end of the first DDD Summit in 2011, which Eric invited me to
attend, it was determined that the leadership should produce a set of guidelines
by which more developers could succeed with DDD. I was already far along
with this book and was in a good position to understand what developers were
missing. I offered to write an essay to provide the “rules of thumb” for Aggre-
gates. I determined that this three-part series entitled “Effective Aggregate
Design” would form the foundation for Chapter 10 of this book. Once released
on dddcommunity.org, it became quite clear how such sound guidance was

ACKNOWLEDGMENTSxxx

greatly needed. Thanks to others among the DDD leadership who reviewed
that essay and thus provided valuable feedback for this book. Eric Evans and
Paul Rayner did several detailed reviews of the essay. I also received feedback
from Udi Dahan, Greg Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Öberg.

Special thanks go to Randy Stafford, a longtime member of the DDD com-
munity. After attending a DDD talk I gave several years ago in Denver, Randy
urged me to become more involved in the larger DDD community. Sometime
later, Randy introduced me to Eric Evans so I could pitch my ideas about draw-
ing the DDD community together. While my ideas were a bit grander and
possibly less achievable, Eric convinced us that forming a smaller contingent
composed of clear DDD leadership would have more near-term value. From
these discussions the DDD Summit 2011 was formed. Needless to say, without
Randy’s coaxing me to push forward with my views of DDD, this book would
not exist, and perhaps not even a DDD Summit. Although Randy was too busy
with Oracle Coherence work to contribute to this book, perhaps we will get
the chance to write something in the future in a combined effort.

A huge thank-you goes to Rinat Abdullin, Stefan Tilkov, and Wes Williams
for contributing sections about specialized topics to the text. It’s nearly impossi-
ble to know everything about everything related to DDD, and absolutely impos-
sible to be an expert in all areas of software development. That’s why I turned
to experts in specific areas to write a few sections of Chapter 4 and Appendix A.
Thanks go to Stefan Tilkov for his uncommon knowledge of REST, to Wes Wil-
liams for his GemFire experience, and to Rinat Abdullin for sharing his contin-
ually expanding experience with Event Sourcing for Aggregate implementation.

One of my earliest reviewers was Leo Gorodinsk, and he stuck with the
project. I first met Leo at our DDD Denver meetup. He provided a lot of great
feedback on this book based on his own struggles while implementing DDD
with his team in Boulder, Colorado. I hope my book helped Leo as much as his
critical reviews helped me. I see Leo as part of DDD’s future.

Many others provided feedback on at least one chapter of my book, and
some on several chapters. Some of the more critical feedback was provided
by Gojko Adzic, Alberto Brandolini, Udi Dahan, Dan Haywood, Dave Muir-
head, and Stefan Tilkov. Specifically, Dan Haywood and Gojko Adzic deliv-
ered much of the early feedback, which was based on the most-painful-to-read
content I produced. I am glad they endured and corrected me. Alberto Bran-
dolini’s insights into strategic design in general, and Context Mapping specif-
ically, helped me focus on the essence of that vital material. Dave Muirhead,
with an abundance of experience in object-oriented design, domain modeling,
as well as object persistence and in-memory data grids—including GemFire

 ACKNOWLEDGMENTS xxxi

and Coherence—influenced my text regarding some of the history and finer
details of object persistence. Besides his REST contribution, Stefan Tilkov sup-
plied additional insights into architecture in general, and SOA and Pipes and
Filters specifically. Finally, Udi Dahan validated and helped me clarify some
of the concepts of CQRS, Long-Running Processes (aka Sagas), and messag-
ing with NServiceBus. Other reviewers who provided valuable feedback were
Rinat Abdullin, Svein Arne Ackenhausen, Javier Ruiz Aranguren, William
Doman, Chuck Durfee, Craig Hoff, Aeden Jameson, Jiwei Wu, Josh Maletz,
Tom Marrs, Michael McCarthy, Rob Meidal, Jon Slenk, Aaron Stockton, Tom
Stockton, Chris Sutton, and Wes Williams.

Scorpio Steele produced the fantastic illustrations for the book. Scorpio
made everyone on the IDDD team the superheroes that they truly are. At the
other end of the spectrum was the nontechnical editorial review by my good
friend Kerry Gilbert. While everyone else made sure I was technically correct,
Kerry put me “under the grammar hammer.”

My father and mother have provided great inspiration and support through-
out my life. My father—AJ in the “Cowboy Logic” humor throughout this
book—is not just a cowboy. Don’t get me wrong. Being a great cowboy would
be enough. Besides loving flight and piloting airplanes, my father was an
accomplished civil engineer and land surveyor, and a talented negotiator. He
still loves math and studying the galaxies. Among many other things he taught
me, my Dad imparted to me how to solve a right triangle when I was around
ten years old. Thanks, Dad, for giving me a technical bent at a young age.
Thanks also go to my mom, one of the nicest people you could ever know.
She has always encouraged and supported me through my personal challenges.
Besides, what stamina I have comes from her. I could go on, but I could never
say enough good things about her.

Although this book is dedicated to my loving wife, Nicole, and our marvel-
ous son, Tristan, my thanks would not be complete without a special mention
here. They are the ones who allowed me to work on and complete the book.
Without their support and encouragement my task would not have been possi-
ble. Thanks so much, my dearest loved ones.

This page intentionally left blank

xxxiii

About the Author

Vaughn Vernon is a veteran software craftsman with more than twenty-five years
of experience in software design, development, and architecture. He is a thought
leader in simplifying software design and implementation using innovative meth-
ods. He has been programming with object-oriented languages since the 1980s
and applying the tenets of Domain-Driven Design since his Smalltalk domain
modeling days in the early 1990s. His experience spans a wide range of business
domains, including aerospace, environmental, geospatial, insurance, medical and
health care, and telecommunications. He has also succeeded in technical endeav-
ors, creating reusable frameworks, libraries, and implementation acceleration
tools. He consults and speaks internationally and has taught his Implementing
Domain-Driven Design classes on multiple continents. You can read more about
his latest efforts at www.VaughnVernon.co and follow him on Twitter here:
@VaughnVernon.

http://www.VaughnVernon.co

This page intentionally left blank

xxxv

Guide to This Book

The book Domain-Driven Design by Eric Evans presents what is essentially
a large pattern language. A pattern language is a set of software patterns that
are intertwined because they are dependent on each other. Any one pattern
references one or more other patterns that it depends on, or that depend on it.
What does this mean for you?

It means that as you read any given chapter of this book, you could run into
a DDD pattern that isn’t discussed in that chapter and that you don’t already
know. Don’t panic, and please don’t stop reading out of frustration. The refer-
enced pattern is very likely explained in detail in another chapter of the book.

In order to help unravel the pattern language, I used the syntax found in
Table G.1 in the text.

Table G.1 The Syntax Used in This Book

When You See This . . . It Means This . . .

Pattern Name (#) 1. It is the first time the pattern is referenced in the
chapter that you are reading, or

2. It is an important additional reference to a pattern
that was already mentioned in the chapter, but it’s
essential to know where to locate more information
about it at that point in the text.

Bounded Context (2) The chapter you are reading is referencing Chapter
2 for you to find out deep details about Bounded
Contexts.

Bounded Context It is the way I reference a pattern already mentioned
in the same chapter. I don’t want to irritate you by
making every reference to a given pattern bold, with a
chapter number.

[REFERENCE] It is a bibliographic reference to another work.

continues

GUIDE TO THIS BOOKxxxvi

If you start reading in the middle of a chapter and you see a reference such
as Bounded Context, remember that you’ll probably find a chapter in this book
that covers the pattern. Just glance at the index for a richer set of references.

If you have already read [Evans] and you know its patterns to some degree,
you’ll probably tend to use this book as a way to clarify your understanding
of DDD and to get ideas for how to improve your existing model designs. In
that case you may not need a big-picture view right now. But if you are rela-
tively new to DDD, the following section will help you see how the patterns fit
together, and how this book can be used to get you up and running quickly.
So, read on.

Big-Picture View of DDD

Early on I take you through one of the pillars of DDD, the Ubiquitous Lan-
guage (1). A Ubiquitous Language is applicable within a single Bounded Con-
text (2). Straightaway, you need to familiarize yourself with that critical domain
modeling mindset. Just remember that whichever way your software models
are designed tactically, strategically you’ll want them to reflect the following: a
clean Ubiquitous Language modeled in an explicitly Bounded Context.

Table G.1 The Syntax Used in This Book (Continued)

When You See This . . . It Means This . . .

[Evans] or [Evans, Ref] I don’t cover the specific referenced DDD pattern
extensively, and if you want to know more, you need
to read these works by Eric Evans. (They’re always
recommended reading!)

[Evans] means his classic book, Domain-Driven
Design.

[Evans, Ref] means a second publication that is a
separate, condensed reference to the patterns in [Evans]
that have been updated and extended.

[Gamma et al.] and
[Fowler, P of EAA]

[Gamma et al.] means the classic book Design
Patterns.

[Fowler, P of EAA] means Martin Fowler’s Patterns of
Enterprise Application Architecture.

I reference these works frequently. Although I reference
several other works as well, you will tend to see these
a bit more than others. Examine the full bibliography
for details.

 GUIDE TO THIS BOOK xxxvii

Strategic Modeling
A Bounded Context is a conceptual boundary where a domain model is applica-
ble. It provides a context for the Ubiquitous Language that is spoken by the team
and expressed in its carefully designed software model, as shown in Figure G.1.

Ubiquitous Language (1)
modeled inside

Equities domain model with a
single, clean Ubiquitous Language

Bounded Context (2)
Explicit boundary around model

Equities Context

Figure G.1 A diagram illustrating a Bounded Context and relevant
Ubiquitous Language

As you practice strategic design, you’ll find that the Context Mapping (3)
patterns seen in Figure G.2 work in harmony. Your team will use Context
Maps to understand their project terrain.

We’ve just considered the big picture of DDD’s strategic design. Understand-
ing it is imperative.

Context Mappings (3) with integration
relationships:

Open Host Service, Published Language,
Anticorruption Layer, Customer-Supplier,
Partnership, Conformist, Shared Kernel

D

U
Equities Domain Model

Bounded Context (2)

Equities Context

Accounts Domain Model

Accounts Context

?

?

Figure G.2 Context Maps show the relationships among Bounded Contexts.

GUIDE TO THIS BOOKxxxviii

Architecture
Sometimes a new Bounded Context or existing ones that interact through Con-
text Mapping will need to take on a new style of Architecture (4). It’s important
to keep in mind that your strategically and tactically designed domain models
should be architecturally neutral. Still, there will need to be some architecture
around and between each model. A powerful architectural style for hosting a
Bounded Context is Hexagonal, which can be used to facilitate other styles
such as Service-Oriented, REST and Event-Driven, and others. Figure G.3
depicts a Hexagonal Architecture, and while it may look a little busy, it’s a
fairly simplistic style to employ.

Sometimes we may be tempted to place too much emphasis on architecture
rather than focusing on the importance of carefully crafting a DDD-based
model. Architecture is important, but architectural influences come and go.
Remember to prioritize correctly, placing more emphasis on the domain model,
which has greater business value and will be more enduring.

Domain Model

Application

Adapter

Adapter

Adapter

Adapter
Adapter

Adapter

Adapter

Adapter

Architecture (4) such as
the Hexagonal style

Tactical domain model at the
heart of the Bounded Context

Figure G.3 The Hexagonal Architecture with the domain model at the heart
of the software

 GUIDE TO THIS BOOK xxxix

Tactical Modeling
We model tactically inside a Bounded Context using DDD’s building block
patterns. One of the most important patterns of tactical design is Aggregate
(10), as illustrated in Figure G.4.

An Aggregate is composed of either a single Entity (5) or a cluster of Entities
and Value Objects (6) that must remain transactionally consistent throughout
the Aggregate’s lifetime. Understanding how to effectively model Aggregates is
quite important and one of the least well understood techniques among DDD’s
building blocks. If they are so important, you may be wondering why Aggre-
gates are placed later in the book. First of all, the placement of tactical pat-
terns in this book follows the same order as is found in [Evans]. Also, since
Aggregates are based on other tactical patterns, we cover the basic building
blocks—such as Entities and Value Objects—before the more complex Aggre-
gate pattern.

An instance of an Aggregate is persisted using its Repository (12) and later
searched for within and retrieved from it. You can see an indication of that in
Figure G.4.

Use stateless Services (7), such as seen in Figure G.5, inside the domain
model to perform business operations that don’t fit naturally as an operation
on an Entity or a Value Object.

<<aggregate root>>

Root Entity 1
<<value object>>

0..*

Value Type 1

Aggregate Type 1

<<repository>>

Repository 1
<<repository>>

Repository 2

<<value object>>

Value Type 2

<<value object>>

Value Type 3
<<aggregate root>>

State inside reflecting true business rules
must remain completely consistent

Use a Repository (12) to persist
a specific Aggregate type

Aggregate (10) with transactional
consistency boundary

Root Entity 2

Aggregate Type 2

<<value object>>

Value Type 4

0..*

<<entity>>

Entity Type 3

Figure G.4 Two Aggregate types with their own transactional consistency boundaries

GUIDE TO THIS BOOKxl

Use Domain Events (8) to indicate the occurrence of significant happenings
in the domain. Domain Events can be modeled a few different ways. When
they capture occurrences that are a result of some Aggregate command opera-
tion, the Aggregate itself publishes the Event as depicted in Figure G.6.

Although often given little thought, it’s really important to design Modules
(9) correctly. In its simplest form, think of a Module as a package in Java or
a namespace in C#. Remember that if you design your Modules mechanically
rather than according to the Ubiquitous Language, they will probably do more
harm than good. Figure G.7 illustrates how Modules should contain a limited
set of cohesive domain objects.

Of course, there’s much more to implementing DDD, and I won’t try to
cover it all here. There’s a whole book ahead of you that does just that. I think
this Guide gets you off on the right foot for your journey through implement-
ing DDD. So, enjoy the journey!

<<service>>

Use a Service (7) to perform an operation
that cuts across Aggregates, for example

Query
operation

Command
operation

Domain Service 1

<<aggregate root>>

Root Entity 1

<<aggregate root>>

Root Entity 2

Figure G.5 Domain Services carry out domain-specific operations, which may
involve multiple domain objects.

create

publish

handle

EventEvent Publisher

Subscriber

Subscriber

Subscriber

Event

Aggregate

Figure G.6 Domain Events can be published by Aggregates.

 GUIDE TO THIS BOOK xli

Oh, and just to get you familiarized with Cowboy Logic, here’s one for the
trail:

Cowboy Logic

AJ: “Don’t worry about bitin’ off more than you can chew.
Your mouth is probably a whole lot bigger than you
think.” ;-)

LB: “You meant to say ‘mind,’ J. Your mind is bigger than
you think!”

com.companyname.context.domain.model.concept

<<value object>>

Value Type

<<entity>>

Entity 2
<<aggregate root>>

Entity 1

<<value object>>

Identity

Figure G.7 A Module contains and organizes cohesive domain objects.

This page intentionally left blank

347

Chapter 10

Aggregates

The universe is built up into an aggregate of permanent objects
connected by causal relations that are independent of the subject and

are placed in objective space and time.

—Jean Piaget

Clustering Entities (5) and Value Objects (6) into an Aggregate with a carefully
crafted consistency boundary may at first seem like quick work, but among all
DDD tactical guidance, this pattern is one of the least well understood.

Road Map to This Chapter

• Along with SaaSOvation, experience the negative consequences of improp-
erly modeling Aggregates.

• Learn to design by the Aggregate Rules of Thumb as a set of best-practice
guidelines.

• Grasp how to model true invariants in consistency boundaries according to
real business rules.

• Consider the advantages of designing small Aggregates.

• See why you should design Aggregates to reference other Aggregates by
identity.

• Discover the importance of using eventual consistency outside the Aggregate
boundary.

• Learn Aggregate implementation techniques, including Tell, Don’t Ask and
Law of Demeter.

To start off, it might help to consider some common questions. Is an Aggre-
gate just a way to cluster a graph of closely related objects under a common
parent? If so, is there some practical limit to the number of objects that should
be allowed to reside in the graph? Since one Aggregate instance can reference
other Aggregate instances, can the associations be navigated deeply, modify-
ing various objects along the way? And what is this concept of invariants and
a consistency boundary all about? It is the answer to this last question that
greatly influences the answers to the others.

Chapter 10 AGGREGATES348

There are various ways to model Aggregates incorrectly. We could fall into
the trap of designing for compositional convenience and make them too large.
At the other end of the spectrum we could strip all Aggregates bare and as a
result fail to protect true invariants. As we’ll see, it’s imperative that we avoid
both extremes and instead pay attention to the business rules.

Using Aggregates in the Scrum Core Domain

We’ll take a close look at how Aggregates are used by SaaSOvation, and spe-
cifically within the Agile Project Management Context the application named
ProjectOvation. It follows the traditional Scrum project management model,
complete with product, product owner, team, backlog items, planned releases,
and sprints. If you think of Scrum at its richest, that’s where ProjectOvation
is headed; this is a familiar domain to most of us. The Scrum terminology
forms the starting point of the Ubiquitous Language (1). Since it is a subscrip-
tion-based application hosted using the software as a service (SaaS) model,
each subscribing organization is registered as a tenant, another term of our
Ubiquitous Language.

The company has assembled a group of
talented Scrum experts and developers.
However, since their experience with
DDD is somewhat limited, the team will
make some mistakes with DDD as they
climb a difficult learning curve. They will
grow by learning from their experiences
with Aggregates, and so can we. Their struggles may help us recognize and change
similar unfavorable situations we’ve created in our own software.

The concepts of this domain, along with its performance and scalability require-
ments, are more complex than any that the team has previously faced in the initial
Core Domain (2), the Collaboration Context. To address these issues, one of the
DDD tactical tools that they will employ is Aggregates.

How should the team choose the best object clusters? The Aggregate pattern dis-
cusses composition and alludes to information hiding, which they understand how to
achieve. It also discusses consistency boundaries and transactions, but they haven’t
been overly concerned with that. Their chosen persistence mechanism will help man-
age atomic commits of their data. However, that was a crucial misunderstanding of
the pattern’s guidance that caused them to regress. Here’s what happened. The team
considered the following statements in the Ubiquitous Language:

• Products have backlog items, releases, and sprints.

• New product backlog items are planned.

 USING AGGREGATES IN THE SCRUM CORE DOMAIN 349

• New product releases are scheduled.

• New product sprints are scheduled.

• A planned backlog item may be scheduled for release.

• A scheduled backlog item may be committed to a sprint.

From these they envisioned a model and made their first attempt at a design.
Let’s see how it went.

First Attempt: Large-Cluster Aggregate

The team put a lot of weight on the words Products have in the first statement,
which influenced their initial attempt to design Aggregates for this domain.

It sounded to some like composition, that objects needed to be interconnected like
an object graph. Maintaining these object life cycles together was considered very
important. As a result the developers added the following consistency rules to the
specification:

• If a backlog item is committed to a sprint, we must not allow it to be removed
from the system.

• If a sprint has committed backlog items, we must not allow it to be removed from
the system.

• If a release has scheduled backlog items, we must not allow it to be removed
from the system.

• If a backlog item is scheduled for release, we must not allow it to be removed
from the system.

As a result, Product was first modeled as a very large Aggregate. The Root
object, Product, held all BacklogItem, all Release, and all Sprint instances
associated with it. The interface design protected all parts from inadvertent client
removal.

This design is shown in the following code, and as a UML diagram in Fig-
ure 10.1:

public class Product extends ConcurrencySafeEntity {
 private Set<BacklogItem> backlogItems;
 private String description;
 private String name;
 private ProductId productId;
 private Set<Release> releases;

Chapter 10 AGGREGATES350

 private Set<Sprint> sprints;
 private TenantId tenantId;
 ...
}

The big Aggregate looked attractive, but it wasn’t truly practical. Once the
application was running in its intended multi-user environment, it began to
regularly experience transactional failures. Let’s look more closely at a few cli-
ent usage patterns and how they interact with our technical solution model.
Our Aggregate instances employ optimistic concurrency to protect persistent
objects from simultaneous overlapping modifications by different clients, thus
avoiding the use of database locks. As discussed in Entities (5), objects carry
a version number that is incremented when changes are made and checked
before they are saved to the database. If the version on the persisted object is
greater than the version on the client’s copy, the client’s is considered stale and
updates are rejected.

Consider a common simultaneous, multiclient usage scenario:

• Two users, Bill and Joe, view the same Product marked as version 1 and
begin to work on it.

• Bill plans a new BacklogItem and commits. The Product version is
incremented to 2.

• Joe schedules a new Release and tries to save, but his commit fails
because it was based on Product version 1.

Persistence mechanisms are used in this general way to deal with concur-
rency.1 If you argue that the default concurrency configurations can be
changed, reserve your verdict for a while longer. This approach is actually
important to protecting Aggregate invariants from concurrent changes.

 1. For example, Hibernate provides optimistic concurrency in this way. The same
could be true of a key-value store because the entire Aggregate is often serialized
as one value, unless designed to save composed parts separately.

<<aggregate root>>

Product

<<entity>>

BacklogItem
<<entity>>

Release

1

0..* 0..*0..*

<<entity>>

Sprint

Figure 10.1 Product modeled as a very large Aggregate

 USING AGGREGATES IN THE SCRUM CORE DOMAIN 351

These consistency problems came up with just two users. Add more users,
and you have a really big problem. With Scrum, multiple users often make
these kinds of overlapping modifications during the sprint planning meeting
and in sprint execution. Failing all but one of their requests on an ongoing
basis is completely unacceptable.

Nothing about planning a new backlog item should logically interfere with
scheduling a new release! Why did Joe’s commit fail? At the heart of the issue,
the large-cluster Aggregate was designed with false invariants in mind, not
real business rules. These false invariants are artificial constraints imposed by
developers. There are other ways for the team to prevent inappropriate removal
without being arbitrarily restrictive. Besides causing transactional issues, the
design also has performance and scalability drawbacks.

Second Attempt: Multiple Aggregates

Now consider an alternative model as shown in Figure 10.2, in which there are
four distinct Aggregates. Each of the dependencies is associated by inference
using a common ProductId, which is the identity of Product considered the
parent of the other three.

Breaking the single large Aggregate into four will change some method con-
tracts on Product. With the large-cluster Aggregate design the method signa-
tures looked like this:

public class Product ... {
 ...
 public void planBacklogItem(
 String aSummary, String aCategory,
 BacklogItemType aType, StoryPoints aStoryPoints) {
 ...
 }
 ...
 public void scheduleRelease(
 String aName, String aDescription,

<<aggregate root>>

Product
<<value object>>

ProductId

<<aggregate root>>

BacklogItem
<<aggregate root>>

Release
<<aggregate root>>

Sprint

Figure 10.2 Product and related concepts are modeled as separate Aggregate types.

Chapter 10 AGGREGATES352

 Date aBegins, Date anEnds) {
 ...
 }

 public void scheduleSprint(
 String aName, String aGoals,
 Date aBegins, Date anEnds) {
 ...
 }
 ...
}

All of these methods are CQS commands [Fowler, CQS]; that is, they mod-
ify the state of the Product by adding the new element to a collection, so they
have a void return type. But with the multiple-Aggregate design, we have

public class Product ... {
 ...
 public BacklogItem planBacklogItem(
 String aSummary, String aCategory,
 BacklogItemType aType, StoryPoints aStoryPoints) {
 ...
 }

 public Release scheduleRelease(
 String aName, String aDescription,
 Date aBegins, Date anEnds) {
 ...
 }

 public Sprint scheduleSprint(
 String aName, String aGoals,
 Date aBegins, Date anEnds) {
 ...
 }
 ...
}

These redesigned methods have a CQS query contract and act as Factories
(11); that is, each creates a new Aggregate instance and returns a reference to
it. Now when a client wants to plan a backlog item, the transactional Applica-
tion Service (14) must do the following:

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void planProductBacklogItem(

 RULE: MODEL TRUE INVARIANTS IN CONSISTENCY BOUNDARIES 353

 String aTenantId, String aProductId,
 String aSummary, String aCategory,
 String aBacklogItemType, String aStoryPoints) {

 Product product =
 productRepository.productOfId(
 new TenantId(aTenantId),
 new ProductId(aProductId));

 BacklogItem plannedBacklogItem =
 product.planBacklogItem(
 aSummary,
 aCategory,
 BacklogItemType.valueOf(aBacklogItemType),
 StoryPoints.valueOf(aStoryPoints));

 backlogItemRepository.add(plannedBacklogItem);
 }
 ...
}

So we’ve solved the transaction failure issue by modeling it away. Any num-
ber of BacklogItem, Release, and Sprint instances can now be safely cre-
ated by simultaneous user requests. That’s pretty simple.

However, even with clear transactional advantages, the four smaller Aggre-
gates are less convenient from the perspective of client consumption. Perhaps
instead we could tune the large Aggregate to eliminate the concurrency issues.
By setting our Hibernate mapping optimistic-lock option to false, we
make the transaction failure domino effect go away. There is no invariant on
the total number of created BacklogItem, Release, or Sprint instances, so
why not just allow the collections to grow unbounded and ignore these specific
modifications on Product? What additional cost would there be for keeping
the large-cluster Aggregate? The problem is that it could actually grow out of
control. Before thoroughly examining why, let’s consider the most important
modeling tip the SaaSOvation team needed.

Rule: Model True Invariants in Consistency Boundaries

When trying to discover the Aggregates in a Bounded Context (2), we must
understand the model’s true invariants. Only with that knowledge can we
determine which objects should be clustered into a given Aggregate.

An invariant is a business rule that must always be consistent. There are
different kinds of consistency. One is transactional consistency, which is

Chapter 10 AGGREGATES354

considered immediate and atomic. There is also eventual consistency. When
discussing invariants, we are referring to transactional consistency. We might
have the invariant

 c = a + b

Therefore, when a is 2 and b is 3, c must be 5. According to that rule and con-
ditions, if c is anything but 5, a system invariant is violated. To ensure that c is
consistent, we design a boundary around these specific attributes of the model:

 AggregateType1 {

 int a;

 int b;

 int c;

 operations ...

 }

The consistency boundary logically asserts that everything inside adheres to
a specific set of business invariant rules no matter what operations are per-
formed. The consistency of everything outside this boundary is irrelevant to
the Aggregate. Thus, Aggregate is synonymous with transactional consistency
boundary. (In this limited example, AggregateType1 has three attributes of
type int, but any given Aggregate could hold attributes of various types.)

When employing a typical persistence mechanism, we use a single trans-
action2 to manage consistency. When the transaction commits, everything
inside one boundary must be consistent. A properly designed Aggregate is one
that can be modified in any way required by the business with its invariants
completely consistent within a single transaction. And a properly designed
Bounded Context modifies only one Aggregate instance per transaction in all
cases. What is more, we cannot correctly reason on Aggregate design without
applying transactional analysis.

Limiting modification to one Aggregate instance per transaction may sound
overly strict. However, it is a rule of thumb and should be the goal in most
cases. It addresses the very reason to use Aggregates.

 2. The transaction may be handled by a Unit of Work [Fowler, P of EAA].

 RULE: DESIGN SMALL AGGREGATES 355

Whiteboard Time

• List on your whiteboard all large-cluster Aggregates in your system.

• Make a note next to each of those Aggregates why it is a large cluster and
any potential problems caused by its size.

• Next to that list, name any Aggregates that are modified in the same
transaction with others.

• Make a note next to each of those Aggregates whether true or false invari-
ants caused the formation of poorly designed Aggregate boundaries.

The fact that Aggregates must be designed with a consistency focus implies
that the user interface should concentrate each request to execute a single com-
mand on just one Aggregate instance. If user requests try to accomplish too
much, the application will be forced to modify multiple instances at once.

Therefore, Aggregates are chiefly about consistency boundaries and not
driven by a desire to design object graphs. Some real-world invariants will be
more complex than this. Even so, typically invariants will be less demanding
on our modeling efforts, making it possible to design small Aggregates.

Rule: Design Small Aggregates

We can now thoroughly address this question: What additional cost would
there be for keeping the large-cluster Aggregate? Even if we guarantee that
every transaction would succeed, a large cluster still limits performance and
scalability. As SaaSOvation develops its market, it’s going to bring in lots of
tenants. As each tenant makes a deep commitment to ProjectOvation, SaaS-
Ovation will host more and more projects and the management artifacts to go
along with them. That will result in vast numbers of products, backlog items,
releases, sprints, and others. Performance and scalability are nonfunctional
requirements that cannot be ignored.

Keeping performance and scalability in mind, what happens when one user
of one tenant wants to add a single backlog item to a product, one that is years
old and already has thousands of backlog items? Assume a persistence mech-
anism capable of lazy loading (Hibernate). We almost never load all backlog
items, releases, and sprints at once. Still, thousands of backlog items would be

Chapter 10 AGGREGATES356

loaded into memory just to add one new element to the already large collection.
It’s worse if a persistence mechanism does not support lazy loading. Even being
memory conscious, sometimes we would have to load multiple collections, such
as when scheduling a backlog item for release or committing one to a sprint; all
backlog items, and either all releases or all sprints, would be loaded.

To see this clearly, look at the diagram in Figure 10.3 containing the
zoomed composition. Don’t let the 0..* fool you; the number of associations
will almost never be zero and will keep growing over time. We would likely
need to load thousands and thousands of objects into memory all at once, just
to carry out what should be a relatively basic operation. That’s just for a single
team member of a single tenant on a single product. We have to keep in mind
that this could happen all at once with hundreds or thousands of tenants, each
with multiple teams and many products. And over time the situation will only
become worse.

This large-cluster Aggregate will never perform or scale well. It is more
likely to become a nightmare leading only to failure. It was deficient from the
start because the false invariants and a desire for compositional convenience
drove the design, to the detriment of transactional success, performance, and
scalability.

If we are going to design small Aggregates, what does “small” mean? The
extreme would be an Aggregate with only its globally unique identity and one

<<aggregate root>>

Product

<<entity>>

BacklogItem

<<entity>>

ScheduledBacklogItem

orderOfPriority

<<entity>>

Release

0..* 0..*0..*

<<entity>>

Sprint

0..*

<<entity>>

Task

0..*

<<value object>>

EstimationLogEntry

0..*

<<entity>>

CommittedBacklogItem

orderOfPriority

0..*

Figure 10.3 With this Product model, multiple large collections load during many
basic operations.

 RULE: DESIGN SMALL AGGREGATES 357

additional attribute, which is not what’s being recommended (unless that is
truly what one specific Aggregate requires). Rather, limit the Aggregate to just
the Root Entity and a minimal number of attributes and/or Value-typed prop-
erties.3 The correct minimum is however many are necessary, and no more.

Which ones are necessary? The simple answer is: those that must be con-
sistent with others, even if domain experts don’t specify them as rules. For
example, Product has name and description attributes. We can’t imagine
name and description being inconsistent, modeled in separate Aggregates.
When you change the name, you probably also change the description. If
you change one and not the other, it’s probably because you are fixing a spell-
ing error or making the description more fitting to the name. Even though
domain experts will probably not think of this as an explicit business rule, it is
an implicit one.

What if you think you should model a contained part as an Entity? First
ask whether that part must itself change over time, or whether it can be com-
pletely replaced when change is necessary. Cases where instances can be com-
pletely replaced point to the use of a Value Object rather than an Entity. At
times Entity parts are necessary. Yet, if we run through this design exercise
on a case-by-case basis, many concepts modeled as Entities can be refactored
to Value Objects. Favoring Value types as Aggregate parts doesn’t mean the
Aggregate is immutable since the Root Entity itself mutates when one of its
Value-typed properties is replaced.

There are important advantages to limiting internal parts to Values.
Depending on your persistence mechanism, Values can be serialized with the
Root Entity, whereas Entities can require separately tracked storage. Overhead
is higher with Entity parts, as, for example, when SQL joins are necessary to
read them using Hibernate. Reading a single database table row is much faster.
Value objects are smaller and safer to use (fewer bugs). Due to immutability
it is easier for unit tests to prove their correctness. These advantages are dis-
cussed in Value Objects (6).

On one project for the financial derivatives sector using Qi4j [Öberg], Niclas
Hedhman4 reported that his team was able to design approximately 70 percent
of all Aggregates with just a Root Entity containing some Value-typed proper-
ties. The remaining 30 percent had just two to three total Entities. This doesn’t
indicate that all domain models will have a 70/30 split. It does indicate that a
high percentage of Aggregates can be limited to a single Entity, the Root.

 3. A Value-typed property is an attribute that holds a reference to a Value Object. I
distinguish this from a simple attribute such as a string or numeric type, as does
Ward Cunningham when describing Whole Value [Cunningham, Whole Value].

 4. See also www.jroller.com/niclas/

http://www.jroller.com/niclas/

Chapter 10 AGGREGATES358

The [Evans] discussion of Aggregates gives an example where having mul-
tiple Entities makes sense. A purchase order is assigned a maximum allow-
able total, and the sum of all line items must not surpass the total. The rule
becomes tricky to enforce when multiple users simultaneously add line items.
Any one addition is not permitted to exceed the limit, but concurrent additions
by multiple users could collectively do so. I won’t repeat the solution here, but
I want to emphasize that most of the time the invariants of business models
are simpler to manage than that example. Recognizing this helps us to model
Aggregates with as few properties as possible.

Smaller Aggregates not only perform and scale better, they are also biased
toward transactional success, meaning that conflicts preventing a commit are
rare. This makes a system more usable. Your domain will not often have true
invariant constraints that force you into large-composition design situations.
Therefore, it is just plain smart to limit Aggregate size. When you occasionally
encounter a true consistency rule, add another few Entities, or possibly a col-
lection, as necessary, but continue to push yourself to keep the overall size as
small as possible.

Don’t Trust Every Use Case

Business analysts play an important role in delivering use case specifications.
Much work goes into a large and detailed specification, and it will affect many
of our design decisions. Yet, we mustn’t forget that use cases derived in this
way don’t carry the perspective of the domain experts and developers of our
close-knit modeling team. We still must reconcile each use case with our cur-
rent model and design, including our decisions about Aggregates. A common
issue that arises is a particular use case that calls for the modification of mul-
tiple Aggregate instances. In such a case we must determine whether the spec-
ified large user goal is spread across multiple persistence transactions, or if it
occurs within just one. If it is the latter, it pays to be skeptical. No matter how
well it is written, such a use case may not accurately reflect the true Aggregates
of our model.

Assuming your Aggregate boundaries are aligned with real business con-
straints, it’s going to cause problems if business analysts specify what you see
in Figure 10.4. Thinking through the various commit order permutations,
you’ll see that there are cases where two of the three requests will fail.5 What

 5. This doesn’t address the fact that some use cases describe modifications to mul-
tiple Aggregates that span transactions, which would be fine. A user goal should
not be viewed as synonymous with a transaction. We are concerned only with use
cases that actually indicate the modification of multiple Aggregate instances in
one transaction.

 RULE: REFERENCE OTHER AGGREGATES BY IDENTITY 359

does attempting this indicate about your design? The answer to that question
may lead to a deeper understanding of the domain. Trying to keep multiple
Aggregate instances consistent may be telling you that your team has missed
an invariant. You may end up folding the multiple Aggregates into one new
concept with a new name in order to address the newly recognized business
rule. (And, of course, it might be only parts of the old Aggregates that get
rolled into the new one.)

So a new use case may lead to insights that push us to remodel the Aggre-
gate, but be skeptical here, too. Forming one Aggregate from multiple ones
may drive out a completely new concept with a new name, yet if modeling
this new concept leads you toward designing a large-cluster Aggregate, that
can end up with all the problems common to that approach. What different
approach may help?

Just because you are given a use case that calls for maintaining consistency
in a single transaction doesn’t mean you should do that. Often, in such cases,
the business goal can be achieved with eventual consistency between Aggre-
gates. The team should critically examine the use cases and challenge their
assumptions, especially when following them as written would lead to unwieldy
designs. The team may have to rewrite the use case (or at least re-imagine it if
they face an uncooperative business analyst). The new use case would specify
eventual consistency and the acceptable update delay. This is one of the issues
taken up later in this chapter.

Rule: Reference Other Aggregates by Identity

When designing Aggregates, we may desire a compositional structure that
allows for traversal through deep object graphs, but that is not the motiva-
tion of the pattern. [Evans] states that one Aggregate may hold references to

<<aggregate root>>

request request request

Product

User 1 User 2 User 3

<<aggregate root>>

BacklogItem

Figure 10.4 Concurrency contention exists among three users who are all trying to
access the same two Aggregate instances, leading to a high number of transactional

failures.

Chapter 10 AGGREGATES360

the Root of other Aggregates. However, we must keep in mind that this does
not place the referenced Aggregate inside the consistency boundary of the one
referencing it. The reference does not cause the formation of just one whole
Aggregate. There are still two (or more), as shown in Figure 10.5.

In Java the association would be modeled like this:

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 private Product product;
 ...
}

That is, the BacklogItem holds a direct object association to Product.
In combination with what’s already been discussed and what’s next, this has

a few implications:

 1. Both the referencing Aggregate (BacklogItem) and the referenced Aggre-
gate (Product) must not be modified in the same transaction. Only one
or the other may be modified in a single transaction.

 2. If you are modifying multiple instances in a single transaction, it may be
a strong indication that your consistency boundaries are wrong. If so, it
is possibly a missed modeling opportunity; a concept of your Ubiquitous
Language has not yet been discovered although it is waving its hands and
shouting at you (see earlier in this chapter).

<<aggregate root>>

BacklogItem

Inside Outside

<<aggregate root>>

Product

<<entity>>

Task

description
hoursRemaining
name
volunteer

0..*

<<value object>>

EstimationLogEntry

description
hoursRemaining
name
volunteer

0..*

Figure 10.5 There are two Aggregates, not one.

 RULE: REFERENCE OTHER AGGREGATES BY IDENTITY 361

 3. If you are attempting to apply point 2, and doing so influences a large-
cluster Aggregate with all the previously stated caveats, it may be an indi-
cation that you need to use eventual consistency (see later in this chapter)
instead of atomic consistency.

If you don’t hold any reference, you can’t modify another Aggregate. So the
temptation to modify multiple Aggregates in the same transaction could be
squelched by avoiding the situation in the first place. But that is overly limiting
since domain models always require some associative connections. What might
we do to facilitate necessary associations, protect from transaction misuse or
inordinate failure, and allow the model to perform and scale?

Making Aggregates Work Together through Identity References

Prefer references to external Aggregates only by their globally unique identity,
not by holding a direct object reference (or “pointer”). This is exemplified in
Figure 10.6.

<<aggregate root>>

BacklogItem

<<value object>>

SprintId

<<value object>>

ReleaseId

<<value object>>

ProductId

<<entity>>

Task

description
hoursRemaining
name
volunteer

status
story
storyPoints
summary
type

0..*

<<value object>>

EstimationLogEntry

description
hoursRemaining
name
volunteer

0..*

Figure 10.6 The BacklogItem Aggregate, inferring associations outside its
boundary with identities

Chapter 10 AGGREGATES362

We would refactor the source to

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 private ProductId productId;
 ...
}

Aggregates with inferred object references are thus automatically smaller
because references are never eagerly loaded. The model can perform better
because instances require less time to load and take less memory. Using less
memory has positive implications for both memory allocation overhead and
garbage collection.

Model Navigation

Reference by identity doesn’t completely prevent navigation through the model.
Some will use a Repository (12) from inside an Aggregate for lookup. This
technique is called Disconnected Domain Model, and it’s actually a form
of lazy loading. There’s a different recommended approach, however: Use
a Repository or Domain Service (7) to look up dependent objects ahead of
invoking the Aggregate behavior. A client Application Service may control this,
then dispatch to the Aggregate:

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void assignTeamMemberToTask(
 String aTenantId,
 String aBacklogItemId,
 String aTaskId,
 String aTeamMemberId) {

 BacklogItem backlogItem =
 backlogItemRepository.backlogItemOfId(
 new TenantId(aTenantId),
 new BacklogItemId(aBacklogItemId));

 Team ofTeam =
 teamRepository.teamOfId(
 backlogItem.tenantId(),
 backlogItem.teamId());

 backlogItem.assignTeamMemberToTask(
 new TeamMemberId(aTeamMemberId),

 RULE: REFERENCE OTHER AGGREGATES BY IDENTITY 363

 ofTeam,
 new TaskId(aTaskId));
 }
 ...
}

Having an Application Service resolve dependencies frees the Aggregate
from relying on either a Repository or a Domain Service. However, for very
complex and domain-specific dependency resolutions, passing a Domain Ser-
vice into an Aggregate command method can be the best way to go. The Aggre-
gate can then double-dispatch to the Domain Service to resolve references.
Again, in whatever way one Aggregate gains access to others, referencing mul-
tiple Aggregates in one request does not give license to cause modification on
two or more of them.

Cowboy Logic

LB: “I’ve got two points of reference when I’m navigating
at night. If it smells like beef on the hoof, I’m head-
ing to the herd. If it smells like beef on the grill, I’m
heading home.”

Limiting a model to using only reference by identity could make it more dif-
ficult to serve clients that assemble and render User Interface (14) views. You
may have to use multiple Repositories in a single use case to populate views.
If query overhead causes performance issues, it may be worth considering the
use of theta joins or CQRS. Hibernate, for example, supports theta joins as a
means to assemble a number of referentially associated Aggregate instances in
a single join query, which can provide the necessary viewable parts. If CQRS
and theta joins are not an option, you may need to strike a balance between
inferred and direct object reference.

If all this advice seems to lead to a less convenient model, consider the addi-
tional benefits it affords. Making Aggregates smaller leads to better-perform-
ing models, plus we can add scalability and distribution.

Scalability and Distribution

Since Aggregates don’t use direct references to other Aggregates but reference
by identity, their persistent state can be moved around to reach large scale.
Almost-infinite scalability is achieved by allowing for continuous repartition-
ing of Aggregate data storage, as explained by Amazon.com’s Pat Helland in

Chapter 10 AGGREGATES364

his position paper “Life beyond Distributed Transactions: An Apostate’s Opin-
ion” [Helland]. What we call Aggregate, he calls entity. But what he describes
is still an Aggregate by any other name: a unit of composition that has trans-
actional consistency. Some NoSQL persistence mechanisms support the Ama-
zon-inspired distributed storage. These provide much of what [Helland] refers
to as the lower, scale-aware layer. When employing a distributed store, or even
when using a SQL database with similar motivations, reference by identity
plays an important role.

Distribution extends beyond storage. Since there are always multiple Bounded
Contexts at play in a given Core Domain initiative, reference by identity allows
distributed domain models to have associations from afar. When an Event-
Driven approach is in use, message-based Domain Events (8) containing Aggre-
gate identities are sent around the enterprise. Message subscribers in foreign
Bounded Contexts use the identities to carry out operations in their own domain
models. Reference by identity forms remote associations or partners. Distributed
operations are managed by what [Helland] calls two-party activities, but in Pub-
lish-Subscribe [Buschmann et al.] or Observer [Gamma et al.] terms it’s multi-
party (two or more). Transactions across distributed systems are not atomic. The
various systems bring multiple Aggregates into a consistent state eventually.

Rule: Use Eventual Consistency Outside the Boundary

There is a frequently overlooked statement found in the [Evans] Aggregate pat-
tern definition. It bears heavily on what we must do to achieve model consis-
tency when multiple Aggregates must be affected by a single client request:

Any rule that spans AGGREGATES will not be expected to be up-to-date at all
times. Through event processing, batch processing, or other update mechanisms,
other dependencies can be resolved within some specific time. [Evans, p. 128]

Thus, if executing a command on one Aggregate instance requires that addi-
tional business rules execute on one or more other Aggregates, use eventual
consistency. Accepting that all Aggregate instances in a large-scale, high-traf-
fic enterprise are never completely consistent helps us accept that eventual con-
sistency also makes sense in the smaller scale where just a few instances are
involved.

Ask the domain experts if they could tolerate some time delay between the
modification of one instance and the others involved. Domain experts are
sometimes far more comfortable with the idea of delayed consistency than are
developers. They are aware of realistic delays that occur all the time in their
business, whereas developers are usually indoctrinated with an atomic change

 RULE: USE EVENTUAL CONSISTENCY OUTSIDE THE BOUNDARY 365

mentality. Domain experts often remember the days prior to computer auto-
mation of their business operations, when various kinds of delays occurred all
the time and consistency was never immediate. Thus, domain experts are often
willing to allow for reasonable delays—a generous number of seconds, min-
utes, hours, or even days—before consistency occurs.

There is a practical way to support eventual consistency in a DDD model.
An Aggregate command method publishes a Domain Event that is in time
delivered to one or more asynchronous subscribers:

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 public void commitTo(Sprint aSprint) {
 ...
 DomainEventPublisher
 .instance()
 .publish(new BacklogItemCommitted(
 this.tenantId(),
 this.backlogItemId(),
 this.sprintId()));
 }
 ...
}

Each of these subscribers then retrieves a different yet corresponding Aggre-
gate instance and executes its behavior based on it. Each of the subscribers
executes in a separate transaction, obeying the rule of Aggregates to modify
just one instance per transaction.

What happens if the subscriber experiences concurrency contention with
another client, causing its modification to fail? The modification can be retried
if the subscriber does not acknowledge success to the messaging mechanism.
The message will be redelivered, a new transaction started, a new attempt
made to execute the necessary command, and a corresponding commit made.
This retry process can continue until consistency is achieved, or until a retry
limit is reached.6 If complete failure occurs, it may be necessary to compensate,
or at a minimum to report the failure for pending intervention.

What is accomplished by publishing the BacklogItemCommitted Domain
Event in this specific example? Recalling that BacklogItem already holds
the identity of the Sprint it is committed to, we are in no way interested in

 6. Consider attempting retries using Capped Exponential Back-off. Rather than
defaulting to a retry every N fixed number of seconds, exponentially back off on
retries while capping waits with an upper limit. For example, start at one second
and back off exponentially, doubling until success or until reaching a 32-second
wait-and-retry cap.

Chapter 10 AGGREGATES366

maintaining a meaningless bidirectional association. Rather, the Event allows
for the eventual creation of a CommittedBacklogItem so the Sprint can
make a record of work commitment. Since each CommittedBacklogItem
has an ordering attribute, it allows the Sprint to give each BacklogItem
an ordering different from those of Product and Release, and that is not
tied to the BacklogItem instance’s own recorded estimation of Business-
Priority. Thus, Product and Release hold similar associations, namely,
ProductBacklogItem and ScheduledBacklogItem, respectively.

Whiteboard Time

• Return to your list of large-cluster Aggregates and the two or more modi-
fied in a single transaction.

• Describe and diagram how you will break up the large clusters. Circle and
note each of the true invariants inside each of the new small Aggregates.

• Describe and diagram how you will keep separate Aggregates eventually
consistent.

This example demonstrates how to use eventual consistency in a single
Bounded Context, but the same technique can also be applied in a distributed
fashion as previously described.

Ask Whose Job It Is

Some domain scenarios can make it very challenging to determine whether
transactional or eventual consistency should be used. Those who use DDD
in a classic/traditional way may lean toward transactional consistency. Those
who use CQRS may tend toward eventual consistency. But which is correct?
Frankly, neither of those tendencies provides a domain-specific answer, only a
technical preference. Is there a better way to break the tie?

Cowboy Logic

LB: “My son told me that he found on the Internet how to
make my cows more fertile. I told him that’s the bull’s
job.”

 REASONS TO BREAK THE RULES 367

Discussing this with Eric Evans revealed a very simple and sound guideline.
When examining the use case (or story), ask whether it’s the job of the user
executing the use case to make the data consistent. If it is, try to make it trans-
actionally consistent, but only by adhering to the other rules of Aggregates. If
it is another user’s job, or the job of the system, allow it to be eventually con-
sistent. That bit of wisdom not only provides a convenient tie breaker, but it
helps us gain a deeper understanding of our domain. It exposes the real system
invariants: the ones that must be kept transactionally consistent. That under-
standing is much more valuable than defaulting to a technical leaning.

This is a great tip to add to the Aggregate Rules of Thumb. Since there are
other forces to consider, it may not always lead to the final choice between
transactional and eventual consistency but will usually provide deeper insight
into the model. This guideline is used later in the chapter when the team revis-
its their Aggregate boundaries.

Reasons to Break the Rules

An experienced DDD practitioner may at times decide to persist changes to
multiple Aggregate instances in a single transaction, but only with good rea-
son. What might some reasons be? I discuss four reasons here. You may expe-
rience these and others.

Reason One: User Interface Convenience

Sometimes user interfaces, as a convenience, allow users to define the common
characteristics of many things at once in order to create batches of them. Per-
haps it happens frequently that team members want to create several backlog
items as a batch. The user interface allows them to fill out all the common
properties in one section, and then one by one the few distinguishing proper-
ties of each, eliminating repeated gestures. All of the new backlog items are
then planned (created) at once:

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void planBatchOfProductBacklogItems(
 String aTenantId, String productId,
 BacklogItemDescription[] aDescriptions) {

 Product product =
 productRepository.productOfId(
 new TenantId(aTenantId),
 new ProductId(productId));

Chapter 10 AGGREGATES368

 for (BacklogItemDescription desc : aDescriptions) {
 BacklogItem plannedBacklogItem =
 product.planBacklogItem(
 desc.summary(),
 desc.category(),
 BacklogItemType.valueOf(
 desc.backlogItemType()),
 StoryPoints.valueOf(
 desc.storyPoints()));

 backlogItemRepository.add(plannedBacklogItem);
 }
 }
 ...
}

Does this cause a problem with managing invariants? In this case, no, since
it would not matter whether these were created one at a time or in batch. The
objects being instantiated are full Aggregates, which maintain their own invari-
ants. Thus, if creating a batch of Aggregate instances all at once is semantically
no different from creating one at a time repeatedly, it represents one reason to
break the rule of thumb with impunity.

Reason Two: Lack of Technical Mechanisms

Eventual consistency requires the use of some kind of out-of-band process-
ing capability, such as messaging, timers, or background threads. What if the
project you are working on has no provision for any such mechanism? While
most of us would consider that strange, I have faced that very limitation. With
no messaging mechanism, no background timers, and no other home-grown
threading capabilities, what could be done?

If we aren’t careful, this situation could lead us back toward designing
large-cluster Aggregates. While that might make us feel as if we are adhering
to the single transaction rule, as previously discussed it would also degrade
performance and limit scalability. To avoid that, perhaps we could instead
change the system’s Aggregates altogether, forcing the model to solve our chal-
lenges. We’ve already considered the possibility that project specifications may
be jealously guarded, leaving us little room for negotiating previously unimag-
ined domain concepts. That’s not really the DDD way, but sometimes it does
happen. The conditions may allow for no reasonable way to alter the modeling
circumstances in our favor. In such cases project dynamics may force us to
modify two or more Aggregate instances in one transaction. However obvious
this might seem, such a decision should not be made too hastily.

 REASONS TO BREAK THE RULES 369

Cowboy Logic

AJ: “If you think that rules are made to be broken, you’d
better know a good repairman.”

Consider an additional factor that could further support diverging from the
rule: user-aggregate affinity. Are the business workflows such that only one
user would be focused on one set of Aggregate instances at any given time?
Ensuring user-aggregate affinity makes the decision to alter multiple Aggregate
instances in a single transaction more sound since it tends to prevent the viola-
tion of invariants and transactional collisions. Even with user-aggregate affin-
ity, in rare situations users may face concurrency conflicts. Yet each Aggregate
would still be protected from that by using optimistic concurrency. Anyway,
concurrency conflicts can happen in any system, and even more frequently
when user-aggregate affinity is not our ally. Besides, recovering from concur-
rency conflicts is straightforward when encountered at rare times. Thus, when
our design is forced to, sometimes it works out well to modify multiple Aggre-
gate instances in one transaction.

Reason Three: Global Transactions

Another influence considered is the effects of legacy technologies and enter-
prise policies. One such might be the need to strictly adhere to the use of
global, two-phase commit transactions. This is one of those situations that
may be impossible to push back on, at least in the short term.

Even if you must use a global transaction, you don’t necessarily have to
modify multiple Aggregate instances at once in your local Bounded Context.
If you can avoid doing so, at least you can prevent transactional contention in
your Core Domain and actually obey the rules of Aggregates as far as you are
able. The downside to global transactions is that your system will probably
never scale as it could if you were able to avoid two-phase commits and the
immediate consistency that goes along with them.

Reason Four: Query Performance

There may be times when it’s best to hold direct object references to other
Aggregates. This could be used to ease Repository query performance issues.
These must be weighed carefully in the light of potential size and overall

Chapter 10 AGGREGATES370

performance trade-off implications. One example of breaking the rule of refer-
ence by identity is given later in the chapter.

Adhering to the Rules

You may experience user interface design decisions, technical limitations, stiff
policies, or other factors in your enterprise environment that require you to
make some compromises. Certainly we don’t go in search of excuses to break
the Aggregate Rules of Thumb. In the long run, adhering to the rules will ben-
efit our projects. We’ll have consistency where necessary, and support for opti-
mally performing and highly scalable systems.

Gaining Insight through Discovery

With the rules of Aggregates in use, we’ll see how adhering to them affects
the design of the SaaSOvation Scrum model. We’ll see how the project team
rethinks their design again, applying newfound techniques. That effort leads to
the discovery of new insights into the model. Their various ideas are tried and
then superseded.

Rethinking the Design, Again

After the refactoring iteration that broke up the large-cluster Product, the
BacklogItem now stands alone as its own Aggregate. It reflects the model
presented in Figure 10.7. The team composed a collection of Task instances
inside the BacklogItem Aggregate. Each BacklogItem has a globally
unique identity, its BacklogItemId. All associations to other Aggregates are
inferred through identities. That means its parent Product, the Release it is
scheduled within, and the Sprint to which it is committed are referenced by
identities. It seems fairly small.

With the team now jazzed about designing small Aggregates, could they
possibly overdo it in that direction?

Despite the good feeling coming out of that previous iteration,
there was still some concern. For example, the story attribute
allowed for a good deal of text. Teams developing agile stories
won’t write lengthy prose. Even so, there is an optional edi-
tor component that supports writing rich use case definitions.
Those could be many thousands of bytes. It was worth consid-
ering the possible overhead.

 GAINING INSIGHT THROUGH DISCOVERY 371

Given this potential overhead and the errors already made in designing the
large-cluster Product of Figures 10.1 and 10.3, the team was now on a mission to
reduce the size of every Aggregate in the Bounded Context. Crucial questions arose.
Was there a true invariant between BacklogItem and Task that this relationship
must maintain? Or was this yet another case where the association could be further
broken apart, with two separate Aggregates being safely formed? What would be the
total cost of keeping the design as is?

A key to their making a proper determination lay in the Ubiquitous Language. Here
is where an invariant was stated:

• When progress is made on a backlog item task, the team member will estimate
task hours remaining.

• When a team member estimates that zero hours are remaining on a specific
task, the backlog item checks all tasks for any remaining hours. If no hours
remain on any tasks, the backlog item status is automatically changed to done.

• When a team member estimates that one or more hours are remaining on a
specific task and the backlog item’s status is already done, the status is auto-
matically regressed.

This sure seemed like a true invariant. The backlog item’s correct status is auto-
matically adjusted and is completely dependent on the total number of hours remain-
ing on all its tasks. If the total number of task hours and the backlog item status are
to remain consistent, it seems as if Figure 10.7 does stipulate the correct Aggregate

<<aggregate root>>

BacklogItem

<<value object>>

SprintId

<<value object>>

BacklogItemId

<<value object>>

TaskId

<<value object>>

ReleaseId

<<value object>>

ProductId

<<entity>>

Task

description
hoursRemaining
name
volunteer

status
story
storyPoints
summary
type

0..*

<<value object>>

EstimationLogEntry

description
hoursRemaining
name
volunteer

0..*

Figure 10.7 The fully composed BacklogItem Aggregate

Chapter 10 AGGREGATES372

consistency boundary. However, the team should still determine what the current
cluster could cost in terms of performance and scalability. That would be weighed
against what they might save if the backlog item status could be eventually consistent
with the total task hours remaining.

Some will see this as a classic opportunity to use eventual consistency, but
we won’t jump to that conclusion just yet. Let’s analyze a transactional consis-
tency approach, then investigate what could be accomplished using eventual
consistency. We can then draw our own conclusion as to which approach is
preferred.

Estimating Aggregate Cost

As Figure 10.7 shows, each Task holds a collection of EstimationLogEntry
instances. These logs model the specific occasions when a team member enters
a new estimate of hours remaining. In practical terms, how many Task ele-
ments will each BacklogItem hold, and how many EstimationLogEntry
elements will a given Task hold? It’s hard to say exactly. It’s largely a measure
of how complex any one task is and how long a sprint lasts. But some back-of-
the-envelope (BOTE) calculations might help [Bentley].

Task hours are usually reestimated each day after a team member works on
a given task. Let’s say that most sprints are either two or three weeks in length.
There will be longer sprints, but a two- to three-week time span is common
enough. So let’s select a number of days somewhere between ten and 15. With-
out being too precise, 12 days works well since there may actually be more
two-week than three-week sprints.

Next, consider the number of hours assigned to each task. Remembering
that tasks must be broken down into manageable units, we generally use a
number of hours between four and 16. Normally if a task exceeds a 12-hour
estimate, Scrum experts suggest breaking it down further. But using 12 hours
as a first test makes it easier to simulate work evenly. We can say that tasks are
worked on for one hour on each of the 12 days of the sprint. Doing so favors
more complex tasks. So we’ll figure 12 reestimations per task, assuming that
each task starts out with 12 hours allocated to it.

The question remains: How many tasks would be required per backlog item?
That too is a difficult question to answer. What if we thought in terms of there
being two or three tasks required per Layer (4) or Hexagonal Port-Adapter (4)
for a given feature slice? For example, we might count three for the User Inter-
face Layer (14), two for the Application Layer (14), three for the Domain Layer,
and three for the Infrastructure Layer (14). That would bring us to 11 total

 GAINING INSIGHT THROUGH DISCOVERY 373

tasks. It might be just right or a bit slim, but we’ve already erred on the side of
numerous task estimations. Let’s bump it up to 12 tasks per backlog item to be
more liberal. With that we are allowing for 12 tasks, each with 12 estimation
logs, or 144 total collected objects per backlog item. While this may be more
than the norm, it gives us a chunky BOTE calculation to work with.

There is another variable to be considered. If Scrum expert advice to define
smaller tasks is commonly followed, it would change things somewhat. Dou-
bling the number of tasks (24) and halving the number of estimation log entries
(6) would still produce 144 total objects. However, it would cause more tasks
to be loaded (24 rather than 12) during all estimation requests, consuming
more memory on each. The team will try various combinations to see if there is
any significant impact on their performance tests. But to start they will use 12
tasks of 12 hours each.

Common Usage Scenarios

Now it’s important to consider common usage scenarios. How often will one
user request need to load all 144 objects into memory at once? Would that ever
happen? It seems not, but the team needs to check. If not, what’s the likely
high-end count of objects? Also, will there typically be multiclient usage that
causes concurrency contention on backlog items? Let’s see.

The following scenarios are based on the use of Hibernate for persistence.
Also, each Entity type has its own optimistic concurrency version attribute.
This is workable because the changing status invariant is managed on the
BacklogItem Root Entity. When the status is automatically altered (to done
or back to committed), the Root’s version is bumped. Thus, changes to tasks
can happen independently of each other and without impacting the Root each
time one is modified, unless the result is a status change. (The following anal-
ysis could need to be revisited if using, for example, document-based storage,
since the Root is effectively modified every time a collected part is modified.)

When a backlog item is first created, there are zero contained tasks. Nor-
mally it is not until sprint planning that tasks are defined. During that meeting
tasks are identified by the team. As each one is called out, a team member adds
it to the corresponding backlog item. There is no need for two team mem-
bers to contend with each other for the Aggregate, as if racing to see who can
enter new tasks more quickly. That would cause collision, and one of the two
requests would fail (for the same reason simultaneously adding various parts to
Product previously failed). However, the two team members would probably
soon figure out how counterproductive their redundant work is.

If the developers learned that multiple users do indeed regularly want to add
tasks together, it would change the analysis significantly. That understanding

Chapter 10 AGGREGATES374

could immediately tip the scales in favor of breaking BacklogItem and Task
into two separate Aggregates. On the other hand, this could also be a perfect
time to tune the Hibernate mapping by setting the optimistic-lock option
to false. Allowing tasks to grow simultaneously could make sense in this
case, especially if they don’t pose performance and scalability issues.

If tasks are at first estimated at zero hours and later updated to an accurate
estimate, we still don’t tend to experience concurrency contention, although
this would add one additional estimation log entry, pushing our BOTE total
to 13. Simultaneous use here does not change the backlog item status. Again,
it advances to done only by going from greater than zero to zero hours, or
regresses to committed if already done and hours are changed from zero to one
or more—two uncommon events.

Will daily estimations cause problems? On day one of the sprint there are
usually zero estimation logs on a given task of a backlog item. At the end of
day one, each volunteer team member working on a task reduces the estimated
hours by one. This adds a new estimation log to each task, but the backlog
item’s status remains unaffected. There is never contention on a task because
just one team member adjusts its hours. It’s not until day 12 that we reach the
point of status transition. Still, as each of any 11 tasks is reduced to zero hours,
the backlog item’s status is not altered. It’s only the very last estimation, the
144th on the 12th task, that causes automatic status transition to the done state.

This analysis led the team to an important realization. Even if they altered the usage
scenarios, accelerating task completion by double (six days) or even mixing it up
completely, it wouldn’t change anything. It’s always the final estimate that transitions
the status, which modifies the Root. This seemed like a safe design, although mem-
ory overhead was still in question.

Memory Consumption

Now to address the memory consumption. Important here is that estimates
are logged by date as Value Objects. If a team member reestimates any number
of times on a single day, only the most recent estimate is retained. The latest
Value of the same date replaces the previous one in the collection. At this point
there’s no requirement to track task estimation mistakes. There is the assump-
tion that a task will never have more estimation log entries than the number of
days the sprint is in progress. That assumption changes if tasks were defined
one or more days before the sprint planning meeting, and hours were reesti-
mated on any of those earlier days. There would be one extra log for each day
that occurred.

 GAINING INSIGHT THROUGH DISCOVERY 375

What about the total number of tasks and estimates in memory for each
reestimation? When using lazy loading for the tasks and estimation logs, we
would have as many as 12 plus 12 collected objects in memory at one time per
request. This is because all 12 tasks would be loaded when accessing that col-
lection. To add the latest estimation log entry to one of those tasks, we’d have
to load the collection of estimation log entries. That would be up to another 12
objects. In the end the Aggregate design requires one backlog item, 12 tasks,
and 12 log entries, or 25 objects maximum total. That’s not very many; it’s a
small Aggregate. Another factor is that the higher end of objects (for example,
25) is not reached until the last day of the sprint. During much of the sprint the
Aggregate is even smaller.

Will this design cause performance problems because of lazy loads? Possi-
bly, because it actually requires two lazy loads, one for the tasks and one for
the estimation log entries for one of the tasks. The team will have to test to
investigate the possible overhead of the multiple fetches.

There’s another factor. Scrum enables teams to experiment in order to iden-
tify the right planning model for their practices. As explained by [Sutherland],
experienced teams with a well-known velocity can estimate using story points
rather than task hours. As they define each task, they can assign just one hour
to each task. During the sprint they will reestimate only once per task, chang-
ing one hour to zero when the task is completed. As it pertains to Aggregate
design, using story points reduces the total number of estimation logs per task
to just one and almost eliminates memory overhead.

Later on, ProjectOvation developers will be able to ana-
lytically determine (on average) how many actual tasks
and estimation log entries exist per backlog item by
examining real production data.

The foregoing analysis was enough to motivate the
team to test against their BOTE calculations. After incon-
clusive results, however, they decided that there were
still too many variables for them to be confident that this
design dealt well with their concerns. There were enough
unknowns to consider an alternative design.

Exploring Another Alternative Design

Is there another design that could contribute to Aggregate boundaries more
fitting to the usage scenarios?

Chapter 10 AGGREGATES376

To be thorough, the team wanted to think through what they would have to do to make
Task an independent Aggregate, and if that would actually work to their benefit. What
they envisioned is seen in Figure 10.8. Doing this would reduce part composition
overhead by 12 objects and reduce lazy load overhead. In fact, this design gave them
the option to eagerly load estimation log entries in all cases if that would perform best.

The developers agreed not to modify separate Aggregates, both the Task and
the BacklogItem, in the same transaction. They had to determine if they could per-
form a necessary automatic status change within an acceptable time frame. They’d
be weakening the invariant’s consistency since the status couldn’t be consistent by
transaction. Would that be acceptable? They discussed the matter with the domain
experts and learned that some delay between the final zero-hour estimate and the
status being set to done, and vice versa, would be acceptable.

Implementing Eventual Consistency

It looks as if there could be a legitimate use of eventual consistency between
separate Aggregates. Here is how it could work.

When a Task processes an estimateHoursRemaining() command, it publishes
a corresponding Domain Event. It does that already, but the team would now leverage
the Event to achieve eventual consistency. The Event is modeled with the following
properties:

<<aggregate root>>

BacklogItem

<<value object>>

SprintId
<<value object>>

BacklogItemId

<<value object>>

TaskId

<<value object>>

ReleaseId

<<aggregate root>>

Task

description
hoursRemaining
name
volunteer

status
story
storyPoints
summary
type

0..*

<<value object>>

EstimationLogEntry

description
hoursRemaining
name
volunteer

<<value object>>

ProductId

Figure 10.8 BacklogItem and Task modeled as separate Aggregates

 GAINING INSIGHT THROUGH DISCOVERY 377

public class TaskHoursRemainingEstimated implements DomainEvent {
 private Date occurredOn;
 private TenantId tenantId;
 private BacklogItemId backlogItemId;
 private TaskId taskId;
 private int hoursRemaining;
 ...
}

A specialized subscriber would now listen for these and delegate to a Domain Ser-
vice to coordinate the consistency processing. The Service would

• Use the BacklogItemRepository to retrieve the identified BacklogItem.

• Use the TaskRepository to retrieve all Task instances associated with the
identified BacklogItem.

• Execute the BacklogItem command named estimateTaskHours Remaining(),
passing the Domain Event’s hoursRemaining and the retrieved Task instances.
The BacklogItem may transition its status depending on parameters.

The team should find a way to optimize this. The three-step design requires all
Task instances to be loaded every time a reestimation occurs. When using our BOTE
estimate and advancing continuously toward done, 143 out of 144 times that’s unnec-
essary. This could be optimized pretty easily. Instead of using the Repository to get
all Task instances, they could simply ask it for the sum of all Task hours as calcu-
lated by the database:

public class HibernateTaskRepository implements TaskRepository {
 ...
 public int totalBacklogItemTaskHoursRemaining(
 TenantId aTenantId,
 BacklogItemId aBacklogItemId) {

 Query query = session.createQuery(
 "select sum(task.hoursRemaining) from Task task "
 + "where task.tenantId = ? and "
 + "task.backlogItemId = ?");
 ...
 }
}

Eventual consistency complicates the user interface a bit. Unless the sta-
tus transition can be achieved within a few hundred milliseconds, how would
the user interface display the new state? Should they place business logic in

Chapter 10 AGGREGATES378

the view to determine the current status? That would constitute a smart UI
anti-pattern. Perhaps the view would just display the stale status and allow
users to deal with the visual inconsistency. That could easily be perceived as a
bug, or at least be very annoying.

The view could use a background Ajax polling request, but that could be quite ineffi-
cient. Since the view component could not easily determine exactly when checking
for a status update is necessary, most Ajax pings would be unnecessary. Using our
BOTE numbers, 143 of 144 reestimations would not cause the status update, which is
a lot of redundant requests on the Web tier. With the right server-side support the cli-
ents could instead depend on Comet (aka Ajax Push). Although a nice challenge, that
would introduce a completely new technology that the team had no experience using.

On the other hand, perhaps the best solution is the simplest. They could opt to
place a visual cue on the screen that informs the user that the current status is uncer-
tain. The view could suggest a time frame for checking back or refreshing. Alterna-
tively, the changed status will probably show on the next rendered view. That’s safe.
The team would need to run some user acceptance tests, but it looked hopeful.

Is It the Team Member’s Job?

One important question has thus far been completely overlooked: Whose job
is it to bring a backlog item’s status into consistency with all remaining task
hours? Do team members using Scrum care if the parent backlog item’s sta-
tus transitions to done just as they set the last task’s hours to zero? Will they
always know they are working with the last task that has remaining hours?
Perhaps they will and perhaps it is the responsibility of each team member to
bring each backlog item to official completion.

On the other hand, what if there is another project stakeholder involved?
For example, the product owner or some other person may desire to check the
candidate backlog item for satisfactory completion. Maybe someone wants to
use the feature on a continuous integration server first. If others are happy
with the developers’ claim of completion, they will manually mark the status
as done. This certainly changes the game, indicating that neither transactional
nor eventual consistency is necessary. Tasks could be split off from their parent
backlog item because this new use case allows it. However, if it is really the
team members who should cause the automatic transition to done, it would
mean that tasks should probably be composed within the backlog item to allow
for transactional consistency. Interestingly, there is no clear answer here either,
which probably indicates that it should be an optional application preference.

 GAINING INSIGHT THROUGH DISCOVERY 379

Leaving tasks within their backlog item solves the consistency problem, and
it’s a modeling choice that can support both automatic and manual status
transitions.

This valuable exercise uncovered a com-
pletely new aspect of the domain. It seems
as if teams should be able to configure a
workflow preference. They won’t implement
such a feature now, but they will promote it
for further discussion. Asking “whose job is
it?” led them to a few vital perceptions about
their domain.

Next, one of the developers made a
very practical suggestion as an alternative to this whole analysis. If they were chiefly
concerned with the possible overhead of the story attribute, why not do something
about that specifically? They could reduce the total storage capacity for the story
and in addition create a new useCaseDefinition property. They could design it to
lazy load, since much of the time it would never be used. Or they could even design
it as a separate Aggregate, loading it only when needed. With that idea they realized
this could be a good time to break the rule to reference external Aggregates only by
identity. It seemed like a suitable modeling choice to use a direct object reference and
declare its object-relational mapping so as to lazily load it. Perhaps that made sense.

Time for Decisions

This level of analysis can’t continue all day. There needs to be a decision. It’s
not as if going in one direction now would negate the possibility of going
another route later. Open-mindedness is now blocking pragmatism.

Based on all this analysis, currently the team was shying away from splitting Task
from BacklogItem. They couldn’t be certain that splitting it now was worth the extra
effort, the risk of leaving the true invariant unprotected, or allowing users to experi-
ence a possible stale status in the view. The current Aggregate, as they understood it,
was fairly small. Even if their common worst case loaded 50 objects rather than 25, it
would still be a reasonably sized cluster. For now they planned around the specialized
use case definition holder. Doing that was a quick win with lots of benefits. It added
little risk, because it will work now, and it will also work in the future if they decide to
split Task from BacklogItem.

The option to split it in two remained in their hip pocket just in case. After further
experimentation with the current design, running it through performance and load

Chapter 10 AGGREGATES380

tests, as well investigating user acceptance with an eventually consistent status, it
will become clearer which approach is better. The BOTE numbers could prove to be
wrong if in production the Aggregate is larger than imagined. If so, the team will no
doubt split it into two.

If you were a member of the ProjectOvation team, which modeling option
would you have chosen? Don’t shy away from discovery sessions as demon-
strated in the case study. That entire effort would require 30 minutes, and per-
haps as much as 60 minutes at worst. It’s well worth the time to gain deeper
insight into your Core Domain.

Implementation

The more prominent factors summarized and highlighted here can make
implementations more robust but should be investigated more thoroughly in
Entities (5), Value Objects (6), Domain Events (8), Modules (9), Factories (11),
and Repositories (12). Use this amalgamation as a point of reference.

Create a Root Entity with Unique Identity

Model one Entity as the Aggregate Root. Examples of Root Entities in the
preceding modeling efforts are Product, BacklogItem, Release, and
Sprint. Depending on the decision made to split Task from BacklogItem,
Task may also be a Root.

The refined Product model finally led to the declaration of the following
Root Entity:

public class Product extends ConcurrencySafeEntity {
 private Set<ProductBacklogItem> backlogItems;
 private String description;
 private String name;
 private ProductDiscussion productDiscussion;
 private ProductId productId;
 private TenantId tenantId;
 ...
}

Class ConcurrencySafeEntity is a Layer Supertype [Fowler, P of EAA]
used to manage surrogate identity and optimistic concurrency versioning, as
explained in Entities (5).

 IMPLEMENTATION 381

A Set of ProductBacklogItem instances not previously discussed has
been, perhaps mysteriously, added to the Root. This is for a special purpose.
It’s not the same as the BacklogItem collection that was formerly composed
here. It is for the purpose of maintaining a separate ordering of backlog items.

Each Root must be designed with a globally unique identity. The Prod-
uct has been modeled with a Value type named ProductId. That type is the
domain-specific identity, and it is different from the surrogate identity provided
by ConcurrencySafeEntity. How a model-based identity is designed, allo-
cated, and maintained is further explained in Entities (5). The implementation of
ProductRepository has nextIdentity() generate ProductId as a UUID:

public class HibernateProductRepository implements ProductRepository {
 ...
 public ProductId nextIdentity() {
 return new ProductId(java.util.UUID.randomUUID()
.toString().toUpperCase());
 }
 ...
}

Using nextIdentity(), a client Application Service can instantiate a
Product with its globally unique identity:

public class ProductService ... {
 ...
 @Transactional
 public String newProduct(
 String aTenantId, aProductName, aProductDescription) {
 Product product =
 new Product(
 new TenantId(aTenantId),
 this.productRepository.nextIdentity(),
 "My Product",
 "This is the description of my product.",
 new ProductDiscussion(
 new DiscussionDescriptor(
 DiscussionDescriptor.UNDEFINED_ID),
 DiscussionAvailability.NOT_REQUESTED));

 this.productRepository.add(product);

 return product.productId().id();
 }
 ...
}

Chapter 10 AGGREGATES382

The Application Service uses ProductRepository to both generate
an identity and then persist the new Product instance. It returns the plain
String representation of the new ProductId.

Favor Value Object Parts

Choose to model a contained Aggregate part as a Value Object rather than an
Entity whenever possible. A contained part that can be completely replaced, if
its replacement does not cause significant overhead in the model or infrastruc-
ture, is the best candidate.

Our current Product model is designed with two simple attributes and
three Value-typed properties. Both description and name are String
attributes that can be completely replaced. The productId and tenantId
Values are maintained as stable identities; that is, they are never changed after
construction. They support reference by identity rather than direct to object. In
fact, the referenced Tenant Aggregate is not even in the same Bounded Con-
text and thus should be referenced only by identity. The product Discussion
is an eventually consistent Value-typed property. When the Product is first
instantiated, the discussion may be requested but will not exist until sometime
later. It must be created in the Collaboration Context. Once the creation has
been completed in the other Bounded Context, the identity and status are set
on the Product.

There are good reasons why ProductBacklogItem is modeled as an
Entity rather than a Value. As discussed in Value Objects (6), since the backing
database is used via Hibernate, it must model collections of Values as database
entities. Reordering any one of the elements could cause a significant number,
even all, of the ProductBacklogItem instances to be deleted and replaced.
That would tend to cause significant overhead in the infrastructure. As an
Entity, it allows the ordering attribute to be changed across any and all col-
lection elements as often as a product owner requires. However, if we were to
switch from using Hibernate with MySQL to a key-value store, we could easily
change ProductBacklogItem to be a Value type instead. When using a key-
value or document store, Aggregate instances are typically serialized as one
value representation for storage.

Using Law of Demeter and Tell, Don’t Ask

Both Law of Demeter [Appleton, LoD] and Tell, Don’t Ask [PragProg, TDA]
are design principles that can be used when implementing Aggregates, both of
which stress information hiding. Consider the high-level guiding principles to
see how we can benefit:

 IMPLEMENTATION 383

• Law of Demeter: This guideline emphasizes the principle of least knowl-
edge. Think of a client object and another object the client object uses
to execute some system behavior; refer to the second object as a server.
When the client object uses the server object, it should know as little as
possible about the server’s structure. The server’s attributes and proper-
ties—its shape—should remain completely unknown to the client. The
client can ask the server to perform a command that is declared on its
surface interface. However, the client must not reach into the server, ask
the server for some inner part, and then execute a command on the part.
If the client needs a service that is rendered by the server’s inner parts, the
client must not be given access to the inner parts to request that behav-
ior. The server should instead provide only a surface interface and, when
invoked, delegate to the appropriate inner parts to fulfill its interface.

Here’s a basic summary of the Law of Demeter: Any given method on
any object may invoke methods only on the following: (1) itself, (2) any
parameters passed to it, (3) any object it instantiates, (4) self-contained
part objects that it can directly access.

• Tell, Don’t Ask: This guideline simply asserts that objects should be told
what to do. The “Don’t Ask” part of the guideline applies to the client as
follows: A client object should not ask a server object for its contained
parts, then make a decision based on the state it got, and then make the
server object do something. Instead, the client should “Tell” a server what
to do, using a command on the server’s public interface. This guideline
has very similar motivations as Law of Demeter, but Tell, Don’t Ask may
be easier to apply broadly.

Given these guidelines, let’s see how we apply the two design principles to
Product:

public class Product extends ConcurrencySafeEntity {
 ...
 public void reorderFrom(BacklogItemId anId, int anOrdering) {
 for (ProductBacklogItem pbi : this.backlogItems()) {
 pbi.reorderFrom(anId, anOrdering);
 }
 }

 public Set<ProductBacklogItem> backlogItems() {
 return this.backlogItems;
 }
 ...
}

Chapter 10 AGGREGATES384

The Product requires clients to use its method reorderFrom() to exe-
cute a state-modifying command in its contained backlogItems. That is
a good application of the guidelines. Yet, method backlogItems() is also
public. Does this break the principles we are trying to follow by exposing
ProductBacklogItem instances to clients? It does expose the collection, but
clients may use those instances only to query information from them. Because
of the limited public interface of ProductBacklogItem, clients cannot deter-
mine the shape of Product by deep navigation. Clients are given least knowl-
edge. As far as clients are concerned, the returned collection instances may
have been created only for the single operation and may represent no definite
state of Product. Clients may never execute state-altering commands on the
instances of ProductBacklogItem, as its implementation indicates:

public class ProductBacklogItem extends ConcurrencySafeEntity {
 ...
 protected void reorderFrom(BacklogItemId anId, int anOrdering) {
 if (this.backlogItemId().equals(anId)) {
 this.setOrdering(anOrdering);
 } else if (this.ordering() >= anOrdering) {
 this.setOrdering(this.ordering() + 1);
 }
 }
 ...
}

Its only state-modifying behavior is declared as a hidden, protected method.
Thus, clients can’t see or reach this command. For all practical purposes,
only Product can see it and execute the command. Clients may use only the
Product public reorderFrom() command method. When invoked, the
Product delegates to all its internal ProductBacklogItem instances to per-
form the inner modifications.

The implementation of Product limits knowledge about itself, is more eas-
ily tested, and is more maintainable, due to the application of these simple
design principles.

You will need to weigh the competing forces between use of Law of Deme-
ter and Tell, Don’t Ask. Certainly the Law of Demeter approach is much more
restrictive, disallowing all navigation into Aggregate parts beyond the Root.
On the other hand, the use of Tell, Don’t Ask allows for navigation beyond
the Root but does stipulate that modification of the Aggregate state belongs to
the Aggregate, not the client. You may thus find Tell, Don’t Ask to be a more
broadly applicable approach to Aggregate implementation.

 IMPLEMENTATION 385

Optimistic Concurrency

Next, we need to consider where to place the optimistic concurrency version
attribute. When we contemplate the definition of Aggregate, it could seem saf-
est to version only the Root Entity. The Root’s version would be incremented
every time a state-altering command is executed anywhere inside the Aggre-
gate boundary, no matter how deep. Using the running example, Product
would have a version attribute, and when any of its describeAs(), ini-
tiateDiscussion(), rename(), or reorderFrom() command methods
are executed, the version would always be incremented. This would prevent
any other client from simultaneously modifying any attributes or properties
anywhere inside the same Product. Depending on the given Aggregate design,
this may be difficult to manage, and even unnecessary.

Assuming we are using Hibernate, when the Product name or
description is modified, or its productDiscussion is attached, the
version is automatically incremented. That’s a given, because those elements
are directly held by the Root Entity. However, how do we see to it that the
Product version is incremented when any of its backlogItems are reor-
dered? Actually, we can’t, or at least not automatically. Hibernate will not
consider a modification to a ProductBacklogItem part instance as a modi-
fication to the Product itself. To solve this, perhaps we could just change the
Product method reorderFrom(), dirtying some flag or just incrementing
the version on our own:

public class Product extends ConcurrencySafeEntity {
 ...
 public void reorderFrom(BacklogItemId anId, int anOrdering) {
 for (ProductBacklogItem pbi : this.backlogItems()) {
 pbi.reorderFrom(anId, anOrdering);
 }
 this.version(this.version() + 1);
 }
 ...
}

One problem is that this code always dirties the Product, even when a
reordering command actually has no effect. Further, this code leaks infra-
structural concerns into the model, which is a less desirable domain modeling
choice if it can be avoided. What else can be done?

Chapter 10 AGGREGATES386

Cowboy Logic

AJ: “I’m thinkin’ that marriage is a sort of optimistic con-
currency. When a man gets married, he is optimistic
that the gal will never change. And at the same time,
she’s optimistic that he will.”

Actually in the case of the Product and its ProductBacklogItem
instances, it’s possible that we don’t need to modify the Root’s version when
any backlogItems are modified. Since the collected instances are themselves
Entities, they can carry their own optimistic concurrency version. If two cli-
ents reorder any of the same ProductBacklogItem instances, the last client
to commit changes will fail. Admittedly, overlapping reordering would rarely
if ever happen, because it’s usually only the product owner who reorders the
product backlog items.

Versioning all Entity parts doesn’t work in every case. Sometimes the only
way to protect an invariant is to modify the Root version. This can be accom-
plished more easily if we can modify a legitimate property on the Root. In this
case, the Root’s property would always be modified in response to a deeper
part modification, which in turn causes Hibernate to increment the Root’s
version. Recall that this approach was described previously to model the sta-
tus change on BacklogItem when all of its Task instances have been transi-
tioned to zero hours remaining.

However, that approach may not be possible in all cases. If not, we may be
tempted to resort to using hooks provided by the persistence mechanism to
manually dirty the Root when Hibernate indicates a part has been modified.
This becomes problematic. It can usually be made to work only by maintain-
ing bidirectional associations between child parts and the parent Root. The
bidirectional associations allow navigation from a child back to the Root when
Hibernate sends a life cycle event to a specialized listener. Not to be forgotten,
though, is that [Evans] generally discourages bidirectional associations in most
cases. This is especially so if they must be maintained only to deal with opti-
mistic concurrency, which is an infrastructural concern.

Although we don’t want infrastructural concerns to drive modeling deci-
sions, we may be motivated to travel a less painful route. When modifying the
Root becomes very difficult and costly, it could be a strong indication that we
need to break down our Aggregates to just a Root Entity, containing only sim-
ple attributes and Value-typed properties. When our Aggregates consist of only
a Root Entity, the Root is always modified when any part is modified.

 IMPLEMENTATION 387

Finally, it must be acknowledged that the preceding scenarios are not a
problem when an entire Aggregate is persisted as one value and the value itself
prevents concurrency conflict. This approach can be leveraged when using
MongoDB, Riak, Oracle’s Coherence distributed grid, or VMware’s GemFire.
For example, when an Aggregate Root implements the Coherence Version-
able interface and its Repository uses the VersionedPut entry processor,
the Root will always be the single object used for concurrency conflict detec-
tion. Other key-value stores may provide similar conveniences.

Avoid Dependency Injection

Dependency injection of a Repository or Domain Service into an Aggregate
should generally be viewed as harmful. The motivation may be to look up a
dependent object instance from inside the Aggregate. The dependent object
could be another Aggregate, or a number of them. As stated earlier under
“Rule: Reference Other Aggregates by Identity,” preferably dependent objects
are looked up before an Aggregate command method is invoked, and passed
in to it. The use of Disconnected Domain Model is generally a less favorable
approach.

Additionally, in a very high-traffic, high-volume, high-performance domain,
with heavily taxed memory and garbage collection cycles, think of the poten-
tial overhead of injecting Repositories and Domain Service instances into
Aggregates. How many extra object references would that require? Some may
contend that it’s not enough to tax their operational environment, but theirs
is probably not the kind of domain being described here. Still, take great care
not to add unnecessary overhead that could be easily avoided by using other
design principles, such as looking up dependencies before an Aggregate com-
mand method is invoked, and passing them in to it.

This is only meant to warn against injecting Repositories and Domain Ser-
vices into Aggregate instances. Of course, dependency injection is quite suit-
able for many other design situations. For example, it could be quite useful to
inject Repository and Domain Service references into Application Services.

Chapter 10 AGGREGATES388

Wrap-Up

We’ve examined how crucial it is to follow the Aggregate Rules of Thumb
when designing Aggregates.

• You experienced the negative consequences of modeling large-cluster
Aggregates.

• You learned to model true invariants in consistency boundaries.

• You considered the advantages of designing small Aggregates.

• You now know why you should favor referencing other Aggregates by
identity.

• You discovered the importance of using eventual consistency outside the
Aggregate boundary.

• You saw various implementation techniques, including how you might
use Tell, Don’t Ask and Law of Demeter.

If we adhere to the rules, we’ll have consistency where necessary and sup-
port optimally performing and highly scalable systems, all while capturing the
Ubiquitous Language of our business domain in a carefully crafted model.

589

Index

A
Abstract classes, in modules, 338
Abstract Factory pattern, 389
Abstraction, Dependency Inversion Principle

and, 123
Access management, identity and, 91–92
ACID databases, 521
ACL. See Anticorruption Layer (ACL)
Active Record, in Transaction Scripts, 441
ActiveMQ, as messaging middleware, 303
Actor Model, 295
Adapters. See also Hexagonal Architecture

Domain Services use for integration, 280
handling client output types, 529–530
Hexagonal Architecture and, 126–127
Presentation Model as, 519
for REST client implementation, 465–466

Aggregate Root query interface, 516
Aggregate Stores

distributed caches of Data Fabrics as, 164
persistence-oriented repositories and, 418

Aggregate-Oriented Databases, 418
Aggregates. See also A+ES (Aggregates and

Event Sourcing)
Application Services and, 120–121
avoiding dependency Injection, 387
behavioral focus of, 569–570
Context Maps and, 90
cost estimates of memory overhead,

372–373
creating and publishing Events, 287
decision process in designing, 379–380
designing, 573
designing based on usage scenarios,

375–376
Domain Events with Aggregate

characteristics, 294–295
Event Sourcing and, 160–162, 539
eventual consistency, 364–367, 376–378
executives and trackers merged in, 156
factories on Aggregate Root, 391–392
global transactions as reason to break

design rules, 369
implementing, 380

information hiding (Law of Demeter and
Tell, Don’t Ask), 382–384

invariant determination in creating
clusters, 353–355

lack of technical mechanisms as reason to
break design rules, 368–369

local identity of Entities and, 177
mediators publishing internal state of,

514–515
memory consumption and, 374–375
model navigation and, 362–363
motivations for Factory use, 389
as object collections, 203
optimistic concurrency, 385–387
organizing into large clusters, 349–351
organizing into smaller units, 351–353
overview of, 347–348
placing in repository, 401
query performance as reason to break

design rules, 369–370
querying repositories and, 138
references between, 359–362
removing from repository, 409
rendering Data Transfer Objects, 513–514
rendering Domain Payload Objects,

515–516
rendering properties of multiple instances,

512–513
rethinking design, 370–372
review, 388
Root Entity and, 380–382
scalability and distribution of, 363–364
in Scrum Core Domain, 348–349
single-aggregate-instance-in-single-

transaction rule of thumb, 302
size of Bounded Contexts and, 68
small Aggregate design, 355–358
snapshots of, 559–561
as Standard Type, 237
state of, 516–517
storing in Data Fabrics, 164
synchronizing instances in local Bounded

Context, 287

INDEX590

Aggregates (continued)
tactical modeling tools, 29
results of asking whose job it is, 378–379
usage scenarios applied to designing,

373–374
use cases and, 358–359
user interface convenience as reason to

break design rules, 367–368
Value Objects preferred over Entities

when possible, 382
Aggregates and Event Sourcing (A+ES)

advantages of, 539–540
Aggregate design, 573
BLOB persistence, 568–569
Command Handlers, 549–553
concurrency control, 554–558
contract generation and maintenance,

580–581
drawbacks of, 540
event enrichment, 573–575
event immutability, 577
event serializers, 576–577
event sourcing in functional languages,

583
focusing Aggregates on different

behavioral aspects, 569–570
implementing event stores, 561–565
inside Application Services, 541–549
lambda syntax, 553–554
overview of, 539
performance issues, 558–561
Read Model Projections, 570–572
relational persistence, 565–567
structural freedom with, 558
tools and patterns supporting, 576
unit tests and specifications, 582–583
Value Objects and, 577–580

Agile Manifesto, 82
Agile modeling

benefits of DDD, 28
design and, 55

Agile Project Management (APM), 177
Agile Project Management Context

calculation process from, 277
Context Maps and, 104
as Core Domain, 98
integrating with Collaboration Context,

107–110
integrating with Identity and Access

Context, 104–107
modeling Domain Event from, 288–289
modules, 340–343
overview of, 82–84

ProjectOvation as example of, 92
Value Objects and, 239

Ajax Push (Comet), 147
Akka, as messaging middleware, 303
Anemia, 14–16
Anemia-induced memory loss, 16–20
Anemic Domain Model

avoiding, 426
causes of, 14–15
determining health of Domain Model

and, 13
DTOs mimicking, 532
overuse of services resulting in, 268
overview of, 13
presence of anemia everywhere, 15–16
what anemia does to your model, 16–17

Anticorruption Layer (ACL)
Bounded Context relationships, 93–94
built-in, 532
defined, 101
implementing, 469
implementing REST clients and, 463–469
synchronizing team members with

identities and roles, 340–341
APIs (application programming interfaces)

creating products, 482–483
integration basics and, 450–451
opening services and, 510

APM (Agile Project Management), 177.
See also Agile Project Management
Context

Application Layer
composing multiple Bounded Contexts

and, 531–532
creating and naming modules of non-

model components, 343–344
DIP (Dependency Inversion Principle)

and, 124
in Layers Architecture, 119–121
managing transactions in, 433–434

Application programming interfaces. See
APIs (application programming
interfaces)

Application Services, 68
controlling access and use of Aggregates,

541–549
decoupling service output, 528–530
delegation of, 461–462
Domain Services compared with, 267
enterprise component containers,

534–537
example, 522–528
Hexagonal Architecture and, 126-128

 INDEX 591

infrastructure and, 509, 532–534
in Layers Architecture, 120–121
message handler, 293
overview of, 521
passing commands to, 550
performing business operations, 545
reasons for not wanting business logic in,

279–280
registering subscribers to Domain Events,

300–302
transactional service in multiple-

Aggregate design, 352–353
Applications

Bounded Contexts and, 66–68
composing multiple Bounded Contexts,

531–532
dealing with multiple, disparate clients,

517–518
defined, 510
enterprise component containers, 534–537
generating identity of Entities, 175–178
infrastructure and, 532–534
mediators, 514–515
overview of, 509–511
rendering Aggregates, 515–516
rendering domain objects, 512–513
rendering DTOs, 513–514
rendition adapters and user edit handling,

518–521
representing state of Aggregate instances,

516–517
review, 534–537
task management for, 549
use case optimal repository queries, 517
user interface, 512

Architects, benefits of DDD to, 5–6
Architecture

Application Services and, 521
benefits of Aggregates, 540
Bounded Contexts and architectural

issues, 68
Context Maps for, 90
CQRS. See CQRS (Command-Query

Responsibility Segregation)
creating and naming modules of non-

model components, 343–344
data fabric and grid-based distributed

computing. See Data fabrics
decision process (in fictitious interview),

115–119
DIP (Dependency Inversion Principle)

and, 123–125
event driven. See EDA (event-driven

architecture)

Layers Architecture pattern, 119–123
overview of, 113–114
Ports and Adapters. See Hexagonal

Architecture
REST. See REST (Representational State

Transfer)
review, 168–169
SOA (Service-Oriented Architecture),

130–133
Archived logs

finding notification, 315
publishing NotificationLog, 319–323
what they are, 313

Assertions, design-by-contract approach and,
208

Assessment view, for understanding problem
space, 57

Attributes, validating Entities, 208–211
Audit logs, 308
Authentication

deciding where to place technical
components, 272–275

example of where to use a Domain
Service, 269–271

testing authentication service, 281–284
of users, 198

Autonomous services and systems, Domain
Events and, 305–306

B
Behaviors

essential Entity behaviors, 196–200
focusing Aggregates on different

behavioral aspects, 569–570
modeling Domain Events, 291–293
naming object behaviors, 31–32
patching classes with specialized

behaviors, 225–226
repositories and, 430–432

Big Ball of Mud
Bounded Contexts, 93–94
collaboration issues and, 76
failure from not using strategic design,

55
interfacing with, 88–89

Binary JSON (BSON), 426
Bitcask model, Riak, 569
BLOB (binary large object) persistence,

568–569
Boundaries

Context Maps and, 90
exchanging information across system

boundaries, 452–458
modules and, 344

INDEX592

Bounded Context. See also Integrating
Bounded Contexts

abstract business domain with
Subdomains and, 50

Aggregate discovery in, 353–354
Agile Project Management Context and,

82–84
alignment with Subdomains, 57, 60
alignment with technical components,

71–72
assigning identity of Entities, 182–183
bank accounts example, 64
book publishing example, 64–65
business value and, 28
Collaboration Context. See Collaboration

Context
combining DDD and RESTful HTTP and,

137
communicating Domain Events across,

286
communicating to remote, 303
composing multiple, 531–532
context is king, 63
Context Maps. See Context Maps
contextual boundaries and, 344
Core Domain and, 35
encompassing more than Domain Model,

66–68
examples, 72–73
explicit and linguistic nature of, 62
Identity and Access Context, 80–81
integrating with Subdomains, 46
integration between, 49–50, 450–451
linguistic boundaries, 48
mapping, 64
module name identifying, 337–339
naming, 54
overview of, 20
persistence of, 558
repositories and, 402
SaaSOvation case study, 65–66
size of, 68–71
SOA and, 132–133
solution space and, 57
Ubiquitous Language and, 25
whiteboard illustration of Subdomain

and, 51
BSON (binary JSON), 426
Builder pattern, 389
Bundles, OSGi, 336
Business analysts, benefits of Ubiquitous

Language to, 21

Business processes, uses of Domain Services,
268

Business services, 66–68. See also
Applications

Business strategies, 132
Business value, of DDD

clean boundaries around models, 28
domain experts contributing to software

design, 27
improved organization of enterprise

architecture, 28
improved user experience, 27–28
overview of, 25–26
precise and refined understanding of

business, 27
software development, 7–10
strategic and tactical tools, 28–29
useful Domain Models, 26–27

Business-driven architecture, 10
Business-level service, 9–10
BusinessPriority

testing for, 242
Ubiquitous Language and, 240
using Value type as Strategy, 243–244

C
C#

Application Service implemented in, 542
collections in, 403
namespaces, 333, 336–337

Cache
client cache, 316
Data Fabrics providing, 164–165
distributed, 147
Event Streams, 559
named cache strategies in Coherence,

422–424
Calculations

creating service for, 277–280
uses of Domain Services, 268

CalendarEntry instances, Factory
examples, 392–395

Callback, 514–515
Capped Exponential Back-off, 365, 502, 553
Categorized style, CQRS Command

Handlers, 143
Checks pattern language (Cunningham), 211
Classes

implementation classes for repository,
410–411

model in modules, 338
roles and, 200–201

 INDEX 593

Clear-text passwords, 274
Client and query processor, 141
Clients

dealing with multiple, disparate clients,
517–518

justification for domain modeling, 37
producing specific output types for, 528
RESTful HTTP clients, 136, 463–469

Client-server style, using Layers Architecture
for, 115

Clojure, event sourcing in, 583
Clones, of Value Objects, 244
Cockburn, Alistair, 125
Code smells

Aggregate mis-design and, 432
indicating need of a service, 265
type hierarchies and, 439

Coherence (Oracle)
concurrency and, 385–386
distributed processing and, 167
implementing persistence-oriented

repository, 420–425
persistence-oriented repositories and,

418–420
testing persistence-oriented repository,

442–445
Collaboration Context

designing and implementing, 74
facilitating synergistic workspace, 73
Factory Methods on Aggregates and,

391–392
implementing REST client, 463–469
integrating with Agile Project

Management Context, 107–110
integrating with Identity and Access

Context, 101–103
long-running processes (sagas) and,

488–490
mapping three contexts, 95–96
naming Bounded Context and, 54
responsibilities and, 476
Services as Factories and, 397–399
Value Objects preferred over Entities

when possible, 382
Collaboration model, example from failure to

use strategic design, 53–55
Collection-oriented repositories

background of collections and, 403–404
Hibernate implementation of. See

Hibernate repository
mimicking set collections, 404–406
overview of, 402
persistent data store and, 406–407
tools for, 407

Columns, serialization of many Values into,
253–255

Comet (Ajax Push), 147
Command (write) model, in CQRS

client driving command processing, 143
command processors, 143–144
defined, 140
overview of, 144–145

Command Handlers
controlling task management for

applications, 549–553
in CQRS, 143–144

Command objects
designing, 523
designing Command class, 527–528

Command-Query Responsibility Segregation.
See CQRS (Command-Query
Responsibility Segregation)

Command-Query Separation. See CQS
(Command-Query Separation)

Commands
contract generation and maintenance,

580–581
controlling task management for

applications, 549
CQRS, 139
passing to Application Services methods,

550
Communication

Context Maps facilitating inter-team,
88–89

of Domain Events across Bounded
Context, 286

of Events to remote Bounded Contexts,
303

Complexity, Subdomains and, 46
Conceptual Wholeness characteristic, of

Value Objects, 221, 223–226
Concurrency

concurrency control for Event Streams,
554–558

eventual consistency and, 365
persistence mechanisms for dealing with,

350
Conformist relationships

being forced into, 89
Bounded Context, 93
Context Maps and, 460

Consistency
eventual. See Eventual consistency
invariants and, 359
in modeling Aggregates, 349–351, 355
transactional. See Transactional

consistency

INDEX594

Constructors
of Entities, 205–207
of Events, 291
fulfilling dependencies, 543
of Value class, 225
of Value Objects, 244

Containers, for enterprise components,
534–537

Context Maps
Agile Project Management Context and,

104
Bounded Context and, 25
business value from, 28
design approaches, 460
drawing, 89–91
forms of, 449
integrating Agile Project Management

Context with Identity and Access
Context, 104–107

integrating Collaboration Context with
Agile Project Management Context,
107–110

integrating Collaboration Context with
Identity and Access Context, 101–103

integration options in, 50
integration with, 182
iterative refinement of, 97–98
linguistic boundaries, 96
message-based approach to integration,

482
of organizational and integration

patterns, 92–94
overview of, 87
in problem space assessment, 96–97
project and organizational relationships

and, 91–92
review, 111
tool for shaping team judgment, 69
upstream/downstream relationships,

99–100
why essential, 87–89

Continuous Queries, Data Fabrics
supporting, 166

Continuous modeling, benefits of DDD, 28
Contracts

design-by-contract approach and, 208
for Domain Events, 290
generating and maintaining, 580–581

Copy constructors, creating Value Objects,
244

Core Domain
aggregates in, 348–349

Agile Project Management Context as,
98, 239

in assessment of problem and solution
spaces, 58–59

distinguishing between types of domains,
44

eliminating extraneous concepts, 69
focus on, 50–51
investing in what produces biggest

benefit, 10
justification for domain modeling, 35, 37
module of Agile Project Management

Context, 340
problem space in development of, 56–57
for SaaS Ovation Domain Model, 91
Transaction Script approach to modeling,

532
when to add, 47–48
whiteboard illustration of, 52

CQRS (Command-Query Responsibility
Segregation)

client and query processor in, 141
client driving command processing, 143
code smell suggesting use of, 432
command (write) model, 144–145
command processors, 143–144
continuos queries, 166
dealing with inconsistency in query

model, 146–147
Event Sourcing and, 160, 162
event subscriber updating query model,

145–146
eventual consistency and, 366
example of use of, 117
implementing Aggregates and Event

Sourcing (A+ES), 540
overview of, 138–140
query (read) model, 141–142
references by identity and, 363
use case optimal query compared with, 517

CQS (Command-Query Separation)
defined, 139
in multiple-Aggregate design, 352
Query methods, 229
Side-Effect-Free Functions and, 245

CRC (cyclic redundancy check), BLOB data
store and, 569

Critical path, justification for Domain
Modeling, 36

CRUD-based systems
as alternative to Entities, 172
DAOs (Data Access Objects) and, 441

 INDEX 595

Cunningham, Ward, 211–212, 215, 223, 357
Current logs

HTTP GET method and, 313–315
publishing NotificationLog, 319–323

Customers, justification for Domain
Modeling, 37

Customer-Supplier Development, Bounded
Context relationships, 92, 94

Customer-Supplier relationship, 89
Cyclic redundancy check (CRC), BLOB data

store and, 569

D
Dahan, Udi, 203
DAOs (Data Access Objects), 440–441
Data Fabrics

continuous queries, 166
data replication, 164–165
distributed processing, 167–168
domain modeling, 441
event-driven fabrics and Domain Events,

165–166
overview of, 163–164
persistence-oriented repositories and, 418

Data Mapper, use within Domain Model,
441

Data Model Leakage, 249–251
Data replication, 164–165
Data store

BLOB data store and, 569
persistence-oriented repositories and,

418–420
Data Transfer Objects. See DTOs (Data

Transfer Objects)
Data Transformer

dealing with multiple, disparate clients,
517–518

for producing specific output types for
clients, 528

type complexity and, 523
Databases

ACID, 521
functional, 583
many Values backed by database entity,

255–260
MySQL. See MySQL
NoSQL, 249, 418
relational, 543, 565–567

DDD (Domain-Driven Design), getting
started

anemia-induced memory loss and, 16–20
benefits of, 26–29

benefits to architects and domain experts,
5–6

benefits to developers, 4–5
benefits to managers, 6
business value of, 25–26
case studies in presentation of, 38–39
challenges in applying, 29–34
delivering software with true business

value, 7–10
determining Domain Model health, 13–14
justification for domain modeling, 34–37
modeling complex domains in simplest

manner, 10
overview of, 1
reasons for implementing, 6–7
reasons for poor (anemic) domain health,

14–16
requirements for implementing, 2–4
review, 41–42
SaaSOvation case study, 40–41
scorecard for determining if project

qualifies, 10–13
test-first approach, 37–38, 239–243
Ubiquitous Language and, 20–25

DDR (Domain Dependency Resolver), 516
Decision making

Aggregate design and, 379–380
fictitious interview and, 115–119
models providing tools for, 57

Decoupling service output
Application Services and, 528–530
decoupling service from client, 550–551
temporal decoupling, 551

Dedicated style, CQRS Command Handlers,
143

Deep clones, creating Value Objects, 244
Defensive programming, 210
Deferred Validation

of object compositions, 215
of whole objects, 211–212

Delegation
of Aggregate instances to DTO, 513–514
of Application Services, 461–462
self-delegation, 244, 248

DELETE method, HTTP, 135, 458
Dependency Injection

avoiding when implementing Aggregates,
387

fulfilling dependencies, 543
implicit lookup, 533
preventing client awareness of

implementations, 276–277

INDEX596

Dependency Inversion Principle. See DIP
(Dependency Inversion Principle)

Describing characteristic, of Value Objects,
221

Design
agile, 55
with modules, 333–336

Design Patterns and Contracts (Jezequel et.
al.), 208

Design Patterns (Gamma et. al.), 389
Design rules, modules, 334–335
Design-by-contract approach, 208
Developers

benefits of DDD to, 4–5
benefits of Ubiquitous Language, 21
challenges in applying DDD, 30
delivering business value and, 8
how DDD helps in software

development, 9
on level playing field with domain

experts, 7
DIP (Dependency Inversion Principle)

example of use of, 115–116
Hexagonal Architecture and, 126
infrastructure and, 532
layering infrastructure, 411
Layers Architecture pattern and, 123–125
in UML, 510–511

Disconnected Domain Model, 362
Discussion instances, Factory examples,

395–397
Distributed Cache/Grid, data synchronization

and, 147
Distributed Computing

Data Fabrics supporting, 167–168
principles of, 451

Distribution, Aggregate design and, 363–364
Documentation, in developing Ubiquitous

Language, 22
Domain

the big picture, 43–44
mapping domain data to views. See CQRS

(Command-Query Responsibility
Segregation)

modeling complex, 10
problem space and solution space of,

56–58
with Subdomains and Bounded Contexts,

45
Domain Dependency Resolver (DDR), 516
Domain Event

with Aggregate characteristics, 294–295
architectural styles for forwarding stored

Events, 312

assigning unique identifiers to, 156
autonomous services and systems and,

305–306
communicating to remote Bounded

Contexts regarding, 303
contract for, 290
CQRS command model and, 144–145
CQRS query model and, 145–146
creating properties, 290–291
Data Fabrics and, 165–166
de-duplication, 329–331
enrichment, 294, 453, 471, 481, 573–575
Event Store and, 307–312
eventual consistency and, 108
Identity and Access Context and, 80,

104–105
identity of, 295–296
implementing, 318–319
latency tolerances, 306–307
messaging infrastructure consistency and,

303–304
modeling behavioral operations, 291–293
modeling Events, 288–289
naming and publishing, 289
overview of, 285
Published Language used in, 100
publishers and, 297–300
publishing, 121, 296–297
publishing message-based notifications,

324–329
publishing NotificationLog, 319–323
publishing notifications as RESTful

resources, 312–317
publishing notifications using messaging

middleware, 317–318
review, 324–329
subscribers and, 300–302
system autonomy and, 469
tactical modeling tools, 29
tracking changes, 216–217
when to use and why to use, 285–288

Domain Event Publisher, 121, 530
Domain experts

advantages of engaging, 3–4
availability of, 36
benefits of DDD to, 5–6
challenges of applying DDD, 29–30
contribution to software design, 27
in delivering business value, 8
influence on Ubiquitous Language, 21
involving in whiteboard drawing of

domain, 52
on level playing field with developers, 7
in software development, 9

 INDEX 597

Domain Layer
accessing Infrastructure Layer, 121–122
creating and naming modules of non-

model components, 343–344
DIP (Dependency Inversion Principle)

and, 124
in Layers Architecture, 119
unidirectional and downward references

from Infrastructure Layer, 411
Domain model

abstract business domains, 50
analyzing best model for business, 22
applications and, 509
benefit of, 26–27
Bounded Context encompassing more

than, 66–68
characteristics of sound models, 69
clean boundaries around, 28
Data Fabrics and, 441
designing, 191
determining health of, 13–14
Disconnected Domain Model, 362
Factories in, 389–391
Hibernate and, 15–16
justification for, 34–37
modeling complex domains in simplest

manner, 10
module naming conventions and, 339
publishing Domain Events from, 296–297
reducing costs of doing business, 57
SaaS Ovation example, 91
shielding from dependencies, 453
tailoring to specific business areas, 44
Value Objects in development of, 577–580
what anemia does to your model, 16–20
what it is, 4

Domain names, module naming conventions
and, 337

Domain objects
with multiple roles, 200–205
rendering, 512–513

Domain Payload Objects (DPOs)
Presentation Model and, 520
rendering Aggregate instances from,

515–516
Domain Services

Application Services compared with, 120,
521, 526–527

Application Services supporting, 541
avoiding dependency injection, 387
in bad design example, 76
for business priorities, 231
calculation service, 277–280
creating Events, 295

determining need for, 268–272
mini-layer of, 281
model navigation and, 362–363
modeling, 272–275
overview of, 265–267
performing business operations, 545–546
providing Standard Types, 238
registering subscribers to Domain Events,

300–302
review, 284
Separated Interface and, 275–277
testing, 281–284
transformation services, 280
uses of, 268
for validating object compositions,

215–216
what they are and what they are not,

267–268
Don’t repeat yourself (DRY) principle, 6
Double-Dispatch

Domain Payload Objects and, 516
for handling client output types, 530
publishing internal state of Aggregates,

514–515
Downstream models, upstream models

influencing, 99–100
DPOs (Domain Payload Objects)

Presentation Model and, 520
rendering Aggregate instances from,

515–516
Drawings, Context Maps, 89–91, 449
DRY (Don’t repeat yourself) principle, 6
DTO Assemblers, 141, 513
DTOs (Data Transfer Objects)

complexity and, 523
CQRS and, 141
Domain Payload Objects compared with,

515–516
mimicking Anemic Domain Model, 532
Presentation Model and, 520
querying repositories and, 138
Read Model Projections and, 572
rendering from Aggregate instances,

513–514

E
Eager loading strategy, 516
Eclipse, 71
EclipseLink, 407
EDA (event-driven architecture)

event sourcing, 160–163
example of use of, 117–118
integration implementation using,

469–508

INDEX598

EDA (continued)
leveraging eventual consistency, 108
long-running processes (sagas), 153–159
overview of, 147–149
Pipes and Filters and, 149–153

Editing, handling user edits, 518–521
Eiffel programming language, 208
EJB (Enterprise JavaBeans), 534
Encapsulation, power of self-encapsulation,

207
Encrypting passwords, 269–271
Enrichment, of Domain Events, 294, 453,

471, 481, 573–575
Enterprise architecture

Context Maps are not EA diagrams, 90
improving organization of, 28

Enterprise component containers, 534–537
Enterprise JavaBeans (EJB), 534
Enterprise resource planning (ERP)

delivering business value and, 8
Subdomains as modules in, 57

Entities
Aggregate with multiple Entities, 358
application assigning identity, 175–178
Bounded Context assigning identity,

182–183
clustering into Aggregate, 347
constructing, 205–207
creating and assigning identity, 410
developer focus on, 53
domain objects with multiple roles,

200–205
essential behaviors, 196–200
overview of, 171
persistence mechanism assigning identity

of, 179–182
reasons for using, 171–173
refactoring as Value Objects, 357
repositories and, 402
review, 218
Root Entity, 380–382
stability of identity, 188–190
surrogate identities, 186–188
tactical modeling tools, 29
tracking changes, 216–217
uncovering Entities and their properties,

192–196
unique identity of, 156, 173–174
user providing identity, 174–175
validating attributes and properties,

208–211
validating object compositions, 215–216
validating whole objects, 211–215

Value Objects preferred when possible,
219–220, 382

when timing of identity generation
matters, 183–186

Enum (Java)
enum-as-state objects, 261–263
support for Standard Types, 235–238

Equality, of Value Objects, 227–228
ERP (enterprise resource planning)

delivering business value and, 8
Subdomains as modules in, 57

Evans, Eric, 367, 510
Event Sourcing

aggregates and. See Aggregates and Event
Sourcing (A+ES)

applying to DDD, 539
example of use of EDA and, 118
in functional languages, 583
overview of, 160–163
tracking changes and, 217
unit tests and specifications, 582–583

Event Store
Aggregate Event Stream persistence in,

539
BLOB persistence and, 568–569
committing Changes collection to, 547
functional databases and, 583
implementing, 561–565
implementing with relational database,

543
loading events from, 543–545
maintaining for Domain Events, 307–312
messaging infrastructure consistency and,

304
reconstituting Aggregate instance from,

545
tracking changes, 216–217

Event Streams
caching, 559
concurrency control, 554–558
immutability of, 577
overview of, 539–540

Event-based messages, in exchange of media
between Bounded Contexts, 453–454

Event-driven architecture. See EDA (event-
driven architecture)

Event-driven fabrics, 165–166
Events. See also Domain Event

Aggregates as series of, 539
architectural styles for forwarding stored,

312
consuming Events in local and foreign

Bounded Contexts, 287

 INDEX 599

contract generation and maintenance,
580–581

de-duplication, 329–331
enrichment of, 573–575
immutability of, 577
incorporating into Ubiquitous Language,

287
loading from Event Store, 543–545
performing business operations, 545–546
Read Model Projections, 570–572
replicating and publishing, 547–548
serializing, 576–577
size of Bounded Contexts and, 68

Eventual consistency
acceptable update delay, 359
for execution outside Aggregate

boundaries, 364–366
implementing in Aggregate design, 376–378
for multiple Aggregates, 364
technical mechanisms needed for, 368
vs. transactional consistency, 366–367

Execute(), 552
Executive, merging executives and trackers

into Aggregates, 156
Explicit Copy-before-Write, collection-

oriented repositories and, 407

F
F# language, 583
Facade

EJB Session Facades, 534
managing transactions and, 433–435
Presentation Model and, 520–521
services acting as, 68

Factories
on Aggregate Root, 391–392
for application-generated identities, 178
CalendarEntry instances example,

392–395
creating Aggregates, 121
creating Collaborator subclasses,

464–465
Discussion instances example, 395–397
in Domain Model, 389–391
Entity instantiations and, 207
overview of, 389
review, 400
of services, 276–277, 397–399

Factory Method
on Aggregate Root, 391–392
CalendarEntry instances example,

392–395

Design Patterns (Gamma et. al.) and, 389
Ubiquitous Language and, 390

Fallacies of Distributed Computing
(Deutsch), 451

Fanout exchange, RabbitMQ, 317
Fielding, Roy T., 133–134
Filters. See Pipes and Filters
Finder methods, in repository interface, 409
Formats, for information exchange, 452
Fowler, Martin, 131, 164, 229, 276, 441
Functional databases, 583
Function/Entry Processor, 441
Functions, 228
Fundamental Identity pattern, 199–200

G
Gang of Four, 4
GemFire

concurrency and, 385–386
distributed processing and, 167
persistence-oriented repositories and,

418–420
Generic Subdomains

application support in, 509
assessment of problem space and solution

space, 58, 61
defined, 52
Identity and Access Context and, 80
justification for domain modeling, 35
in SaaS Ovation Domain Model, 91

Generic utilities, patching in, 552–553
GET method, HTTP

applying HTTP verbs to resources,
135–136

requesting current logs, 313–315
RESTful notifications, 458

Given-When-Expect, unit tests, 582
Global transactions, as reason to break

Aggregate design rules, 369
Globally unique identifiers. See GUIDs

(globally unique identifiers)
Glossary, for developing Ubiquitous

Language, 22
Google Protocol Buffers, 576–577
Graphical clients, 517
Graphical user interfaces (GUIs), 512
Greenfield development

Bounded Contexts and, 72
Context Maps in, 89

Grid Computing. See Data Fabrics
Guards

Entity assertions, 207

INDEX600

Guards (continued)
as form of validation, 208–211
parameter validity and, 248

GUIDs (globally unique identifiers)
assigning to Aggregate instances, 410
identity creation patterns and, 175
referencing Aggregate instances, 361–362

GUIs (graphical user interfaces), 512

H
HATEOAS (Hypermedia as the Engine of

Application State), 136
Hedhman, Niclas, 357
Helland, Pat, 156, 363–364, 480
Hexagonal Architecture

adapter for RESTful HTTP port, 461
adapters for handling client output types,

529–530
advantages of, 129
EDA (event-driven architecture) and,

147–148
example of use of, 116
how ports and adapters work, 127
JAX-RS example, 128–129
module naming conventions and, 338
outside and inside dimensions of, 126
overview of, 125
ports, 126–127
versatility of, 129–130

Hibernate
enum-as-state objects and, 261–263
many Values backed by database entity,

255–260
many Values backed by join table, 260
optimistic concurrency, 350, 385–386
as persistence mechanism, 179–182, 373
for persistent Domain Models, 15
for persistent Value Objects, 251–253
serializing many Values into single

column, 253–255
surrogate identities and, 186–188
theta joins supported by, 363
transaction management with, 432–437

Hibernate repository
creating and assigning identity, 410
implementation classes, 410–411
implementing methods, 412–415
interfaces for, 407–408
removing Aggregate instances, 409

HTML, 100
HTTP

API availability and, 450–451
methods (GET, PUT, POST, and

DELETE), 313–315, 458

RESTful HTTP, 135–136, 450–451
standardization of, 134

Hypermedia as the Engine of Application
State (HATEOAS), 136

I
IDE

alignment of Bounded Contexts with,
71

Value Objects supporting, 578
Idempotent, HTTP method, 136
Identity

access management and, 91–92
applications generating, 175–178
Bounded Contexts assigning, 182–183
creating Root Entity with unique identity,

380–382
of Domain Events, 294–296
persistence mechanism generating, 179–182
references between Aggregates, 359–361
referencing Aggregates by globally unique

identity, 361–362
segregating types by, 439
stability of, 188–190
surrogate identities, 186–188
uniqueness of, 173–174
user providing, 174–175
when timing of creation matters,

183–186
Identity and Access Context

application support in, 509
centralizing security and permissions,

80–81
mini-layer of Domain Services and, 281
role assignments via, 200, 469–471, 480
service providing translation to

Collaboration Context, 398
sessionProvider bean, 435–437
uncovering Entities and Entity properties,

192
Identity module, authentication service

placed in, 273
Immutability

creating explicitly named immutable
types, 577–578

of Events, 291, 577
instantiation not a guarantee of, 222
Side-Effect-Free Functions and, 228–229
testing for, 241
using immutable Values results in less

responsibility, 232–233
of Value Objects, 221–223

Implementation classes, 275–276, 410–411
Implementations, technical, 273

 INDEX 601

Implementing
Aggregates and Event Sourcing (A+ES),

540, 561–565
Anticorruption Layer (ACL), 469
Collaboration Context, 74
Domain Events, 318–319
event stores, 543, 561–565
eventual consistency, 376–378
queues, 312
Value Objects, 243–248

Implementing Aggregates
avoiding dependency injection, 387
creating Root Entity, 380–382
information hiding (Law of Demeter and

Tell, Don’t Ask), 382–384
optimistic concurrency, 385–387
overview of, 380
Value Objects preferred over Entities

when possible, 382
Implementing DDD

reasons for, 6–7
requirements for, 2–4

Implementing repositories
classes, 410–411
Coherence in, 420–425
Hibernate in, 407–415
methods, 412–415
MongoDB in, 425–430
testing with in-memory implementations,

445–447
TopLink in, 416–417

Implementing RESTful resources
Bounded Contexts and, 459–462
HTTP clients, 463–469
HTTP servers, 135–136

Implicit copy-on-read, track changes
mechanism for persistence, 406–407

Implicit copy-on-write, track changes
mechanism for persistence, 406–407

Information
exchanging across system boundaries,

452–458
hiding (Law of Demeter and Tell, Don’t

Ask), 382–384
Infrastructure Layer

applications and, 532–534
creating and naming modules of non-

model components, 343–344
DIP (Dependency Inversion Principle)

and, 122–124
Domain Layer accessing, 121–122
housing technical implementations in

module in, 273

in Layers Architecture, 119
unidirectional and downward references

to Domain Layer, 411
In-memory editions, of repositories, 445–447
Instantiation, not a guarantee of

immutability, 222
Integrating Bounded Contexts

Agile Project Management Context and,
109

DDD integrations and, 182
distributed systems and, 451
Domain Services and, 280
exchanging information across system

boundaries, 452–458
feed based notifications, 105
implementing RESTful clients, 463–469
implementing RESTful resources,

459–462
integration basics, 450–451
integration between Bounded Contexts,

49–50
integration using RESTful resources,

458–459
long-running processes (sagas) and,

481–493
message-based approach to, 469
overview of, 449
process state machines and time-out

trackers, 493–503
responsibilities and, 476–481
review, 508
Services as Factories and, 397
sophistication of design, 503–507
staying informed about product owners

and team members, 469–476
with Subdomains, 46
technical characteristics of integration,

100
Value Objects and, 219–220
when messaging or system is unavailable,

507–508
Integration

Agile Project Management Context with
Identity and Access Context, 104–107

Collaboration Context with Agile Project
Management Context, 107–110

Collaboration Context with Identity and
Access Context, 101–103

integration patterns, 92–94
of Value Objects, 232–233

IntelliJ IDEA, 71
Intention Revealing Interface, compliance

with Ubiquitous Language, 197

INDEX602

Interfaces
for Hibernate repository, 407–408
Intention Revealing Interface, 197
reusable, 338
Separated Interface. See Separated

Interface
user interfaces. See User Interface Layer

Intermediate formats, for information
exchange, 452

Invariants
in Aggregate design, 371
consistency and, 359
determining true invariants when

determining Aggregate clusters,
353–355

Entities and, 205
Inversion-of-control containers, Spring,

434–437
Iterative modeling, benefits of DDD, 28
Iterative refinement, of Context Maps,

97–98

J
Java

collections in, 403–404
enum support for Standard Types, 235–238
Java 8 Jigsaw modules, 336
MBean standard, 328
naming implementation classes, 275–276
packages, 333, 336–337
UUID generator, 176

JavaBeans, 15–16, 245–246
JDBC, auto-incrementing sequences, 182
Jigsaw modules, Java 7, 336
JMS, publishing Events to messaging

infrastructure, 547
Join table, many Values backed by, 260
JSON

binary JSON format in MongoDB, 426
client integrators and, 462–463
format for information exchange, 452
published language and, 100

K
King, Gavin, 262
Knowledge

centralizing, 7–8
Principle of least knowledge, 383

L
Lambda syntax, 553–554
Latency

long-running processes (sagas) and, 159

low latency trading systems, 540
tolerances for Domain Events, 306–307

Law of Demeter, 382–384
Layer Supertype

managing surrogate identities and
optimistic concurrency versioning, 380

many Values backed by database entity,
255–260

surrogate identities and, 187–188
Layers, 511
Layers Architecture

Application Layer, 119–121
architectural styles and, 511
client-server styles and, 115
creating modules, 343–344
DIP (Dependency Inversion Principle)

and, 123–125
Domain Layer, 121–122
Infrastructure Layer, 122–123
naming modules, 338
overview of, 119
strict and relaxed, 120
User Interface Layer, 119

Lazy loading
Disconnected Domain Model and, 362
Domain Payload Objects and, 516
performance issues due to, 375

Learning curve, for DDD, 2
Legacy systems, integration with, 159
Linguistic boundaries

Bounded Context and, 48
Context Maps and, 96

Linguistics, as driver in DDD, 71
Liskov Substitution Principle (LSP), 438–439
Load balancing, 550–551
Logs

HTTP GET method and, 313–315
patching in, 552–553

Long-running processes
avoiding responsibility, 481–493
designing, 155
example of use of EDA, 118
executives and trackers and, 156–159
overview of, 153
stepping through, 154–156

Lookups. See Standard Types
LSP (Liskov Substitution Principle), 438–439

M
Managers, benefits of DDD to, 6
Martin, Robert C., 123
MassTransit, messaging middleware, 303
MBean standard, Java, 328

 INDEX 603

Meaningful Whole pattern, 223
Measurement characteristic, of Value

Objects, 221
Media types in use, 453–458, 462, 467
Media types, resource URIs and, 104–105
Mediator pattern

Domain Payload Objects and, 516
for handling client output types, 530
loose coupling in Layers Architecture, 120
Presentation Model using, 520
publishing internal state of Aggregates,

514–515
Memoization, 583
Memory consumption, Aggregate design and,

374–375
Message-based approach, to Integrating

Bounded Contexts
long-running processes (sagas) and

avoiding responsibility, 481–493
overview of, 469
responsibilities and, 476–481
staying informed about product owners

and team members, 469–476
when messaging or system is unavailable,

507–508
Message-oriented middleware (MoM)

published notifications, 317–318
SOA services and, 267

Messaging
Command Handlers and, 143
dealing with multiple, disparate clients,

517
Event messages, 295
infrastructure consistency and, 303–304
in Infrastructure Layer, 122
integration basics, 450
message handlers, 550
publishing Events to messaging

infrastructure, 547
Meyer, Bertrand, 139, 208, 229
Midlevel developer, benefits of DDD to, 4–5
Mini-layer of Domain Services, 281
Mission statements, Ubiquitous Language

in, 27
Models/modeling

Actor Model, 295
Aggregate models, 348
collaboration model, 53–55
continuous modeling as benefit of DDD,

28
CQRS command model and, 144–145
CQRS query model and, 145–146
Data Model Leakage, 249–251

Domain Event behaviors, 291–293
Domain Events, 288–289
Domain Model. See Domain model
Domain Services, 272–275
identities and, 194
navigation and, 362–363
Presentation Model. See Presentation

Model
pull vs. push models, 312
tactical modeling, 29, 75
tactical modeling vs. strategic modeling,

34
Transaction Script approach to, 532
understanding invariants in consistency

boundaries, 353–355
Unified Modeling Language. See UML

(Unified Modeling Language)
upstream models influencing

downstream, 99–100
Model-View-Presenter (Dolphin), 518
Modules

Agile Project Management Context and,
110, 340–343

application support in, 510
avoiding miniature Bounded Contexts, 70
composing multiple Bounded Contexts,

531
contextual boundaries and, 344
designing with, 333–336
drawing Context Maps and, 90
hiding technical classes in, 122
housing technical implementations in

Infrastructure Layer, 273
naming conventions, 336–339
of non-model components, 343–344
overview of, 333
publisher in, 297
review, 344
separating Subdomain from Core

Domain, 48
size of Bounded Contexts and, 68
Subdomains as ERP modules, 57
Table module in Transaction Scripts, 441

MoM (Message-oriented middleware)
published notifications, 317–318
SOA services and, 267

MongoDB
concurrency and, 385–386
implementing persistence-oriented

repository, 425–430
persistence-oriented repositories and,

418–420
MSMQ, 547

INDEX604

Multichannel publishing, 325
Mutability Values, 221
Mutate(), 552
MySQL

auto-incrementing sequences, 180–182
BLOB persistence, 568–569
relational persistence, 565–567
serialization of many Values into single

column, 254–255
Value Object persistence, 251–253

N
Namespaces, C#, 333, 336–337
Naming conventions

Bounded Context model, 337–339
Domain Events, 289
modules, 336–337

.NET, implementation of Protocol Buffers,
576–577

Newbie or junior developer, benefits of DDD
to, 4

NoSQL databases, 249, 418
Notifications

event-carrying, 473–476
published using messaging middleware,

317–318
publishing as RESTful resources, 312–317
publishing message-based notifications,

324–329
publishing the NotificationLog,

319–323
as RESTful resource, 453–457

NServiceBus, 303

O
Object oriented languages, 403
Object schizophrenia, 202–203
Object-relational mapping. See ORM (object-

relational mapping)
Objects

domain objects with multiple roles,
200–205

rendering domain objects, 512–513
validating object compositions, 215–216
validating whole Entities, 211–215
Value Objects. See Value Objects

Observer pattern
data synchronization and, 147
loose coupling in Layers Architecture, 120
multiparty activities, 364
publishing Domain Events with, 296

OHS. See Open Host Service (OHS)
Onion architecture. See Hexagonal

Architecture

Open Host Service (OHS)
Bounded Context relationships, 93–94
Context Maps and, 460
defined, 100
Layers Architecture pattern and, 120
service-oriented components in Bounded

Context, 67
Open Session In View (OSIV), 516
Optimistic concurrency

Hibernate providing, 350
Layer Supertype and, 380
usage scenarios applied to Aggregate

design, 373–374
version attribute and, 385–387

Oracle
auto-incrementing sequences, 179–180
Coherence. See Coherence
TopLink. See TopLink

Organizational patterns, 92–94
Organizational relationships, Context Maps

and, 91–92
ORM (object-relational mapping)

enum-as-state objects, 261–263
Event Sourcing contrasted with, 162
Hibernate tool and. See Hibernate
many Values backed by database entity,

255–260
many Values backed by join table, 260
persistence and, 249
serialization of many Values into single

column, 253–255
single Value Objects, 251–253

OSGi bundles, 336
OSIV (Open Session In View), 516

P
Packages, Java, 333, 336–337
Parallel processing, 159
Partner activities (Helland), 156
Partnerships

Bounded Context relationships, 92
reference by identity forming, 364

Passwords
encrypting, 269–271
testing authentication service, 281–284

Performance issues, Aggregates and Event
Sourcing (A+ES) and, 558–561

Permissions, centralizing in Identity and
Access Context, 80–81

Persistence
Aggregates and Event Sourcing (A+ES)

and, 558
BLOB persistence, 568–569
in Infrastructure Layer, 122

 INDEX 605

Read Model Projections, 570–572
relational persistence, 565–567
repositories and, 401
of Value Objects, 248–249

Persistence mechanisms
for dealing with concurrency, 350
generating identity of Entities, 179–182
using single transaction to manage

consistency, 354
Persistence stores

collection-oriented repositories and,
406–407

generating identity of Entities, 178
messaging infrastructure consistency and,

304
Value Objects and, 248–250

Persistence-oriented repositories
Coherence implementation of, 420–425
MongoDB in implementation of, 425–430
overview of, 418–420

Pipes and Filters
basic characteristics of, 150–151
EDA and, 118
how it works, 149–150
long-running processes (sagas) and,

153–159
message-based systems and, 149
messaging approach, 151–152

PL. See Published Language (PL)
Polling models, 312
Ports and Adapters architecture. See

Hexagonal Architecture
POST method, HTTP, 135, 458
Power Types, modeling Standard Types as, 233
Presentation Model

Layers Architecture pattern and, 120
rendition adapters and user edit handling,

518–521
state representation of domain objects, 516

Primitive types, Application Services and,
522–523

Principle of least knowledge, 383
Priorities, business, 230–231
Problem space

assessing for Context Map, 96–97
of domains, 56–58

Process state machines, 493–503
Processes, long-running. See Long-running

processes
Product owners

responsibilities and, 476–481
staying informed about, 469–476

Project relationships, Context Maps and,
91–92

Properties
Domain Events, 290–291
Entities, 208–211
Value Objects, 224–225

Protocol Buffers, 452, 576–577
Published Language (PL)

Bounded Context relationships, 93–94
combining DDD and RESTful HTTP,

137
defined, 100
information exchange and, 453
serializing Events as, 580

Publishers, Domain Events, 297–300
Publishing Domain Events

from Domain Model, 296–297
message-based notifications, 324–329
notifications published as RESTful

resources, 312–317
notifications published using messaging

middleware, 317–318
overview of, 289
publishing the NotificationLog,

319–323
Publish-Subscribe pattern

event notification and, 303
integration basics, 450
multiparty activities, 364
overview of, 296–297
publisher, 297–300
pull vs. push models, 312
subscriber, 300–302

Pull model, Publish-Subscribe pattern, 312
Push model, Publish-Subscribe pattern, 312
put(), Coherence cache and, 424
PUT method, HTTP

applying HTTP verbs to resources, 135
RESTful notifications and, 458

Q
Quantifying characteristic, of Value Objects,

221
Queries

Aggregate Root query interface, 516
Command-Query Responsibility

Segregation. See CQRS (Command-
Query Responsibility Segregation)

Command-Query Separation principle.
See CQS (Command-Query
Separation)

continuous queries, 166
query performance as reason to break

Aggregate design rules, 369–370
repositories and, 138
use case optimal query, 432, 517

INDEX606

Query (read) model, in CQRS
client driving command processing, 143
command processors, 143–144
dealing with inconsistency in, 146–147
defined, 140
event subscriber updating query model,

145–146
overview of, 141–142
Query methods, 229

Queues, implementing, 312

R
RabbitMQ

abstraction layer around, 327
Event de-duplication, 329–331
Fanout exchange, 317
messaging middleware, 303
notifications from, 471–472
publishing Events, 547

Random number generators, for unique
identifiers, 175

Read (query) model, in CQRS. See Query
(read) model, in CQRS

Read Model Projections
persistence and, 570–572
use in Aggregate design, 573

Realization view, Bounded Contexts and, 57
Reference by identity

between Aggregates, 359–361
preferred by globally unique identity,

361–362
scalability and distribution of Aggregates

and, 363–364
Relational databases

for implementing Event Store, 543
persistence and, 565–567

Relational persistence, 565–567
Relationships, Context Maps and, 90
Relaxed Layers Architecture, 120
Remote associations, reference by identity

forming, 364
Remote procedure calls. See RPCs (remote

procedure calls)
remove(), Coherence cache and, 424
Rendition adapters, 518–521
Replaceability, of Value Objects, 226–227
Replication

data replication, 164–165
event replication, 547–548

Repositories
accessing repository instances in

Infrastructure Layer, 121–122
additional behaviors, 430–432

Anticorruption Layer (ACL) implemented
via, 101, 469

avoiding dependency injection and, 387
in bad design example, 76
Coherence in implementation of, 420–425
collection-oriented, 402–407
Data Access Objects compared with,

440–441
Hibernate in implementation of, 407–415
identity generation and, 178
managing transactions, 432–437
model navigation and, 362–363
MongoDB in implementation of, 425–430
not accessing from Aggregate instances,

266, 279
obtaining Aggregate instances from, 121
overview of, 401–402
persistence-oriented, 418–420
querying, 138
reading Aggregate instances and

delegating to DTO assemblers,
513–514

review, 448
testing, 129, 441–445
testing with in-memory implementations,

445–447
TopLink in implementation of, 416–417
type hierarchies in, 437–440

Responsibility Layers, refactoring model and,
77

Representational State Transfer. See REST
(Representational State Transfer)

Responsibilities. See also Roles
avoiding, 481–493
integrating Bounded Contexts and,

476–481
of objects, 200
Single Responsibility principle, 270–271
team members and product owners and,

476–481
using immutable Values results in less

responsibility, 232–233
REST (Representational State Transfer)

as architectural style, 133–134
creating/naming modules of non-model

components, 343–344
DDD and, 136–138
Event Store feeding event notifications to

clients, 307–308
in exchange of media between Bounded

Contexts, 453–454
Hexagonal Architecture supporting,

130–132

 INDEX 607

HTTP clients, 136
HTTP servers, 135–136
implementing RESTful clients, 463–469
implementing RESTful resources,

459–462
Integrating Bounded Contexts, 458–459
integration basics, 450
publishing Events as RESTful resources,

312–317
service-oriented components in Bounded

Context, 67
state representation of domain objects,

516
RIA (rich Internet applications)

dealing with multiple, disparate clients,
517

user interfaces and, 512
Riak

Bitcask model, 569
concurrency and, 385–386
persistence-oriented repositories and,

418–420
Rich Internet applications (RIA)

dealing with multiple, disparate clients,
517

user interfaces and, 512
Roles

assigning, 469–471
domain objects with multiple, 200–205
domain-specific, 463
event-carrying notification for, 473–476
overview of, 200
responsibilities and, 476–481

Root Entity
many Aggregates containing only single

Entity, 357
optimistic concurrency and, 385–386
requires globally unique identity, 177

RPCs (remote procedure calls)
autonomous services and systems,

305–306
integration basics, 450–451
Open Host Service as, 100
system integration and, 103
system-level, 267

Ruby language
effecting class namespaces, 333
patching classes with specialized

behaviors, 225–226

S
SaaS (software as a service), 40–41
Sagas. See Long-running processes

save()
Coherence cache and, 423
persistence-oriented repositories and, 418

Save-like Repository method, 418
Scalability

Aggregate design and, 363–364
limitations of single large-cluster

Aggregate, 356
with Domain Events, 287, 316, 322

Scrum
Aggregate models and, 348
agile projects and, 82–83

Security
Application Services and, 521
centralizing in Identity and Access

Context, 80–81
leveraging Spring Security, 525–526

Security patterns, 199–200
Segregated Core

creating, 77–78
team use of, 97

Self-delegation, 244, 248
Self-encapsulation, 248
Senior developer, benefits of DDD to, 5
Separate Ways, Bounded Context

relationships, 93–94
Separated Interface

implementing REST client and, 464
modeling Domain Services and, 272
notification services and, 318
technical implementations and, 275–277

Serialization
of command objects, 550
conversion between bytes and strongly

typed Event objects, 563–564
of events, 576–577
information exchange and, 452, 457–458
of many Values into single column,

253–255
Servers, RESTful HTTP servers, 135–136
Service Factories

fulfilling dependencies, 543
look up repository, 533–534

Service-oriented ambiguity (Fowler), 131
Service-Oriented Architecture. See SOA

(Service-Oriented Architecture)
Services

Application Services. See Application
Services

authentication services, 281–284
autonomous, 305–306
business services, 66–68
code smells indicating need for, 265

INDEX608

Services (continued)
creating, 277–280
design principles for, 130
Domain Services. See Domain Services
factories of, 276–277, 397–399
notification services, 318
OHS. See Open Host Service (OHS)
opening, 510
SaaS (software as a service), 40–41
size of Bounded Contexts and, 68
SOA. See SOA (Service-Oriented

Architecture)
stateless, 268
tactical modeling tools, 29
transactional services, 352–353
Web services, 67

Session
as alternative to repository, 402
Hibernate, 407

Session Facades, EJB (Enterprise JavaBeans),
534

Set collections, repositories mimicking,
404–406

Shallow copies, creating Value Objects, 244
Shared Kernel

Bounded Context relationships, 92
combining DDD and RESTful HTTP, 137
Context Maps and, 460
deploying Value Objects in Commands

and/or in Events, 580
information exchange and, 452–453

Side-Effect-Free Functions
Event behaviors and, 294
Java enum and, 236
modeling on identities, 194
Value Objects and, 228–232

Simplification, benefits of DDD, 10
Single Responsibility, 143, 152, 270, 309
size(), for counting collection instances,

430–431
Smart UI Anti-Pattern, 67
Snapshots, of Aggregate state, 161–162,

559–561
SOA (Service-Oriented Architecture)

design principles for services, 130
example of use of, 117
goals of DDD and, 132–133
Hexagonal Architecture supporting,

130–131
how DDD helps, 10
services in, 267
SOA manifesto and, 131–132

SOAP (Simple Object Access Protocol)
APIs made available with, 450
Hexagonal Architecture supporting,

130–132
service-oriented components in Bounded

Context, 67–68
Software

domain experts contributing to design, 27
with true business value, 9–10

Software as a service (SaaS), 40–41
Solution space

assessment of, 59–60
of domains, 56–58

Sophistication of design, integrating Bounded
Contexts, 503–507

Specifications, 582–583
Spring

enterprise component containers,
534–537

inversion-of-control containers, 434–437
leveraging Spring Security, 525–526

Standard Types
Agile Project Management Context and,

108
consuming remote, 233
expressed as Values, 234–235, 238–239
Java enum for supporting, 235–238
type hierarchies and, 439–440

State
mediators publishing internal state of

Aggregates, 514–515
persisting enum-as-state objects, 261–263
representing state of Aggregate instances,

516–517
State pattern

disadvantages of, 237
Standard Type as, 236–237, 440

Stateless services, 268
Static methods, Domain Services as

alternative to, 278
Storage. See Repositories
Story points, as alternative to estimating task

hours, 375
Strategic business initiatives, 9–10
Strategic design

aligning Subdomains with Bounded
Contexts, 57

alignment with the DDD community,
55–56

big picture of, 44–52
cutting through complexity, 46
essential nature of, 53–56

 INDEX 609

focusing on Core Domain, 50-52
Generic Subdomains, 52
identifying multiple Subdomains in one

Bounded Context, 49–52, 57–58
problem and solution space, 56–57
Supporting Subdomains, 52
understanding Bounded Contexts, 62–72
understanding Subdomains, 44–50
using to refactor problem code, 76–79
vision of Core Domain, 58
when dealing with a Big Ball of Mud, 55,

57
when doing greenfield development,

72–73
with Context Maps, 50, 95–110

Strategic tools, benefits of DDD, 28–29
Strategy pattern

DDR (Domain Dependency Resolver)
and, 516

using Value type as, 243–244
Strict Layers Architecture, 120
Structural freedom, with Aggregates and

Event Sourcing (A+ES), 558
Subdomains

abstract business domain and, 50
alignment with Bounded Contexts, 57, 60
distinguishing between types of domains,

44
in e-Commerce example, 48–50
how to use, 44–45
mapping three contexts, 96
modules and, 48
problem space and, 56
publishing Events to, 302
separating by functionality, 46
Supporting Subdomains. See Supporting

Subdomains
tactical modeling and, 35
types of, 52
whiteboard illustration of, 51

Subscribers
Domain Events and, 300–302
publishing notifications using messaging

middleware, 317
Supervising Controller and Passive View

(Fowler), 518
Supporting Subdomains

application support in, 509
assessment of problem space and solution

space, 58
Context Maps and, 98
defined, 52

investing in what produces biggest
benefit, 10

justification for Domain Models, 35
for SaaS Ovation Domain Model, 91

Surrogate identities
Entities and, 186–188
Layer Supertype and, 255–256, 380
when persisting Value Objects, 255–260

Symmetry style. See Hexagonal Architecture
Systems. See also Applications

Bounded Context encompassing more
than Domain Model, 66–68

Context Maps are not system topology
diagrams, 90

decoupling service from client, 550
exchanging information across system

boundaries, 452–458

T
Table Data Gateway, in Transaction Scripts,

441
Table Module, in Transaction Scripts, 441
Tactical modeling

strategic modeling compared with, 34
Ubiquitous Language and, 75

Tactical patterns, 36
Tactical tools, 10, 28–29
Task hours, used to estimate of memory

overhead of Aggregate type, 372–373
Team members

benefits of asking whose job it is in
Aggregate design, 378–379

responsibilities and, 476–481
staying informed about, 469–476

Teams
estimating Aggregate type memory

overhead using in task hours, 372–373
facilitating inter-team communication,

88
single team for single Bounded Context,

72
Ubiquitous Language as shared language

of, 20–21
Technical components

alignment with Bounded Contexts, 71–72
housing in Infrastructure Layer, 273
reasons to break Aggregate design rules,

368–369
Tell, Don’t Ask, information hiding in

Aggregate implementation, 382–384
Temporal decoupling, between clients and

Application Service, 551

INDEX610

Tenants
comparing with Users, 192–193
subscribing organizations registered as,

348
UUID applied to identifying, 194

Tests/testing
Domain Services, 281–284
Hexagonal Architecture and, 129
repositories, 441–445
repositories with in-memory

implementations, 445–447
test-first approach, 37–38
unit tests, 582–583
Value Objects, 239–243

Textual descriptions, at User Interface Layer,
236

Theta joins, 363
Tilkov, Stefan, 133
Time-demands, challenges of applying DDD,

29
Timelessness, Hexagonal Architecture

supporting, 125
Timeline, justification for domain modeling,

36
Time-out trackers, integrating Bounded

Contexts, 493–503
Time-sensitivity

of identity generation, 183–186
long-running processes (sagas) and, 158

TopLink
implementing repository for, 416–417
Unit of Work in, 407

Track changes
to Entities, 216–217
persistence mechanisms and, 406–407

Trackers, merging executives and trackers
into Aggregates, 156

Train wreck, 76
Transaction Script

justification for domain modeling, 36–37
modeling Core Domain, 532
patterns used in, 441

Transactional consistency
Aggregates and, 364
vs. eventual consistency, 366–367
invariants and, 353–354

Transactional consistency boundary. See
Aggregates

Transactions, managing in repositories,
432–437

Transformation services, 280
Transformations, uses of Domain Services,

268

Translations, drawing Context Maps and, 90
Translators

Domain Services use for integration, 280
implementing REST client and, 465–467

Two-party activities, 364
Types

checking static types, 578
creating explicitly named immutable

types, 577–578
hierarchies in repositories, 437–440
information exchange and type safety,

452–453
primitive, 522–523
standard. See Standard Types

U
Ubiquitous Language

BusinessPriority, 240
collaboration and, 53–54, 74
designing Domain Model and, 191
domain experts and developers jointly

developing, 9
Entities properties and, 197–198
Event-centric approach to Aggregate

design and, 540
Factory Method and, 390
Intention Revealing Interface complying

with, 197
module naming conventions and, 338
naming object behaviors and, 31–32
principles, 24–25
process of producing, 3
refining, 23–24
Scrum terminology as starting point, 348
Shared Kernel and, 92
as shared team language, 20–21
SOA causing fragmentation of, 132
solution space and, 59
techniques for capturing, 22–23

UML (Unified Modeling Language)
of Application Services, 533
DIP (Dependency Inversion Principle)

representation in, 510–511
techniques for developing Ubiquitous

Language, 22
Unique identity, of Entities, 173–174
Unit of Work

as alternative to repository, 402
for handling transactions, 354
in TopLink, 407

Unit tests, 582–583
Universally unique identifiers. See UUIDs

(universally unique identifiers)

 INDEX 611

Upstream models, influencing downstream,
99–100

URIs
integration of Bounded Contexts using

RESTful resources, 458–459
media types and, 104–105
resources and, 135

Usage scenarios
adjusting Aggregate design, 375–376
applying to Aggregate design, 373–374

Use case optimal queries, 517
Use case optimal query, 432
Use cases

Aggregate design and, 358–359
Create a Product use case, 481–482
determining whose job it is, 367

User Entity
comparing with Tenants, 192–193
UUID applied to identifying, 195–196

User Interface Layer
creating and naming modules of non-

model components, 343–344
DIP (Dependency Inversion Principle)

and, 124
Facade business method invoked by, 433
in Layers Architecture, 119
textual descriptions and, 236
views in Bounded Context, 67

User interfaces
dealing with multiple, disparate clients,

517–518
eventual consistency and, 377–378
mediators publishing internal state of

Aggregates, 514–515
overview of, 512
reasons to break Aggregate design rules,

367–368
rendering Aggregate instances from

Domain Payload Objects, 515–516
rendering data transfer objects from

Aggregate instances, 513–514
rendering domain objects, 512–513
rendition adapters and user edit handling,

518–521
representing state of Aggregate instances,

516–517
views impacted by references by identity,

363
Web user interfaces, 512

User pattern, security patterns, 199–200
User-aggregate affinity rule, 369
Users

handling user edits, 518–521

improvements in user experience due to
DDD, 27–28

providing identity of Entities, 174–175
Utilities, patching in, 552–553
UUIDs (universally unique identifiers)

assigning to processes, 156
assigning to Tenants, 194–195
assigning to Users, 195–196
creating Aggregate Root Entity with

unique identity, 381
identity creation patterns and, 175–177

V
Validating Entities

attributes and properties, 208–211
object compositions, 215–216
whole objects, 211–215

Value Objects
Agile Project Management Context and,

108–109
backed by database entity (ORM),

255–260
backed by join table (ORM), 260
characteristics of Values, 221
clustering into Aggregates, 347
conceptual wholeness of, 223–226
Data Model Leakage and, 249–251
developer focus on, 53
in development of Domain Models,

577–580
distinguishing Entities from, 172
enum-as-state objects (ORM), 261–263
equality of, 227–228
immutability of, 221–223
implementing, 243–248
integration based on prioritizing or

minimalism, 232–233
Java enum for supporting Standard Type,

235–238
measuring, quantifying, describing, 221
not everything is a Value Object, 232
overview of, 219–220
persisting, 248–249
preferred over Entities when possible, 382
refactoring Entities as, 357
replaceability of, 226–227
review, 263
serialization of many Values into single

column (ORM), 253–255
side-effect-free behavior, 228–232
single Value Objects (ORM), 251–253
Standard Types expressed as, 234–235,

238–239

INDEX612

Value Objects (continued)
tactical modeling tools, 29
testing, 239–243
unique identity and, 173
use case optimal query, 432, 517

Verbs, HTTP, 135
version attribute, optimistic concurrency

and, 385–387
View Model, state representation of domain

objects, 516
Views, mapping domain data to. See CQRS

(Command-Query Responsibility
Segregation)

Vision documents, Ubiquitous Language in, 27
Visual Basic, historical influence on Anemic

Domain Model, 14–15
VMware GemFire. See GemFire

W
Web protocols, 134–135
Web services, service-oriented components in

Bounded Context, 67

Web user interfaces, 512
Webber, Jim, 317
Whiteboard

drawing Context Maps, 90
illustration of Core Domain, 52
illustration of Subdomain, 51

Whole Value pattern, 223, 357
Williams, Wes, 163

X
XML

published language and, 100
standard intermediate formats for

information exchange, 452

Y
YAGNI ("You Ain’t Gonna Need It")

principle, 514
Young, Greg, 539

Z
Zero-argument constructors, 248

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Guide to This Book
	Chapter 10: Aggregates
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

