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FOREWORD

Foreword from the First Edition

When I first got a summer job at MIT’s Project MAC almost 30 years ago, I was
delighted to be able to work with the DEC PDP-10 computer, which was more fun
to program in assembly language than any other computer, bar none, because of
its rich yet tractable set of instructions for performing bit tests, bit masking, field
manipulation, and operations on integers. Though the PDP-10 has not been manu-
factured for quite some years, there remains a thriving cult of enthusiasts who
keep old PDP-10 hardware running and who run old PDP-10 software—entire
operating systems and their applications—by using personal computers to simu-
late the PDP-10 instruction set. They even write new software; there is now at
least one Web site with pages that are served up by a simulated PDP-10. (Come
on, stop laughing—it’s no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research
memo called HAKMEM, a bizarre and eclectic potpourri of technical trivia.1 The
subject matter ranged from electrical circuits to number theory, but what intrigued
me most was its small catalog of ingenious little programming tricks. Each such
gem would typically describe some plausible yet unusual operation on integers or
bit strings (such as counting the 1-bits in a word) that could easily be programmed
using either a longish fixed sequence of machine instructions or a loop, and then
show how the same thing might be done much more cleverly, using just four or
three or two carefully chosen instructions whose interactions are not at all obvious
until explained or fathomed. For me, devouring these little programming nuggets
was like eating peanuts, or rather bonbons—I just couldn’t stop—and there was a
certain richness to them, a certain intellectual depth, elegance, even poetry.

“Surely,” I thought, “there must be more of these,” and indeed over the years
I collected, and in some cases discovered, a few more. “There ought to be a book
of them.”

I was genuinely thrilled when I saw Hank Warren’s manuscript. He has sys-
tematically collected these little programming tricks, organized them thematically,
and explained them clearly. While some of them may be described in terms of
machine instructions, this is not a book only for assembly language programmers.
The subject matter is basic structural relationships among integers and bit strings

1. Why “HAKMEM”? Short for “hacks memo”; one 36-bit PDP-10 word could hold six 6-bit
characters, so a lot of the names PDP-10 hackers worked with were limited to six characters.
We were used to glancing at a six-character abbreviated name and instantly decoding the
contractions. So naming the memo “HAKMEM” made sense at the time—at least to the
hackers.
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in a computer and efficient techniques for performing useful operations on them.
These techniques are just as useful in the C or Java programming languages as
they are in assembly language.

Many books on algorithms and data structures teach complicated techniques
for sorting and searching, for maintaining hash tables and binary trees, for deal-
ing with records and pointers. They overlook what can be done with very tiny
pieces of data—bits and arrays of bits. It is amazing what can be done with just
binary addition and subtraction and maybe some bitwise operations; the fact that
the carry chain allows a single bit to affect all the bits to its left makes addition a
peculiarly powerful data manipulation operation in ways that are not widely
appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands,
and it’s terrific. If you write optimizing compilers or high-performance code, you
must read this book. You otherwise might not use this bag of tricks every single
day—but if you find yourself stuck in some situation where you apparently need
to loop over the bits in a word, or to perform some operation on integers and it just
seems harder to code than it ought, or you really need the inner loop of some inte-
ger or bit-fiddly computation to run twice as fast, then this is the place to look. Or
maybe you’ll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts

April 2002
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PREFACE

Caveat Emptor: The cost of software
maintenance increases with the square of

the programmer’s creativity.

First Law of Programmer Creativity,
Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over
many years. Most of them will work only on computers that represent integers in
two’s-complement form. Although a 32-bit machine is assumed when the register
length is relevant, most of the tricks are easily adapted to machines with other reg-
ister sizes.

This book does not deal with large tricks such as sophisticated sorting and
compiler optimization techniques. Rather, it deals with small tricks that usually
involve individual computer words or instructions, such as counting the number
of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical
instructions.

It is assumed throughout that integer overflow interrupts have been masked
off, so they cannot occur. C, Fortran, and even Java programs run in this environ-
ment, but Pascal and Ada users beware!

The presentation is informal. Proofs are given only when the algorithm is not
obvious, and sometimes not even then. The methods use computer arithmetic,
“floor” functions, mixtures of arithmetic and logical operations, and so on. Proofs
in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have
been executed. This is why they are given in a real programming language, even
though, like every computer language, it has some ugly features. C is used for the
high-level language because it is widely known, it allows the straightforward mix-
ture of integer and bit-string operations, and C compilers that produce high-quality
object code are available.

Occasionally, machine language is used, employing a three-address format,
mainly for ease of readability. The assembly language used is that of a fictitious
machine that is representative of today’s RISC computers.

Branch-free code is favored, because on many computers, branches slow
down instruction fetching and inhibit executing instructions in parallel. Another
problem with branches is that they can inhibit compiler optimizations such as
instruction scheduling, commoning, and register allocation. That is, the compiler
may be more effective at these optimizations with a program that consists of a few
large basic blocks rather than many small ones.
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The code sequences also tend to favor small immediate values, comparisons
to zero (rather than to some other number), and instruction-level parallelism.
Although much of the code would become more concise by using table lookups
(from memory), this is not often mentioned. This is because loads are becoming
more expensive relative to arithmetic instructions, and the table lookup methods
are often not very interesting (although they are often practical). But there are
exceptional cases.

Finally, I should mention that the term “hacker” in the title is meant in the
original sense of an aficionado of computers—someone who enjoys making com-
puters do new things, or do old things in a new and clever way. The hacker is usu-
ally quite good at his craft, but may very well not be a professional computer
programmer or designer. The hacker’s work may be useful or may be just a game.
As an example of the latter, more than one determined hacker has written a pro-
gram which, when executed, writes out an exact copy of itself. 1 This is the sense
in which we use the term “hacker.” If you’re looking for tips on how to break into
someone else’s computer, you won’t find them here.
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1. One such program, written in C, is: 
main(){char*p="main(){char*p=%c%s%c;(void)printf(p,34,p,34,10);}%c";(void)printf(p,34,p,34,10);}

2 3 17 257 65537;

See www.HackersDelight.org
for additional material related
to this book.

http://www.HackersDelight.org
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 CHAPTER  2

BASICS

2–1  Manipulating Rightmost Bits
Some of the formulas in this section find application in later chapters.

Use the following formula to turn off the rightmost 1-bit in a word, producing
0 if none (e.g., 01011000  01010000):

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply
the formula followed by a 0-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing
all 1’s if none (e.g., 10100111  10101111):

Use the following formula to turn off the trailing 1’s in a word, producing x if
none (e.g., 10100111  10100000):

This can be used to determine if an unsigned integer is of the form , 0, or all
1’s: apply the formula followed by a 0-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if
none (e.g., 10101000  10101111):

Use the following formula to create a word with a single 1-bit at the position
of the rightmost 0-bit in x, producing 0 if none (e.g., 10100111  00001000):

Use the following formula to create a word with a single 0-bit at the position
of the rightmost 1-bit in x, producing all 1’s if none (e.g., 1010 1000 
11110111):

x x 1–( )&

x x 1+( ) | 

x x 1+( )&

2n 1–

x x 1–( ) | 

x¬ x 1+( )&

x¬ x 1–( ) | 
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Use one of the following formulas to create a word with 1’s at the positions of
the trailing 0’s in x, and 0’s elsewhere, producing 0 if none (e.g., 01011000 
00000111):

The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the

trailing 1’s in x, and 1’s elsewhere, producing all 1’s if none (e.g., 10100111 
11111000):

Use the following formula to isolate the rightmost 1-bit, producing 0 if none
(e.g., 01011000  00001000):

Use the following formula to create a word with 1’s at the positions of the
rightmost 1-bit and the trailing 0’s in x, producing all 1’s if no 1-bit, and the inte-
ger 1 if no trailing 0’s (e.g., 01011000  00001111):

Use the following formula to create a word with 1’s at the positions of the
rightmost 0-bit and the trailing 1’s in x, producing all 1’s if no 0-bit, and the inte-
ger 1 if no trailing 1’s (e.g., 01010111  00001111):

Use either of the following formulas to turn off the rightmost contiguous
string of 1’s (e.g., 01011100 ==> 01000000) [Wood]:

These can be used to determine if a nonnegative integer is of the form  for
some : apply the formula followed by a 0-test on the result.

De Morgan’s Laws Extended
The logical identities known as De Morgan’s laws can be thought of as distribut-
ing, or “multiplying in,” the not sign. This idea can be extended to apply to the
expressions of this section, and a few more, as shown here. (The first two are De
Morgan’s laws.)

x¬ x 1–( ),   or&

x x– | ( ),   or¬

x x–&( ) 1–

x¬ x 1+( ) | 

x x–( )&

x x 1–( )

x x 1+( )

x x 1–( ) | ( ) 1+( ) x&( ),   or

x x–&( ) x+( ) x&

2j 2k–
j k 0
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As an example of the application of these formulas,  =
 =  = 

Right-to-Left Computability Test
There is a simple test to determine whether or not a given function can be imple-
mented with a sequence of add’s, subtract’s, and’s, or’s, and not’s [War]. We can,
of course, expand the list with other instructions that can be composed from the
basic list, such as shift left by a fixed amount (which is equivalent to a sequence of
add’s), or multiply. However, we exclude instructions that cannot be composed
from the list. The test is contained in the following theorem.

THEOREM. A function mapping words to words can be implemented with
word-parallel add, subtract, and, or, and not instructions if and only if
each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking
only at the rightmost bit of each input operand. Then, try to compute the next bit
to the left by looking only at the rightmost two bits of each input operand, and
continue in this way. If you are successful in this, then the function can be com-
puted with a sequence of add’s, and’s, and so on. If the function cannot be com-
puted in this right-to-left manner, then it cannot be implemented with a sequence
of such instructions.

The interesting part of this is the latter statement, and it is simply the contra-
positive of the observation that the functions add, subtract, and, or, and not can all
be computed in the right-to-left manner, so any combination of them must have
this property.

To see the “if” part of the theorem, we need a construction that is a little awk-
ward to explain. We illustrate it with a specific example. Suppose that a function
of two variables x and y has the right-to-left computability property, and suppose
that bit 2 of the result r is given by

(1)

x y&( )¬ x¬ y¬ | =

x y | ( )¬ x¬ y¬&=
x 1+( )¬ x¬ 1–=
x 1–( )¬ x¬ 1+=

x–¬ x 1–=
x y( )¬ x¬ y x y= =
x y( )¬ x¬ y x y= =
x y+( )¬ x¬ y–=
x y–( )¬ x¬ y+=

x x 1+( )– | ( )¬
x¬ x 1+( )–¬& x¬ x 1+( ) 1–( )& x¬ x& 0.=

r2 x2 x0 y1&( ). | =
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We number bits from right to left, 0 to 31. Because bit 2 of the result is a function
of bits at and to the right of bit 2 of the input operands, bit 2 of the result is “right-
to-left computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as
shown below. Also, add a mask that isolates bit 2.

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (follow-
ing Equation (1)), and and the result with the mask (row 4 above). The result is a
word of all 0’s except for the desired result bit in position 2. Perform similar com-
putations for the other bits of the result, or the 32 resulting words together, and the
result is the desired function.

This construction does not yield an efficient program; rather, it merely shows
that it can be done with instructions in the basic list.

Using the theorem, we immediately see that there is no sequence of such
instructions that turns off the leftmost 1-bit in a word, because to see if a certain
1-bit should be turned off, we must look to the left to see if it is the leftmost one.
Similarly, there can be no such sequence for performing a right shift, or a rotate
shift, or a left shift by a variable amount, or for counting the number of trailing 0’s
in a word (to count trailing 0’s, the rightmost bit of the result will be 1 if there are
an odd number of trailing 0’s, and we must look to the left of the rightmost posi-
tion to determine that).

A Novel Application
An application of the sort of bit twiddling discussed above is the problem of find-
ing the next higher number after a given number that has the same number of 1-
bits. You might very well wonder why anyone would want to compute that. It has
application where bit strings are used to represent subsets. The possible members
of a set are listed in a linear array, and a subset is represented by a word or
sequence of words in which bit i is on if member i is in the subset. Set unions are
computed by the logical or of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily
done if you have a function that maps a given subset to the next higher number
(interpreting the subset string as an integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK,
item 175].1 Given a word x that represents a subset, the idea is to find the

1. A variation of this algorithm appears in [H&S] sec. 7.6.7.

x31 x30 … x3 x2 x1 x0

x29 x28 … x1 x0 0 0
y30 y29 … y2 y1 y0 0
0 0 … 0 1 0 0
0 0 … 0 r2 0 0



2–1 MANIPULATING RIGHTMOST BITS 15

rightmost contiguous group of 1’s in x and the following 0’s, and “increment” that
quantity to the next value that has the same number of 1’s. For example, the string
xxx0 1111 0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111.
The algorithm first identifies the “smallest” 1-bit in x, with  giving
0000 0001 0000. This is added to x, giving r = xxx1 0000 0000. The 1-bit here is
one bit of the result. For the other bits, we need to produce a right-adjusted string
of  1’s, where n is the size of the rightmost group of 1’s in x. This can be
done by first forming the exclusive or of r and x, which gives 0001 1111 0000 in
our example.

This has two too many 1’s and needs to be right-adjusted. This can be accom-
plished by dividing it by s, which right-adjusts it (s is a power of 2), and shifting it
right two more positions to discard the two unwanted bits. The final result is the
or of this and r.

In computer algebra notation, the result is y in

(2)

A complete C procedure is given in Figure 2–1. It executes in seven basic
RISC instructions, one of which is division. (Do not use this procedure with

 that causes division by 0.)
If division is slow but you have a fast way to compute the number of trailing

zeros function ntz(x), the number of leading zeros function nlz(x), or population
count (pop(x) is the number of 1-bits in x), then the last line of Equation (2) can be
replaced with one of the following formulas. (The first two methods can fail on a
machine that has modulo 32 shifts.)

unsigned snoob(unsigned x) {
   unsigned smallest, ripple, ones;

           // x = xxx0 1111 0000
   smallest = x & -x;     //     0000 0001 0000
   ripple = x + smallest;    //     xxx1 0000 0000
   ones = x ^ ripple;     //     0001 1111 0000
   ones = (ones >> 2)/smallest; //     0000 0000 0111
   return ripple | ones;    //     xxx1 0000 0111
}

FIGURE 2–1.  Next higher number with same number of 1-bits.

s x x,–&=

n 1–

s x x–&
r s x+
y r x r( ) 2>>

u( ) s÷u( ) | 

x 0;=

y r x r( ) 2 ntz x( )+( )>>
u( ) | 

y r x r( ) 33 nlz s( )–( )>>
u( ) | 

y r 1 pop x r( ) 2–( )<<( ) 1–( ) | 



16 BASICS 2–2

2–2  Addition Combined with Logical Operations
We assume the reader is familiar with the elementary identities of ordinary alge-
bra and Boolean algebra. Below is a selection of similar identities involving addi-
tion and subtraction combined with logical operations.

Equation (d) can be applied to itself repeatedly, giving 
and so on. Similarly, from (e) we have  So we can add or sub-
tract any constant using only the two forms of complementation.

Equation (f) is the dual of (j), where (j) is the well-known relation that shows
how to build a subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation
(g) forms a sum by first computing the sum with carries ignored  and
then adding in the carries. Equation (h) is simply modifying the addition oper-
ands so that the combination  never occurs at any bit position; it is replaced
with

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.

m.
n.
o.
p.
q.
r.
s.
t.
u.
v.

x– x¬ 1+=
x 1–( )¬=

x¬ x– 1–=
x¬– x 1+=
x–¬ x 1–=

x y+ x y¬– 1–=
x y( ) 2 x y&( )+=
x y | ( ) x y&( )+=

2 x y | ( ) x y( )–=
x y– x y¬ 1+ +=

x y( ) 2 x¬ y&( )–=
x y¬&( ) x¬ y&( )–=

2 x y¬&( ) x y( )–=
x y x y | ( ) x y&( )–=

x y¬& x y | ( ) y–=
x x y&( )–=

x y–( )¬ y x– 1–=
x¬ y+=

x y x y&( ) x y | ( ) 1––=
x y&( ) x y | ( )¬+=

x y | x y¬&( ) y+=
x y& x¬ y | ( ) x¬–=

x¬–¬– x 2,+=
x–¬–¬ x 2.–=

x y( ),

0 1+
1 0.+
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It can be shown that in the ordinary addition of binary numbers with each bit
independently equally likely to be 0 or 1, a carry occurs at each position with
probability about 0.5. However, for an adder built by preconditioning the inputs
using (g), the probability is about 0.25. This observation is probably not of value
in building an adder, because for that purpose the important characteristic is the
maximum number of logic circuits the carry must pass through, and using (g)
reduces the number of stages the carry propagates through by only one.

Equations (k) and (l) are duals of (g) and (h), for subtraction. That is, (k) has
the interpretation of first forming the difference ignoring the borrows 
and then subtracting the borrows. Similarly, Equation (l) is simply modifying the
subtraction operands so that the combination  never occurs at any bit posi-
tion; it is replaced with 

Equation (n) shows how to implement exclusive or in only three instructions
on a basic RISC. Using only and-or-not logic requires four instructions

 Similarly, (u) and (v) show how to implement and and
or in three other elementary instructions, whereas using DeMorgan’s laws
requires four.

2–3  Inequalities among Logical and Arithmetic Expressions
Inequalities among binary logical expressions whose values are interpreted as
unsigned integers are nearly trivial to derive. Here are two examples:

These can be derived from a list of all binary logical operations, shown in Table 2–1.
Let  and  represent two columns in Table 2–1. If for each row

in which  is 1,  also is 1, then for all  
Clearly, this extends to word-parallel logical operations. One can easily read off
such relations (most of which are trivial) as , and so on.
Furthermore, if two columns have a row in which one entry is 0 and the other is 1,

TABLE 2–1.  THE 16 BINARY LOGICAL OPERATIONS

x y

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x y( ),

1 1–
0 0.–

x y | ( ) x y&( )¬&( ).

x y( ) x y | ( )   and,u

x y&( ) x y( ).u

f x y,( ) g x y,( )
f x y,( ) g x y,( ) x y,( ), f x y,( ) g x y,( ).u

x y&( ) x x y¬ | ( )u u

0 x
y

&

x
y

¬
& x x

¬
y

&

y x
y

x
y

 | x
y

 | 
(

)
¬ x

y

y
¬ x

y
¬

 | x
¬

x
¬

y
 | x

y
&

(
)

¬ 1
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and another row in which the entries are 1 and 0, respectively, then no inequality
relation exists between the corresponding logical expressions. So the question of
whether or not  is completely and easily solved for all binary logi-
cal functions f and g.

Use caution when manipulating these relations. For example, for ordinary
arithmetic, if  and  then  but this inference is not valid if
“+” is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more
interesting. Below is a small selection.

The proofs of these are quite simple, except possibly for the relation 
 By  we mean the absolute value of  which can be computed

within the domain of unsigned numbers as  This relation
can be proven by induction on the length of x and y (the proof is a little easier if
you extend them on the left rather than on the right).

2–4 Absolute Value Function
If your machine does not have an instruction for computing the absolute value,
this computation can usually be done in three or four branch-free instructions.
First, compute  and then one of the following:

By “ ” we mean, of course,  or 
If you have  fast multiplication by a variable whose value is ±1, the following

will do:

f x y,( ) g x y,( )u

x y+ a z x, z y+ a,

a.

b.
c.
d.

e.

x y | ( ) max x y,( )u

x y&( ) min x y,( )u

x y | ( ) x y   if the addition does not overflow+u

x y | ( ) x y   if the addition overflows+>u

x y– x y( )u

x y– u

x y( ). x y– x y,–
max x y,( ) min x y,( ).–

y x 31,>>
s

abs
x y( ) y–
x y+( ) y

x 2x y&( )–

nabs
y x y( )–
y x–( ) y

2x y&( ) x–

2x x x+ x 1.<<

x 30>>
s( ) 1 | ( ) x*
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2–5  Average of Two Integers
The following formula can be used to compute the average of two unsigned inte-
gers,  without causing overflow [Dietz]:

(3)

The formula below computes  for unsigned integers:

To compute the same quantities (“floor and ceiling averages”) for signed inte-
gers, use the same formulas, but with the unsigned shift replaced with a signed
shift.

For signed integers, one might also want the average with the division by 2
rounded toward 0. Computing this “truncated average” (without causing overflow)
is a little more difficult. It can be done by computing the floor average and then
correcting it. The correction is to add 1 if, arithmetically,  is negative and odd.
But  is negative if and only if the result of (3), with the unsigned shift
replaced with a signed shift, is negative. This leads to the following method (seven
instructions on the basic RISC, after commoning the subexpression ):

Some common special cases can be done more efficiently. If x and y are signed
integers and known to be nonnegative, then the average can be computed as simply

 The sum can overflow, but the overflow bit is retained in the register
that holds the sum, so that the unsigned shift moves the overflow bit to the proper
position and supplies a zero sign bit.

If x and y are unsigned integers and  or if x and y are signed integers and
 (signed comparison), then the average is given by  These

are floor averages, for example, the average of –1 and 0 is –1.

2–6  Sign Extension
By “sign extension,” we mean to consider a certain bit position in a word to be the
sign bit, and we wish to propagate that to the left, ignoring any other bits present.
The standard way to do this is with shift left logical followed by shift right signed.
However, if these instructions are slow or nonexistent on your machine, it can be

x y+( ) 2⁄ ,

x y&( ) x y( ) 1>>
u( )+

x y+( ) 2⁄

x y | ( ) x y( ) 1>>
u( )–

x y+
x y+

x y

t x y&( ) x y( ) 1>>
s( );+

t t 31>>
u( ) x y( )&( )+

x y+( ) 1.>>
u

x y,u

x y x y x–( ) 1>>
u( ).+
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done with one of the following, where we illustrate by propagating bit position 7
to the left:

The “+” above can also be “–” or “ .” The second formula is particularly useful if
you know that the unwanted high-order bits are all 0’s, because then the and can
be omitted.

2–7  Shift Right Signed from Unsigned
If your machine does not have the shift right signed instruction, it can be com-
puted using the formulas shown below. The first formula is from [GM], and the
second is based on the same idea. These formulas hold for  and, if the
machine has mod-64 shifts, the last holds for  The last formula holds
for any n if by “holds” we mean “treats the shift amount to the same modulus as
does the logical shift.”

When n is a variable, each formula requires five or six instructions on a
basic RISC.

In the first two formulas, an alternative for the expression  is

If n is a constant, the first two formulas require only three instructions on
many machines. If  the function can be done in two instructions with

2–8 Sign Function
The sign, or signum, function is defined by

x 0x00000080+( ) 0x000000FF&( ) 0x00000080–
x 0x000000FF&( ) 0x00000080( ) 0x00000080–

x 0x0000007F&( ) x 0x00000080&( )–

0 n 31
0 n 63.

x 0x80000000+( ) n>>
u( ) 0x80000000 n>>

u( )–

t 0x80000000 n;>>
u x n>>

u( ) t( ) t–

t x 0x80000000&( ) n;>>
u x n>>

u( ) t t+( )–

x n>>
u( ) x 31>>

u( )– 31 n–<<( ) | 

t x 31>>
u( );– x t( ) n>>

u( ) t

0x80000000 n>>
u

1 31 n.–<<

n 31,=
x 31>>

u( ).–

sign x( )
1– x 0,<,
0 x 0,=,
1 x 0.>,

=
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It can be calculated with four instructions on most machines [Hop]:

If you don’t have shift right signed, then use the substitute noted at the end of
Section 2–7, giving the following nicely symmetric formula (five instructions):

Comparison predicate instructions permit a three-instruction solution, with
either

(4)

Finally, we note that the formula  almost works; it
fails only for 

2–9 Three-Valued Compare Function
The three-valued compare function, a slight generalization of the sign function, is
defined by

There are both signed and unsigned versions, and unless otherwise specified, this
section applies to both.

Comparison predicate instructions permit a three-instruction solution, an
obvious generalization of Equations in (4):

A solution for unsigned integers on PowerPC is shown below [CWG]. On
this machine, “carry” is “not borrow.”

   subf  R5,Ry,Rx  # R5 <-- Rx - Ry.
   subfc R6,Rx,Ry   # R6 <-- Ry - Rx, set carry.
   subfe R7,Ry,Rx   # R7 <-- Rx - Ry + carry, set carry.
   subfe R8,R7,R5   # R8 <-- R5 - R7 + carry, (set carry).

x 31>>
s( ) x– 31>>

u( ) | 

x 31>>
u( )– x– 31>>

u( ) | 

x 0>( ) x 0<( ),  or–
x 0( ) x 0( ).–

x– 31>>
u( ) x 31>>

u( )–
x 231.–=

cmp x y,( )
1– x y,<,
0 x y,=,
1 x y.>,

=

x y>( ) x y<( ),   or–
x y( ) x y( ).–
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If limited to the instructions of the basic RISC, there does not seem to be any
particularly good way to compute this function. The comparison predicates 

 and so on, require about five instructions (see Section 2–12), leading to a
solution in about 12 instructions (using a small amount of commonality in com-
puting  and ). On the basic RISC it’s probably preferable to use com-
pares and branches (six instructions executed worst case if compares can be
commoned).

2–10 Transfer of Sign Function
The transfer of sign function, called ISIGN in Fortran, is defined by

This function can be calculated (modulo ) with four instructions on most
machines:

2–11  Decoding a “Zero Means 2n” Field
Sometimes a 0 or negative value does not make much sense for a quantity, so it is
encoded in an n-bit field with a 0 value being understood to mean , and a non-
zero value having its normal binary interpretation. An example is the length field
of PowerPC’s load string word immediate (lswi) instruction, which occupies
five bits. It is not useful to have an instruction that loads zero bytes when the
length is an immediate quantity, but it is definitely useful to be able to load 32
bytes. The length field could be encoded with values from 0 to 31 denoting
lengths from 1 to 32, but the “zero means 32” convention results in simpler logic
when the processor must also support a corresponding instruction with a variable
(in-register) length that employs straight binary encoding (e.g., PowerPC’s lswx
instruction).

It is trivial to encode an integer in the range 1 to  into the “zero means ”
encoding—simply mask the integer with  To do the decoding without a
test-and-branch is not quite as simple, but here are some possibilities, illustrated
for a 3-bit field. They all require three instructions, not counting possible loads of
constants.

x y,<
x y,

x y< x y>

ISIGN x y,( ) abs x( )    y 0,,
abs x( )– y 0.<,

=

232

t y 31;>>
s

ISIGN x y,( ) abs x( ) t( ) t–=
 abs x( ) t+( ) t=

t x y( ) 31;>>
s

ISIGN x y,( ) x t( ) t–=
x t+( ) t=

2n

2n 2n

2n 1.–
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2–12  Comparison Predicates
A “comparison predicate” is a function that compares two quantities, producing a
single bit result of 1 if the comparison is true, and 0 if the comparison is false.
Below we show branch-free expressions to evaluate the result into the sign posi-
tion. To produce the 1/0 value used by some languages (e.g., C), follow the code
with a shift right of 31. To produce the  result used by some other languages
(e.g., Basic), follow the code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and
our model RISC, which have comparison instructions that compute many of these
predicates directly, placing a 0/1-valued result in a general purpose register.

A machine instruction that computes the negative of the absolute value is
handy here. We show this function as “nabs.” Unlike absolute value, it is well
defined in that it never overflows. Machines that do not have nabs, but have the
more usual abs, can use  for  If x is the maximum negative

x 1–( ) 7&( ) 1+

x 7+( ) 7&( ) 1+
x 1–( ) 8– | ( ) 9+

x 7+( ) 8– | ( ) 9+

x 7+( ) 8 | ( ) 7–
x 1–( ) 8&( ) x+

8 x– 7&( )–

x– 8– | ( )–

1– 0⁄

x y:= abs x y–( ) 1–
abs x y– 0x80000000+( )
nlz x y–( ) 26<<

nlz x y–( ) 5>>
u( )–

x y– y x– | ( )¬
x y: nabs x y–( )

nlz x y–( ) 32–

x y– y x– | 

x y:< x y–( ) x y( ) x y–( ) x( )&[ ]

x y¬&( ) x y( ) x y–( )&( ) | 
nabs doz y x,( )( )                             [GSO]

x y: x y¬ | ( ) x y( ) y x–( )¬ | ( )&

x y( ) 1>>
s( ) x y¬&( )                    [GSO]+

x y:<u x¬ y&( ) x y( ) x y–( )&( ) | 

x¬ y&( ) x¬ y | ( ) x y–( )&( ) | 

x y:u x¬ y | ( ) x y( ) y x–( )¬ | ( )&

abs x( )– nabs x( ).
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number, this overflows twice, but the result is correct. (We assume that the absolute
value and the negation of the maximum negative number is itself.) Because some
machines have neither abs nor nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz”
function (difference or zero) is described on page 41. For   and so on,
interchange x and y in the formulas for   and so on. The add of
0x8000 0000 can be replaced with any instruction that inverts the high-order bit
(in x, y, or ).

Another class of formulas can be derived from the observation that the predi-
cate  is given by the sign of  and the subtraction in that expres-
sion cannot overflow. The result can be fixed up by subtracting 1 in the cases in
which the shifts discard essential information, as follows:

These execute in seven instructions on most machines (six if it has and not),
which is no better than what we have above (five to seven instructions, depending
upon the fullness of the set of logic instructions).

The formulas above involving nlz are due to [Shep], and his formula for the
 predicate is particularly useful, because a minor variation of it gets the

predicate evaluated to a 1/0-valued result with only three instructions:

Signed comparisons to 0 are frequent enough to deserve special mention.
There are some formulas for these, mostly derived directly from the above. Again,
the result is in the sign position.

x y,> x y,
x y,< x y,

x y–

x y< x 2⁄ y 2⁄ ,–

x y:<

x y:<u
x 1>>

s( ) y 1>>
s( )– x¬ y 1& &( )–

x 1>>
u( ) y 1>>

u( )– x¬ y 1& &( )–

x y=

nlz x y–( ) 5.>>
u

x 0:= abs x( ) 1–

abs x 0x80000000+( )
nlz x( ) 26<<

nlz x( ) 5>>
u( )–

x x– | ( )¬

x¬ x 1–( )&
x 0: nabs x( )

nlz x( ) 32–

x x– | 

x 1>>
u( ) x               [CWG]–
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Signed comparisons can be obtained from their unsigned counterparts by
biasing the signed operands upward by  and interpreting the results as
unsigned integers. The reverse transformation also works.2 Thus, we have

Similar relations hold for , , and so on. In these relations, one can use addi-
tion, subtraction, or exclusive or with  They are all equivalent, as they simply
invert the sign bit. An instruction like the basic RISC’s add immediate shifted is
useful to avoid loading the constant 

Another way to get signed comparisons from unsigned is based on the fact
that if x and y have the same sign, then  whereas if they have oppo-
site signs, then  [Lamp]. Again, the reverse transformation also
works, so we have

where  and  are the sign bits of x and y, respectively. Similar relations hold
for , , and so on.

Using either of these devices enables computing all the usual comparison
predicates other than = and  in terms of any one of them, with at most three addi-
tional instructions on most machines. For example, let us take  as primitive,
because it is one of the simplest to implement (it is the carry bit from ). Then
the other predicates can be obtained as follows:

2. This is useful to get unsigned comparisons in Java, which lacks unsigned integers.

x 0:< x
x 0: x x 1–( ) | 

x x–¬ | 
x 0:> x nabs x( )

x 1>>
s( ) x–

x– x¬&
x 0: x¬

231

x y< x 231+ y 231+<u ,=

x y<u x 231– y 231.–<=

u

231.

231.

x y< x y,<u=
x y< x y>u=

x y< x y<u( ) x31 y31 and=

x y<u x y<( ) x31 y31,=

x31 y31u

x yu

y x–

x y< y 231+ x 231+u( )¬=

x y x 231+ y 231+u=
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Comparison Predicates from the Carry Bit
If the machine can easily deliver the carry bit into a general purpose register, this
may permit concise code for some of the comparison predicates. Below are  sev-
eral of these relations. The notation carry(expression) means the carry bit gener-
ated by the outermost operation in expression. We assume the carry bit for the
subtraction  is what comes out of the adder for , which is the com-
plement of “borrow.”

For  use the complement of the expression for  and similarly for other
relations involving “greater than.”

The GNU Superoptimizer has been applied to the problem of computing pred-
icate expressions on the IBM RS/6000 computer and its close relative PowerPC
[GK]. The RS/6000 has instructions for abs(x), nabs(x), doz(x, y), and a number of
forms of add and subtract that use the carry bit. It was found that the RS/6000 can

x y> x 231+ y 231+u( )¬=

x y y 231+ x 231+u=

x y<u y xu( )¬=

x y>u x yu( )¬=

x yu y xu=

x y– x y 1+ +

x y:= carry 0 x y–( )–( ), or carry x y+( ) 1+( ), or
carry x y– 1–( ) 1+( )

x y: carry x y–( ) 1–( ), i.e., carry x y–( ) 1–( )+( )

x y:< carry x 231+( ) y 231+( )–( ), or carry x y–( ) x31 y31¬¬

x y: carry y 231+( ) x 231+( )–( ), or carry y x–( ) x31 y31

x y:<u carry x y–( )¬

x y:u carry y x–( )
x 0:= carry 0 x–( ), or carry x 1+( )
x 0: carry x 1–( ), i.e., carry x 1–( )+( )
x 0:< carry x x+( )
x 0: carry 231 x 231+( )–( )

x y,> x y,
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compute all the integer predicate expressions with three or fewer elementary (one-
cycle) instructions, a result that surprised even the architects of the machine. “All”
includes the six two-operand signed comparisons and the four two-operand
unsigned comparisons, all of these with the second operand being 0, and all in
forms that produce a 1/0 result or a –1/0 result. PowerPC, which lacks abs(x),
nabs(x), and doz(x, y), can compute all the predicate expressions in four or fewer
elementary instructions.

How the Computer Sets the Comparison Predicates
Most computers have a way of evaluating the integer comparison predicates to a
1-bit result. The result bit may be placed in a “condition register” or, for some
machines (such as our RISC model), in a general purpose register. In either case,
the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit com-
parison result.

Below is the logic for these operations. It is assumed that the machine com-
putes  as , and the following quantities are available in the result:

Co, the carry out of the high-order position
Ci, the carry into the high-order position
N, the sign bit of the result
Z, which equals 1 if the result, exclusive of Co, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes
and, + denotes or):

x y– x y 1+ +

V: Ci Co          (signed overflow)
x y:= Z

x y: Z

x y:< N V
x y: N V( ) Z+

x y:> N V( )Z

x y: N V
x y:<u Co

x y:u Co Z+

x y:>u CoZ
x y:u Co
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2–13  Overflow Detection
“Overflow” means that the result of an arithmetic operation is too large or too
small to be correctly represented in the target register. This section discusses
methods that a programmer might use to detect when overflow has occurred, with-
out using the machine’s “status bits” that are often supplied expressly for this pur-
pose. This is important, because some machines do not have such status bits (e.g.,
MIPS), and even if the machine is so equipped, it is often difficult or impossible to
access the bits from a high-level language.

Signed Add/Subtract
When overflow occurs on integer addition and subtraction, contemporary
machines invariably discard the high-order bit of the result and store the low-order
bits that the adder naturally produces. Signed integer overflow of addition occurs
if and only if the operands have the same sign and the sum has a sign opposite to
that of the operands. Surprisingly, this same rule applies even if there is a carry
into the adder—that is, if the calculation is  This is important for the
application of adding multiword signed integers, in which the last addition is a
signed addition of two fullwords and a carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word
signed integers being added, let c (carry-in) be 0 or 1, and assume for simplicity a
4-bit machine. Then if the signs of x and y are different,

or similar bounds apply if x is nonnegative and y is negative. In either case, by
adding these inequalities and optionally adding in 1 for c,

This is representable as a 4-bit signed integer, and thus overflow does not occur
when the operands have opposite signs.

Now suppose x and y have the same sign. There are two cases:

Thus,

x y 1.+ +

8– x 1, and–
0 y 7,

8– x y c+ + 7.

a( )
8– x 1–
8– y 1–

b( )
0 x 7
0 y 7

a( )
16– x y c+ + 1–

b( )
0 x y c+ + 15.
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Overflow occurs if the sum is not representable as a 4-bit signed integer—
that is, if

In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which
is opposite to the sign of x and y. In case (b), this is equivalent to the high-order bit
of the 4-bit sum being 1, which again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is
 where again c is 0 or 1, with a value of 1 representing a borrow-in.

From an analysis similar to the above, it can be seen that overflow in the final
value of  occurs if and only if x and y have opposite signs and the sign of

 is opposite to that of x (or, equivalently, the same as that of y).
This leads to the following expressions for the overflow predicate, with the

result being in the sign position. Following these with a shift right or shift right
signed of 31 produces a 1/0- or a 1/0-valued result.

By choosing the second alternative in the first column, and the first alternative in
the second column (avoiding the equivalence operation), our basic RISC can eval-
uate these tests with three instructions in addition to those required to compute

 or . A fourth instruction (branch if negative) can be added to
branch to code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to
test to see if a certain addition or subtraction will cause overflow, in a way that
does not cause it. One branch-free way to do this is as follows:

The assignment to z in the left column sets  if x and y have the
same sign, and sets  if they differ. Then, the addition in the second expres-
sion is done with  and y having different signs, so it can’t overflow. If x and
y are nonnegative, the sign bit in the second expression will be 1 if and only if

—that is, iff  which is the condition for over-
flow in evaluating  If x and y are negative, the sign bit in the second
expression will be 1 iff —that is, iff  which

a( )
16– x y c+ + 9–

b( )
8 x y c+ + 15.

x y– c,–

x y– c–
x y– c–

x y c+ +

x y( ) x y c+ +( ) x( )&
x y c+ +( ) x( ) x y c+ +( ) y( )&

x y– c–

x y( ) x y– c–( ) x( )&
x y– c–( ) x( ) x y– c–( ) y( )&

x y c+ + x y– c–

x y c+ +

z x y( ) 0x80000000&
z x z( ) y+ c+( ) y( )&

x y– c–

z x y( ) 0x80000000&
z x z( ) y– c–( ) y( )&

z 0x80000000=
z 0=

x z

x 231–( ) y c+ + 0 x y c+ + 231,
x y c.+ +

x 231+( ) y c+ + 0< x y c 231,–<+ +
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again is the condition for overflow. The and with z ensures the correct result (0 in
the sign position) if x and y have opposite signs. Similar remarks apply to the
case of subtraction (right column). The code executes in nine instructions on the
basic RISC.

It might seem that if the carry from addition is readily available, this might
help in computing the signed overflow predicate. This does not seem to be the
case; however, one method along these lines is as follows.

If x is a signed integer, then  is correctly represented as an unsigned
number and is obtained by inverting the high-order bit of x. Signed overflow in the
positive direction occurs if —that is, if 
This latter condition is characterized by carry occurring in the unsigned add
(which means that the sum is greater than or equal to ) and the high-order bit
of the sum being 1. Similarly,  overflow in the negative direction occurs if the
carry is 0 and the high-order bit of the sum is also 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute  giving sum s and carry c.
Overflow occurred iff c equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-
order bits of both operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a sub-
traction replaces the addition. We assume that the carry is that which is generated
by computing  as  The subtraction is the correct difference for the
signed subtraction.

These formulas are perhaps interesting, but on most machines they would not
be quite as efficient as the formulas that do not even use the carry bit (e.g., over-
flow =  for addition, and  for subtraction,
where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract
Machines often set “overflow” for signed addition by means of the logic “the
carry into the sign position is not equal to the carry out of the sign position.” Curi-
ously, this logic gives the correct overflow indication for both addition and sub-
traction, assuming the subtraction  is done by  Furthermore, it is
correct whether or not there is a carry- or borrow-in. This does not seem to lead to
any particularly good methods for computing the signed overflow predicate in
software, however, even though it is easy to compute the carry into the sign posi-
tion. For addition and subtraction, the carry/borrow into the sign position is given
by the sign bit after evaluating the following expressions (where c is 0 or 1):

In fact, these expressions give, at each position i, the carry/borrow into position i.

x 231+

x y+ 231 x 231+( ) y 231+( )+ 3 231.

232

x 231( ) y 231( ),+

x y– x y 1.+ +

x y( ) s x( )& x y( ) d x( )&

x y– x y 1.+ +

carry
x y c+ +( ) x y

borrow
x y– c–( ) x y
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Unsigned Add/Subtract
The following branch-free code can be used to compute the overflow predicate for
unsigned add/subtract, with the result being in the sign position. The expressions
involving a right shift are probably useful only when it is known that  The
expressions in brackets compute the carry or borrow generated from the least sig-
nificant position.

For unsigned add’s and subtract’s, there are much simpler formulas in terms
of comparisons [MIPS]. For unsigned addition, overflow (carry) occurs if the sum
is less (by unsigned comparison) than either of the operands. This and similar for-
mulas are given below. Unfortunately, there is no way in these formulas to allow
for a variable c that represents the carry- or borrow-in. Instead, the program must
test c, and use a different type of comparison depending upon whether c is 0 or 1.

The first formula for each case above is evaluated before the add/subtract that may
overflow, and it provides a way to do the test without causing overflow. The sec-
ond formula for each case is evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for
computing the signed overflow predicate.

Multiplication
For multiplication, overflow means that the result cannot be expressed in 32 bits
(it can always be expressed in 64 bits, whether signed or unsigned). Checking for
overflow is simple if you have access to the high-order 32 bits of the product. Let
us denote the two halves of the 64-bit product by  and  Then
the overflow predicates can be computed as follows [MIPS]:

c 0.=

x y c, unsigned+ +
x y&( ) x y | ( ) x y c+ +( )¬&( ) | 

x 1>>
u( ) y 1>>

u( ) x y&( ) x y | ( ) c&( ) | ( ) 1&[ ]+ +

x y– c, unsigned–
x¬ y&( ) x y( ) x y– c–( )&( ) | 

x¬ y&( ) x¬ y | ( ) x y– c–( )&( ) | 

x 1>>
u( ) y 1>>

u( )– x¬ y&( ) x¬ y | ( ) c&( ) | ( ) 1&[ ]–

x y, unsigned+

x¬ y<u

x y+ x<u

x y 1, unsigned+ +

x¬ yu

x y 1+ + xu

x y, unsigned–

x y<u

x y– x>u

x y– 1, unsigned–

x yu

x y– 1– xu

hi x y×( ) lo x y×( ).
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One way to check for overflow of multiplication is to do the multiplication
and then check the result by dividing. Care must be taken not to divide by 0, and
there is a further complication for signed multiplication. Overflow occurs if the
following expressions are true:

The complication arises when  and  In this case the multiplica-
tion overflows, but the machine may very well give a result of  This causes
the division to overflow, and thus any result is possible (for some machines).
Therefore, this case has to be checked separately, which is done by the term

 The above expressions use the “conditional and” operator to
prevent dividing by 0 (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication with-
out doing the multiplication (that is, without causing overflow). For unsigned inte-
gers, the product overflows iff  or  or, since x is an
integer,  Expressed in computer arithmetic, this is

For signed integers, the determination of overflow of  is not so simple.
If x and y have the same sign, then overflow occurs iff . If they have
opposite signs, then overflow occurs iff . These conditions can be tested
as indicated in Table 2–2, which employs signed division. This test is awkward to
implement, because of the four cases. It is difficult to unify the expressions very
much because of problems with overflow and with not being able to represent the
number .

The test can be simplified if unsigned division is available. We can use the
absolute values of x and y, which are correctly represented under unsigned integer
interpretation. The complete test can then be computed as shown below. The vari-
able if x and y have the same sign, and  otherwise.

TABLE 2–2.  OVERFLOW TEST FOR SIGNED MULTIPLICATION

x y, unsigned×
hi x y×( ) 0

x y, signed×

hi x y×( ) lo x y×( ) 31>>
s( )

Unsigned
z x y*

y 0 z y÷u x&

Signed
z x y*

y 0< x 231–=&( ) y 0 z y÷ x&( ) | 

x 231–= y 1.–=
231.–

y 0< x 231.–=&

xy 232 1,–> x 232 1–( ) y⁄( ),>
x 232 1–( ) y⁄ .>

y 0 x& 0xFFFFFFFF y÷u( ).>u

x y*
xy 231 1–>

xy 231–<

 231+

c 231 1–= c 231=

y 0> y 0

x 0> x 0x7FFFFFFF y÷> y 0x80000000 x÷<

x 0 x 0x80000000 y÷< x 0 y 0x7FFFFFFF x÷<&
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The number of leading zeros instruction can be used to give an estimate of
whether or not  will overflow, and the estimate can be refined to give an
accurate determination. First, consider the multiplication of unsigned numbers. It
is easy to show that if x and y, as 32-bit quantities, have m and n leading 0’s,
respectively, then the 64-bit product has either  or  leading 0’s (or
64, if either  or ). Overflow occurs if the 64-bit product has fewer
than 32 leading 0’s. Hence,

For  overflow may or may not occur. In this case, the
overflow assessment can be made by evaluating . This will not over-
flow. Since xy is 2t or, if y is odd, 2t + x, the product xy overflows if . These
considerations lead to a plan for computing xy, but branching to “overflow” if the
product overflows. This plan is shown in Figure 2–2.

For the multiplication of signed integers, we can make a partial determination
of whether or not overflow occurs from the number of leading 0’s of nonnegative
arguments, and the number of leading 1’s of negative arguments. Let

   unsigned x, y, z, m, n, t;

   m = nlz(x);
   n = nlz(y);
   if (m + n <= 30) goto overflow;
   t = x*(y >> 1);
   if ((int)t < 0) goto overflow;
   z = t*2;
   if (y & 1) {
      z = z + x;
      if (z < x) goto overflow; 
   }
   // z is the correct product of x and y.

FIGURE 2–2.  Determination of overflow of unsigned multiplication.

c x y( ) 31>>
s( ) 231+

x abs x( )
y abs y( )
y 0 x& c y÷u( )>u

x y*

m n+ m n 1+ +
x 0= y 0=

nlz x( ) nlz y( )+ 32: Multiplication definitely does not overflow.
nlz x( ) nlz y( )+ 30: Multiplication definitely does overflow.

nlz x( ) nlz y( )+ 31,=
t x y 2⁄=

t 231

m nlz x( ) nlz x( ), and+=
n nlz y( ) nlz y( ).+=
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Then, we have

There are two ambiguous cases: 32 and 33. The case  overflows
only when both arguments are negative and the true product is exactly 
(machine result is ), so it can be recognized by a test that the product has the
correct sign (that is, overflow occurred if ). When

, the distinction is not so easily made.
We will not dwell on this further, except to note that an overflow estimate for

signed multiplication can also be made based on  but
again there are two ambiguous cases (a sum of 31 or 32).

Division
For the signed division  overflow occurs if the following expression is true:

Most machines signal overflow (or trap) for the indeterminate form 
Straightforward code for evaluating this expression, including a final branch

to the overflow handling code, consists of seven instructions, three of which are
branches. There do not seem to be any particularly good tricks to improve on this,
but here are a few possibilities:

That is, evaluate the large expression in brackets, and branch if the result is less
than 0. This executes in about nine instructions, counting the load of the constant
and the final branch, on a machine that has the indicated instructions and that gets
the “compare to 0” for free.

Some other possibilities are to first compute z from

(three instructions on many machines), and then do the test and branch on
 in one of the following ways:

These execute in nine, seven, and eight instructions, respectively, on a machine
that has the indicated instructions. The last line represents a good method for
PowerPC.

m n+ 34: Multiplication definitely does not overflow.
m n+ 31: Multiplication definitely does overflow.

m n+ 33=
231

231–
m n m n*( ) 0<

m n+ 32=

nlz abs x( )( ) nlz abs y( )( ),+

x y,÷

y 0= x 0x80000000= y 1–=&( ) | 

0 0÷ .

abs y 0x80000000( ) abs x( ) abs y 0x80000000( )&( ) | [ ] 0<

z x 0x80000000( ) y 1+( ) | 

y 0= z | 0=

y y– | ( ) z z– | ( )&( ) 0
nabs y( ) nabs z( )&( ) 0

nlz y( ) nlz z( ) | ( ) 5>>
u( ) 0
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For the unsigned division , overflow occurs if and only if 
Some machines have a “long division” instruction (see page 192), and you

may want to predict, using elementary instructions, when it would overflow. We
will discuss this in terms of an instruction that divides a doubleword by a fullword,
producing a fullword quotient and possibly also a fullword remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot
be represented in 32 bits. Typically, in these overflow cases both the quotient and
remainder are incorrect. The remainder cannot overflow in the sense of being too
large to represent in 32 bits (it is less than the divisor in magnitude), so the test that
the remainder will be correct is the same as the test that the quotient will be correct.

We assume the machine either has 64-bit general registers or 32-bit registers
and there is no problem doing elementary operations (shifts, adds, and so forth) on
64-bit quantities. For example, the compiler might implement a doubleword inte-
ger data type.

In the unsigned case the test is trivial: for  with x a doubleword and y a
fullword, the division will not overflow if (and only if) either of the following
equivalent expressions is true.

On a 32-bit machine, the shifts need not be done; simply compare y to the register
that contains the high-order half of x. To ensure correct results on a 64-bit machine,
it is also necessary to check that the divisor y is a 32-bit quantity (e.g., check that

).
The signed case is more interesting. It is first necessary to check that 

and, on a 64-bit machine, that y is correctly represented in 32 bits (check that
 Assuming these tests have been done, the table that fol-

lows shows how the tests might be done to determine precisely whether or not the
quotient is representable in 32 bits by considering separately the four cases of the
dividend and divisor each being positive or negative. The expressions in the table
are in ordinary arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-
if way. To remove the floor and ceiling functions, some relations from Theorem D1
on page 183 are used.

x y÷u y 0.=

x y÷

y 0 x y 32<<( )<&

y 0 x 32>>
u( ) y<&

y 32>>
u( ) 0=

y 0

y 32<<( ) 32>>
s( ) y).=

x 0 y 0>,

x y⁄ 231<

x y⁄ 231<

x 231y<

x 0 y 0<,

x y⁄ 231–
x y⁄ 231– 1–>

x y⁄ 231– 1–>

x 231y– y–<

x 231 y–( ) y–( )+<

x 0< y 0>,

x y⁄ 231–
x y⁄ 231– 1–>

x y⁄ 231– 1–>

x 231y– y–>

x– 231y y+<

x 0< y 0<,

x y⁄ 231<

x y⁄ 231<

x 231y>

x– 231 y–( )<
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As an example of interpreting this table, consider the leftmost column. It
applies to the case in which  and  In this case the quotient is 
and this must be strictly less than  to be representable as a 32-bit quantity. From
this it follows that the real number x/y must be less than  or x must be less than

 This test can be implemented by shifting y left 31 positions and comparing
the result to x.

When the signs of x and y differ, the quotient of conventional division is
 Because the quotient is negative, it can be as small as 

In the bottom row of each column the comparisons are all of the same type
(less than). Because of the possibility that x is the maximum negative number, in
the third and fourth columns an unsigned comparison must be used. In the first two
columns the quantities being compared begin with a leading 0-bit, so an unsigned
comparison can be used there, too.

These tests can, of course, be implemented by using conditional branches to
separate out the four cases, doing the indicated arithmetic, and then doing a final
compare and branch to the code for the overflow or non-overflow case. However,
branching can be reduced by taking advantage of the fact that when y is negative,
–y is used, and similarly for x. Hence the tests can be made more uniform by using
the absolute values of x and y. Also, using a standard device for optionally doing
the additions in the second and third columns results in the following scheme:

Using the three-instruction method of computing the absolute value (see page 18),
on a 64-bit version of the basic RISC this amounts to 12 instructions, plus a condi-
tional branch.

2–14  Condition Code Result of Add, Subtract, and Multiply
Many machines provide a “condition code” that characterizes the result of integer
arithmetic operations. Often there is only one add instruction, and the character-
ization reflects the result for both unsigned and signed interpretation of the oper-
ands and result (but not for mixed types). The characterization usually consists of
the following: 

• Whether or not carry occurred (unsigned overflow)

• Whether or not signed overflow occurred

• Whether the 32-bit result, interpreted as a signed two’s-complement inte-
ger and ignoring carry and overflow, is negative, 0, or positive

x 0 y 0.> x y⁄ ,
231

231,
231y.

x y⁄ . 231.–

x x=
y y=

x y( ) 63>>
s( ) y&=

if x y 31<<( ) +<u( ) then {will not overflow} 
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Some older machines give an indication of whether the infinite precision
result (that is, 33-bit result for add’s and subtract’s) is positive, negative, or 0.
However, this indication is not easily used by compilers of high-level languages,
and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible.
The ones that cannot occur are “no carry, overflow, result > 0,” “no carry, over-
flow, result = 0,” and “carry, overflow, result < 0.” Thus, four bits are, just barely,
needed for the condition code. Two of the combinations are unique in the sense
that only one value of inputs produces them: Adding 0 to itself is the only way to
get “no carry, no overflow, result = 0,” and adding the maximum negative number
to itself is the only way to get “carry, overflow, result = 0.” 

For subtraction, let us assume that to compute  the machine actually
computes  with the carry produced as for an add (in this scheme the
meaning of “carry” is reversed for subtraction, in that carry = 1 signifies that the
result fits in a single word, and carry = 0 signifies that the result does not fit in a
single word). Then for subtraction, only seven combinations of events are possi-
ble. The ones that cannot occur are the three that cannot occur for addition, plus
“no carry, no overflow, result = 0,” and “carry, overflow, result = 0.”

If a machine’s multiplier can produce a doubleword result, then two multiply
instructions are desirable: one for signed and one for unsigned operands. (On a
4-bit machine, in hexadecimal,  signed, and  unsigned.)
For these instructions, neither carry nor overflow can occur, in the sense that the
result will always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-
order word of the doubleword result), let us take “carry” to mean that the result
does not fit in a word with the operands and result interpreted as unsigned inte-
gers, and let us take “overflow” to mean that the result does not fit in a word with
the operands and result interpreted as signed two’s-complement integers. Then
again, there are nine possible combinations of results, with the missing ones being
“no carry, overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, no
overflow, result = 0.” Thus, considering addition, subtraction, and multiplication
together, ten combinations can occur.

2–15  Rotate Shifts
These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0
to 32 inclusive, even if the shifts are mod-32.

If your machine has double-length shifts, they can be used to do rotate shifts.
These instructions might be written

x y–
x y 1,+ +

F F× 01= F F× E1=

Rotate left n: y x n<<( ) x 32 n–( )>>
u( ) | 

Rotate right n: y x n>>
u( ) x 32 n–( )<<( ) | 
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   shldi RT,RA,RB,I
   shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and
shift it left or right by the amount given by the immediate field I. (If the shift
amount is in a register, the instructions are awkward to implement on most RISCs
because they require reading three registers.) The result of the left shift is the high-
order word of the shifted double-length quantity, and the result of the right shift is
the low-order word.

 Using shldi, a rotate left of Rx can be accomplished by

   shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrdi.
A rotate left shift of one position can be accomplished by adding the contents

of a register to itself with “end-around carry” (adding the carry that results from the
addition to the sum in the low-order position). Most machines do not have that
instruction, but on many machines it can be accomplished with two instructions:
(1) add the contents of the register to itself, generating a carry (into a status regis-
ter), and (2) add the carry to the sum.

2–16  Double-Length Add/Subtract
Using one of the expressions shown on page 31 for overflow of unsigned addition
and subtraction, we can easily implement double-length addition and subtraction
without accessing the machine’s carry bit. To illustrate with double-length addi-
tion, let the operands be  and , and the result be . Sub-
script 1 denotes the most significant half, and subscript 0 the least significant. We
assume that all 32 bits of the registers are used. The less significant words are
unsigned quantities.

This executes in nine instructions. The second line can be  permit-
ting a four-instruction solution on machines that have this comparison operator in
a form that gives the result as a 1 or 0 in a register, such as the “SLTU” (Set on
Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction  is

x1 x0,( ) y1 y0,( ) z1 z0,( )

z0 x0 y0+

c x0 y0&( ) x0 y0 | ( ) z0¬&( ) | [ ] 31>>
u

z1 x1 y1 c+ +

c z0 x0<u( ),

x y–( )

z0 x0 y0–

b x¬ 0 y0&( ) x0 y0( ) z0&( ) | [ ] 31>>
u

z1 x1 y1– b–
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This executes in eight instructions on a machine that has a full set of logical
instructions. The second line can be  permitting a four-instruction
solution on machines that have the “SLTU” instruction.

Double-length addition and subtraction can be done in five instructions on
most machines by representing the multiple-length data using only 31 bits of the
least significant words, with the high-order bit being 0 except momentarily when
it contains a carry or borrow bit.

2–17  Double-Length Shifts
Let  be a pair of 32-bit words to be shifted left or right as if they were a
single 64-bit quantity, with  being the most significant half. Let  be the
result, interpreted similarly. Assume the shift amount n is a variable ranging from
0 to 63. Assume further that the machine’s shift instructions are modulo 64 or
greater. That is, a shift amount in the range 32 to 63 or –32 to –1 results in an all-0
word, unless the shift is a signed right shift, in which case the result is 32 sign bits
from the word shifted. (This code will not work on the Intel x86 machines, which
have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished
as follows (eight instructions):

The main connective in the first assignment must be or, not plus, to give the cor-
rect result when  If it is known that  the last term of the first
assignment can be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation can be done with

Shift right double signed is more difficult, because of an unwanted sign prop-
agation in one of the terms. Straightforward code follows:

If your machine has the conditional move instructions, it is a simple matter to
express this in branch-free code, in which form it takes eight instructions. If the
conditional move instructions are not available, the operation can be done in ten

b x0 y0<u( ),

x1 x0,( )
x1 y1 y0,( )

y1 x1 n<< x0 32 n–( )>>
u x0 n 32–( )<< |  | 

y0 x0 n<<

n 32.= 0 n 32,

y0 x0 n>>
u x1 32 n–( )<< x1 n 32–( )>>

u |  | 

y1 x1 n>>
u

if n 32<  then y0 x0 n>>
u x1 32 n–( )<< | 

else y0 x1 n 32–( )>>
s

y1 x1 n>>
s



40 BASICS 2–18

instructions by using the familiar device of constructing a mask with the shift right
signed 31 instruction to mask the unwanted sign propagating term:

2–18  Multibyte Add, Subtract, Absolute Value
Some applications deal with arrays of short integers (usually bytes or halfwords),
and often execution is faster if they are operated on a word at a time. For definite-
ness, the examples here deal with the case of four 1-byte integers packed into a
word, but the techniques are easily adapted to other packings, such as a word con-
taining a 12-bit integer and two 10-bit integers, and so on. These techniques are of
greater value on 64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into
another. This can be accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there
will then be no carries across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands
and the carry into that bit.

The carry into the high-order bit of each byte is given by the high-order bit of
each byte of the sum computed in step 1. The subsequent similar method works
for subtraction:

These execute in eight instructions, counting the load of 0x7F7F7F7F, on a
machine that has a full set of logical instructions. (Change the and and or of
0x80808080 to and not and or not, respectively, of 0x7F7F7F7F.)

There is a different technique for the case in which the word is divided into
only two fields. In this case, addition can be done by means of a 32-bit addition fol-
lowed by subtracting out the unwanted carry. On page 30 we noted that the expres-
sion  gives the carries into each position. Using this and similar
observations about subtraction gives the following code for adding/subtracting two
halfwords modulo  (seven instructions):

y0 x0 n>>
u x1 32 n–( )<< x1 n 32–( )>>

s( ) 32 n–( ) 31>>
s( )&[ ] |  | 

y1 x1 n>>
s

Addition

s x 0x7F7F7F7F&( ) y 0x7F7F7F7F&( )+

s x y( ) 0x80808080&( ) s

Subtraction

d x 0x80808080 | ( ) y 0x7F7F7F7F&( )–

d x y( ) 0x7F7F7F7F | ( ) d

x y+( ) x y

216
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Multibyte absolute value is easily done by complementing and adding 1 to
each byte that contains a negative integer (that is, has its high-order bit on). The
following code sets each byte of y equal to the absolute value of each byte of x
(eight instructions):

The third line could as well be . The addition of b in the fourth line
cannot carry across byte boundaries, because the quantity  has a high-order
0 in each byte.

2–19  Doz, Max, Min
The “doz” function is “difference or zero,” defined as follows:

It has been called “first grade subtraction” because the result is 0 if you try to take
away too much.3 If implemented as a computer instruction, perhaps its most impor-
tant use is to implement the max(x, y) and min(x, y) functions (in both signed and
unsigned forms) in just two simple instructions, as will be seen. Implementing
max(x, y) and min(x, y) in hardware is difficult because the machine would need
paths from the output ports of the register file back to an input port, bypassing the
adder. These paths are not normally present. If supplied, they would be in a region
that’s often crowded with wiring for register bypasses. The situation is illustrated in
Figure 2–3. The adder is used (by the instruction) to do the subtraction x – y. The
high-order bits of the result of the subtraction (sign bit and carries, as described on
page 27) define whether x y or x < y. The comparison result is fed to a multiplexor

3. Mathematicians name the operation monus and denote it with The terms positive differ-
ence and saturated subtraction are also used.

Addition
s x y+

c s x y( ) 0x00010000&
s s c–

Subtraction
d x y–

b d x y( ) 0x00010000&
d d b+

a x 0x80808080&

b a 7>>
u

m a b–( ) a | 
y x m( ) b+

// Isolate signs.

// Integer 1 where    is negative.

// 0xFF where    is negative.
// Complement and add 1 where negative.

x
x

m a a b–+
x m

Signed

doz x y,( ) x y– ,   x y,
0, x y.<

=

Unsigned

dozu x y,( ) x y– ,   x y,u

0, x y.<u
=

.–.
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(MUX) that selects either x or y as the result to write into the target register. These
paths, from register file outputs x and y to the multiplexor, are not normally present
and would have little use. The difference or zero instructions can be implemented
without these paths because it is the output of the adder (or 0) that is fed back to the
register file.

Using difference or zero, max(x, y) and min(x, y) can be implemented in two
instructions as follows:

In the signed case, the result of the difference or zero instruction can be nega-
tive. This happens if overflow occurs in the subtraction. Overflow should be
ignored; the addition of y or subtraction from x will overflow again, and the result
will be correct. When doz(x, y) is negative, it is actually the correct difference if it
is interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but
you want to code doz(x, y), max(x, y), and so forth, in an efficient branch-free way.
In the next few paragraphs we show how these functions might be coded if your
machine has the conditional move instructions, comparison predicates, efficient
access to the carry bit, or none of these. 

If your machine has the conditional move instructions, it can get doz(x, y) in
three instructions, and destructive4 max(x, y) and min(x, y) in two instructions. For
example, on the full RISC,  can be calculated as follows (r0 is a per-
manent zero register):

FIGURE 2–3. Implementing max(x, y) and min(x, y).

4. A destructive operation is one that overwrites one or more of its arguments.

Register File

MUX
x y

Adder

Signed
max x y,( ) y doz x y,( )+=
min x y,( ) x doz x y,( )–=

Unsigned
maxu x y,( ) y dozu x y,( )+=
minu x y,( ) x dozu x y,( )–=

z doz x y,( )
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    sub    z,x,y        Set z = x - y.
    cmplt  t,x,y  Set t = 1 if x < y, else 0.
    movne  z,t,r0   Set z = 0 if x < y.

Also on the full RISC,  can be calculated as follows:

    cmplt  t,x,y  Set t = 1 if x < y, else 0.
    movne  x,t,y    Set x = y if x < y.

The min function, and the unsigned counterparts, are obtained by changing the
comparison conditions.

These functions can be computed in four or five instructions using compari-
son predicates (three or four if the comparison predicates give a result of –1 for
“true”):

On some machines, the carry bit may be a useful aid to computing the
unsigned versions of these functions. Let  denote the bit that comes
out of the adder for the operation  moved to a register. Thus,

 = 1 iff  Then we have

On most machines that have a subtract that generates a carry or borrow, and
another form of subtract that uses that carry or borrow as an input, the expression

 can be computed in one more instruction after the subtraction of y
from x. For example, on the Intel x86 machines,  can be computed in
four instructions as follows:

   sub eax,ecx   ; Inputs x and y are in eax and ecx resp.
   sbb edx,edx   ; edx = 0 if x >= y, else -1.
   and eax,edx   ; 0 if x >= y, else x - y.
   add eax,ecx   ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three
instructions for  if the machine has and with complement).

x max x y,( )

doz x y,( ) x y–( ) x y( )–&=
max x y,( ) y doz x y,( )+=

x y( ) x y( )–&( ) y=
min x y,( ) x doz x y,( )–=

x y( ) x y( )–&( ) y=

carry x y–( )
x y 1,+ +

carry x y–( ) x y.

dozu x y,( ) x y–( ) carry x y–( ) 1–( )¬&( )=

maxu x y,( ) x x y–( ) carry x y–( ) 1–( )&( )–=

minu x y,( ) y x y–( ) carry x y–( ) 1–( )&( )+=

carry x y–( ) 1–
minu x y,( )

dozu x y,( )
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A method that applies to nearly any RISC is to use one of the above expres-
sions that employ a comparison predicate, and to substitute for the predicate one of
the expressions given on page 23. For example:

These require from seven to ten instructions, depending on the computer’s instruc-
tion set, plus one more to get max or min.

These operations can be done in four branch-free basic RISC instructions if it
is known that  (that is an expression in ordinary arithmetic,
not computer arithmetic). The same code works for both signed and unsigned inte-
gers, with the same restriction on x and y. A sufficient condition for these formulas
to be valid is that, for signed integers,  and for unsigned inte-
gers,

Some uses of the difference or zero instruction are given here. In these, the
result of doz(x, y) must be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.

2. To compute the absolute value of a difference [Knu7]:

Corollary:  (other three-instruction solutions
are given on page 18).

3. To clamp the upper limit of the true sum of unsigned integers x and y to
the maximum positive number  [Knu7]:

4. Some comparison predicates (four instructions each):

d x y–
doz x y,( ) d d x y( ) d x( )&( )( ) 31>>

s[ ]&=

dozu x y,( ) d x¬ y&( ) x y( ) d&( ) | ( ) 31>>
s[ ]¬&=

231– x y– 231 1–

230– x y, 230 1,–
0 x y, 231 1.–

doz x y,( ) dozu x y,( ) x y–( ) x y–( ) 31>>
s( )¬&= =

max x y,( ) maxu x y,( ) x x y–( ) x y–( ) 31>>
s( )&( )–= =

min x y,( ) minu x y,( ) y x y–( ) x y–( ) 31>>
s( )&( )+= =

x y– doz x y,( ) doz y x,( ),       signed arguments,+=
dozu x y,( ) dozu y x,( ),   unsigned arguments.+=

x doz x 0,( ) doz 0 x,( )+=

232 1–( )

dozu x¬ y,( ).¬

x y> doz x y,( ) doz x y,( )– | ( ) 31,>>
u=

x y>u dozu x y,( ) dozu x y,( )– | ( ) 31.>>
u=
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5. The carry bit from the addition x + y (five instructions):

The expression doz(x, –y), with the result interpreted as an unsigned integer, is
in most cases the true sum x + y with the lower limit clamped at 0. However, it fails
if y is the maximum negative number.

The IBM RS/6000 computer, and its predecessor the 801, have the signed ver-
sion of difference or zero. Knuth’s MMIX computer [Knu7] has the unsigned ver-
sion (including some varieties that operate on parts of words in parallel). This
raises the question of how to get the signed version from the unsigned version, and
vice versa. This can be done as follows (where the additions and subtractions sim-
ply complement the sign bit):

Some other identities that may be useful are:

The relation  fails if either x or y, but not both, is the max-
imum negative number.

2–20  Exchanging Registers
A very old trick is exchanging the contents of two registers without using a third
[IBM]:

This works well on a two-address machine. The trick also works if  is
replaced by the  logical operation (complement of exclusive or) and can be made
to work in various ways with add’s and subtract’s:

Unfortunately, each of these has an instruction that is unsuitable for a two-address
machine, unless the machine has “reverse subtract.”

carry x y+( ) x y¬>u dozu x y¬,( ) dozu x y¬,( )– | ( ) 31.>>
u= =

doz x y,( ) dozu x 231 y 231+,+( ),=
dozu x y,( ) doz x 231 y 231–,–( ).=

doz x y¬,¬( ) doz y x,( ),=
dozu x¬ y¬,( ) dozu y x,( ).=

doz x y–,–( ) doz y x,( )=

x x y
y y x
x x y

x x y+
y x y–
x x y–

x x y–
y y x+
x y x–

x y x–
y y x–
x x y+
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This little trick can actually be useful in the application of double buffering,
in which two pointers are swapped. The first instruction can be factored out of the
loop in which the swap is done (although this negates the advantage of saving a
register):

Exchanging Corresponding Fields of Registers
The problem here is to exchange the contents of two registers x and y wherever a
mask bit  and to leave x and y unaltered wherever  By “corre-
sponding” fields, we mean that no shifting is required. The 1-bits of m need not be
contiguous. The straightforward method is as follows:

By using “temporaries” for the four and expressions, this can be seen to require
seven instructions, assuming that either m or  can be loaded with a single
instruction and the machine has and not as a single instruction. If the machine is
capable of executing the four (independent) and expressions in parallel, the execu-
tion time is only three cycles.

A method that is probably better (five instructions, but four cycles on a
machine with unlimited instruction-level parallelism) is shown in column (a)
below. It is suggested by the “three exclusive or” code for exchanging registers.

The steps in column (b) do the same exchange as that of column (a), but column
(b) is useful if m does not fit in an immediate field, but  does, and the machine
has the equivalence instruction.

Still another method is shown in column (c) above [GLS1]. It also takes five
instructions (again assuming one instruction must be used to load m into a regis-
ter), but executes in only three cycles on a machine with sufficient instruction-
level parallelism.

Outside the loop: t x y
Inside the loop: x x t

y y t

mi 1,= mi 0.=

x' x m&( ) y m&( ) | 

y y m&( ) x m&( ) | 
x x'

m

(a)
x x y
y y x m&( )
x x y

(b)
x x y
y y x m | ( )
x x y

          (c)

t x y( ) m&
x x t
y y t

m
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Exchanging Two Fields of the Same Register
Assume a register x has two fields (of the same length) that are to be swapped,
without altering other bits in the register. That is, the object is to swap fields B and
D without altering fields A, C, and E, in the computer word illustrated below. The
fields are separated by a shift distance k.

Straightforward code would shift D and B to their new positions, and com-
bine the words with and and or operations, as follows:

Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m  is a mask with
1’s in fields A, C, and E. This code requires 11 instructions and six cycles on a
machine with unlimited instruction-level parallelism, allowing for four instruc-
tions to generate the two masks.

A method that requires only eight instructions and executes in five cycles,
under the same assumptions, is shown below [GLS1]. It is similar to the code in
column (c) on page 46 for interchanging corresponding fields of two registers.
Again, m is a mask that isolates field D.

The idea is that  contains  in position D (and 0’s elsewhere), and  con-
tains  in position B. This code, and the straightforward code given earlier,
work correctly if B and D are “split fields”—that is, if the 1-bits of mask m are not
contiguous.

Conditional Exchange
The exchange methods of the preceding two sections, which are based on exclu-
sive or, degenerate into no-operations if the mask m is 0. Hence, they can perform
an exchange of entire registers, or of corresponding fields of two registers, or of
two fields of the same register, if m is set to all 1’s if some condition c is true, and
to all 0’s if c is false. This gives branch-free code if m can be set up without
branching.

A Ex:

k

DCB

t1 x m&( ) k<<=

t2 x k>>
u( ) m&=

x x m&( ) t1 t2 |  | =

t1 x x k>>
u( )[ ] m&=

t2 t1 k<<=

x x t1 t2=

t1 B D t2
B D
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2–21  Alternating among Two or More Values
Suppose a variable x can have only two possible values a and b, and you wish to
assign to x the value other than its current one, and you wish your code to be inde-
pendent of the values of a and b. For example, in a compiler x might be an opcode
that is known to be either branch true or branch false, and whichever it is, you
want to switch it to the other. The values of the opcodes branch true and branch
false are arbitrary, probably defined by a C #define or enum declaration in a
header file.

The straightforward code to do the switch is

    if (x == a) x = b;
    else x = a;

or, as is often seen in C programs,

    x = x == a ? b : a;

A far better (or at least more efficient) way to code it is either

If a and b are constants, these require only one or two basic RISC instructions. Of
course, overflow in calculating  can be ignored.

This raises the question: Is there some particularly efficient way to cycle
among three or more values? That is, given three arbitrary but distinct constants a,
b, and c, we seek an easy-to-evaluate function f that satisfies

It is perhaps interesting to note that there is always a polynomial for such a
function. For the case of three constants,

(5)

(The idea is that if  the first and last terms vanish, and the middle term sim-
plifies to b, and so on.) This requires 14 arithmetic operations to evaluate, and for
arbitrary a, b, and c, the intermediate results exceed the computer’s word size. But it
is just a quadratic; if written in the usual form for a polynomial and evaluated using

x a b x,   or–+
x a b x.

a b+

f a( ) b,=
f b( ) c,   and=
f c( ) a.=

f x( ) x a–( ) x b–( )
c a–( ) c b–( )

---------------------------------a x b–( ) x c–( )
a b–( ) a c–( )

---------------------------------b x c–( ) x a–( )
b c–( ) b a–( )

---------------------------------c.+ +=

x a,=
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Horner’s rule,5 it would require only five arithmetic operations (four for a quadratic
with integer coefficients, plus one for a final division). Rearranging Equation (5)
accordingly gives

This is getting too complicated to be interesting, or practical.
Another method, similar to Equation (5) in that just one of the three terms

survives, is

This takes 11 instructions if the machine has the equal predicate, not counting
loads of constants. Because the two addition operations are combining two 0 val-
ues with a nonzero, they can be replaced with or or exclusive or operations.

The formula can be simplified by precalculating  and  and then
using [GLS1]:

Each of these operations takes eight instructions, but on most machines these are
probably no better than the straightforward C code shown below, which executes
in four to six instructions for small a, b, and c.

Pursuing this matter, there is an ingenious branch-free method of cycling
among three values on machines that do not have comparison predicate instruc-
tions [GLS1]. It executes in eight instructions on most machines.

Because a, b, and c are distinct, there are two bit positions,  and , where
the bits of a, b, and c are not all the same, and where the “odd one out” (the one

5. Horner’s rule simply factors out x. For example, it evaluates the fourth-degree polynomial
 as  For a polynomial of degree n

it takes n multiplications and n additions, and it is very suitable for the multiply-add
instruction.

   if (x == a) x = b;
   else if (x == b) x = c;
   else x = a;

ax4 bx3 cx2 dx e+ + + + x x x ax b+( ) c+( ) d+( ) e.+

f x( ) 1
a b–( ) a c–( ) b c–( )

-------------------------------------------------- a b–( )a b c–( )b c a–( )c+ +[ ]x2{=

a b–( )b2 b c–( )c2 c a–( )a2+ +[ ]x+
a b–( )a2b b c–( )b2c c a–( )ac2+ +[ ] }+ .

f x( ) x = c( )–( ) a&( ) x = a( )–( ) b&( ) x = b( )–( ) c&( ).+ +=

a c– b c,–

f x( ) x = c( )–( ) a c–( )&( ) x = a( )–( ) b c–( )&( ) c,   or+ +=

f x( ) x = c( )–( ) a c( )&( ) x = a( )–( ) b c( )&( ) c.=

n1 n2
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whose bit differs in that position from the other two) is different in positions 
and  This is illustrated below for the values 21, 31, and 20, shown in binary.

Without loss of generality, rename a, b, and c so that a has the odd one out
in position  and b has the odd one out in position  as shown above. Then
there are two possibilities for the values of the bits at position  namely

 = (0, 1, 1) or (1, 0, 0). Similarly, there are two possibilities for the
bits at position  namely  = (0, 1, 0) or (1, 0, 1). This makes four
cases in all, and formulas for each of these cases are shown below.

Case 1.  = (0, 1, 1),  = (0, 1, 0):

Case 2.  = (0, 1, 1),  = (1, 0, 1):

Case 3.  = (1, 0, 0),  = (0, 1, 0):

Case 4.  = (1, 0, 0),  = (1, 0, 1):

In these formulas, the left operand of each multiplication is a single bit. A
multiplication by 0 or 1 can be converted into an and with a value of 0 or all 1’s.
Thus, the formulas can be rewritten as illustrated below for the first formula.

Because all variables except x are constants, this can be evaluated in eight instruc-
tions on the basic RISC. Here again, the additions and subtractions can be
replaced with exclusive or.

This idea can be extended to cycling among four or more constants. The
essence of the idea is to find bit positions   at which the bits uniquely
identify the constants. For four constants, three bit positions always suffice. Then

n1
n2.

1 0 1 0 1    c
1 1 1 1 1    a
1 0 1 0 0    b

n1 n2

n1 n2,
n1,

an1
bn1

cn1
, ,( )

n2, an2
bn2

cn2
, ,( )

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
a b–( )* xn2

c a–( )* b+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
a b–( )* xn2

a c–( )* b c a–+( )+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
b a–( )* xn2

c a–( )* a+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
b a–( )* xn2

a c–( )* c+ +=

f x( ) x 31 n1–( )<<( ) 31>>
s( ) a b–( )& x 31 n2–( )<<( ) 31>>

s( ) c a–( ) b+&+=

n1, n2, …,
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(for four constants) solve the following equation for s, t, u, and v (that is, solve the
system of four linear equations in which  is a, b, c, or d, and the coefficients

 are 0 or 1):

If the four constants are uniquely identified by only two bit positions, the equation
to solve is

2–22  A Boolean Decomposition Formula
In this section, we have a look at the minimum number of binary Boolean opera-
tions, or instructions, that suffice to implement any Boolean function of three, four,
or five variables. By a “Boolean function” we mean a Boolean-valued function of
Boolean arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and,  for
exclusive or, and either an overbar or a prefix ¬ for not. These operators can be
applied to single-bit operands or “bitwise” to computer words. Our main result is
the following theorem:

THEOREM.  If f(x, y, z) is a Boolean function of three variables, then it can
be decomposed into the form g(x, y)  zh(x, y), where g and h are Bool-
ean functions of two variables.6

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms, and then 
and z can be factored out of their terms, giving

Because the operands to “+” cannot both be 1, the or can be replaced with exclu-
sive or, giving

where we have twice used the identity 

6. Logic designers will recognize this as Reed-Muller, a.k.a positive Davio, decomposition.
According to Knuth [Knu4, 7.1.1], it was known to I. I. Zhegalkin [Matematicheskii Sbornik
35 (1928), 311–369]. It is sometimes referred to as the Russian decomposition.

f x( )
xni

f x( ) xn1
s xn2

t xn3
u v+ + +=

f x( ) xn1
s xn2

t xn1
xn2

u v.+ + +=

z

f x y z, ,( ) zf0 x y,( ) zf1 x y,( ).+=

f x y z, ,( ) zf0 x y,( ) zf1 x y,( )=

 1 z( )f0 x y,( ) zf1 x y,( )=

f0 x y,( ) zf0 x y,( ) zf1 x y,( )=

f0 x y,( ) z f0 x y,( ) f1 x y,( )( ),=

a b( )c ac bc.=
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This is in the required form with  and  =
  incidentally, is  with  and  is

 with 

COROLLARY. If a computer’s instruction set includes an instruction for
each of the 16 Boolean functions of two variables, then any Boolean
function of three variables can be implemented with four (or fewer)
instructions.

One instruction implements  another implements  and these are
combined with and and exclusive or.

As an example, consider the Boolean function that is 1 if exactly two of x, y,
and z are 1:

Before proceeding, the interested reader might like to try to implement f with four
instructions, without using the theorem.

From the proof of the theorem,

which is four instructions.
Clearly, the theorem can be extended to functions of four or more variables.

That is, any Boolean function  can be decomposed into the form
 Thus, a function of four variables can

be decomposed as follows:

This shows that a computer that has an instruction for each of the 16 binary Bool-
ean functions can implement any function of four variables with ten instructions.
Similarly, any function of five variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more vari-
ables there is probably no simple plug-in equation like the theorem gives, but
exhaustive computer searches have been done. The results are that any Boolean
function of four variables can be implemented with seven binary Boolean instruc-
tions, and any such function of five variables can be implemented with 12 such
instructions [Knu4, 7.1.2].

g x y,( ) f0 x y,( )= h x y,( )
f0 x y,( ) f1 x y,( ). f0 x y,( ), f x y z, ,( ) z 0,= f1 x y,( )
f x y z, ,( ) z 1.=

g x y,( ), h x y,( ),

f x y z, ,( ) xyz xyz xyz.+ +=

f x y z, ,( ) f0 x y,( ) z f0 x y,( ) f1 x y,( )( )=

xy z xy xy xy+( )( )=
xy z x y+( ),=

f x1 x2 … xn, , ,( )
g x1 x2 … xn 1–, , ,( ) xnh x1 x2 … xn 1–, , ,( ).

f w x y z, , ,( ) g w x y, ,( ) zh w x y, ,( ), where=
g w x y, ,( ) g1 w x,( ) yh1 w x,( ) and=

h w x y, ,( ) g2 w x,( ) yh2 w x,( ).=
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In the case of five variables, only 1920 of the  functions
require 12 instructions, and these 1920 functions are all essentially the same func-
tion. The variations are obtained by permuting the arguments, replacing some
arguments with their complements, or complementing the value of the function.

2–23  Implementing Instructions for All 16 Binary Boolean 
Operations
The instruction sets of some computers include all 16 binary Boolean operations.
Many of the instructions are useless in that their function can be accomplished with
another instruction. For example, the function f(x, y) = 0 simply clears a register,
and most computers have a variety of ways to do that. Nevertheless, one reason a
computer designer might choose to implement all 16 is that there is a simple and
quite regular circuit for doing it.

Refer to Table 2–1 on page 17, which shows all 16 binary Boolean functions.
To implement these functions as instructions, choose four of the opcode bits to be
the same as the function values shown in the table. Denoting these opcode bits by

   and  reading from the bottom up in the table, and the input registers
by x and y, the circuit for implementing all 16 binary Boolean operations is
described by the logic expression

For example, with = = = = 0, the instruction computes the zero func-
tion, f(x, y) = 0. With = 1 and the other opcode bits 0 it is the and instruction.
With = = 0 and = = 1 it is exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where n is the word size of the
machine. The data bits of x and y are the select lines, and the four opcode bits are
the data inputs to each MUX. The MUX is a standard building block in today’s
technology, and it is usually a very fast circuit. It is illustrated below.

The function of the circuit is to select c0, c1, c2, or c3 to be the output, depending on
whether x and y are 00, 01, 10, or 11, respectively. It is like a four-position rotary switch.

Elegant as this is, it is somewhat expensive in opcode points, using 16 of them.
There are a number of ways to implement all 16 Boolean operations using only
eight opcode points, at the expense of less regular logic. One such scheme is illus-
trated in Table 2–3.

225 4,294,967,296=

c0, c1, c2, c3,

c0xy c1xy c2xy c3xy.+ + +

c0 c1 c2 c3
c0

c0 c3 c1 c2

  4:1
MUX

select

x y

c0

c1
c2
c3

output



54 BASICS 2–23

The eight operations not shown in the table can be done with the eight instruc-
tions shown, by interchanging the inputs or by having both register fields of the
instruction refer to the same register. See exercise 13.

IBM’s POWER architecture uses this scheme, with the minor difference that
POWER has or with complement rather than complement and or. The scheme
shown in Table 2–3 allows the last four instructions to be implemented by comple-
menting the result of the first four instructions, respectively.

Historical Notes
The algebra of logic expounded in George Boole’s An Investigation of the Laws of
Thought (1854)7 is somewhat different from what we know today as “Boolean
algebra.” Boole used the integers 1 and 0 to represent truth and falsity, respec-
tively, and he showed how they could be manipulated with the methods of ordinary
numerical algebra to formalize natural language statements involving “and,” “or,”
and “except.” He also used ordinary algebra to formalize statements in set theory
involving intersection, union of disjoint sets, and complementation. He also for-
malized statements in probability theory, in which the variables take on real num-
ber values from 0 to 1. The work often deals with questions of philosophy, religion,
and law.

Boole is regarded as a great thinker about logic because he formalized it,
allowing complex statements to be manipulated mechanically and flawlessly with
the familiar methods of ordinary algebra.

Skipping ahead in history, there are a few programming languages that include
all 16 Boolean operations. IBM’s PL/I (ca. 1966) includes a built-in function
named BOOL. In BOOL(x, y, z), z is a bit string of length four (or converted to that

TABLE 2–3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

Function
Values Formula

Instruction
Mnemonic (Name)

0001 and
0010 andc (and with complement)
0110 xor (exclusive or)
0111 or
1110 nand (negative and)

1101 cor (complement and or)

1001 eqv (equivalence)

1000 nor (negative or)

7. The entire 335-page work is available at www.gutenberg.org/etext/15114.

xy
xy

x y
x y+

xy
xy, or x y+

x y, or x y
x y+

http://www.gutenberg.org/etext/15114
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if necessary), and x and y are bit strings of equal length (or converted to that if nec-
essary). Argument z specifies the Boolean operation to be performed on x and y.
Binary 0000 is the zero function, 0001 is xy, 0010 is  and so forth.

Another such language is Basic for the Wang System 2200B computer (ca.
1974), which provides a version of BOOL that operates on character strings rather
than on bit strings or integers [Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for 
where the final assignment to y is the result:

This is essentially the same as Gosper’s code (page 15), except the right shift
is done with a while-loop rather than with a divide instruction. Because divi-
sion is usually costly in time, this might be competitive with Gosper’s code if
the while-loop is not executed too many times. Let n be the length of the bit
strings x and y, k the number of 1-bits in the strings, and assume the code is
executed for all values of x that have exactly k 1-bits. Then for each invocation
of the function, how many times, on average, will the body of the while-loop
be executed?

2. The text mentions that a left shift by a variable amount is not right-to-left com-
putable. Consider the function  [Knu8]. This is a left shift by a
variable amount, but it can be computed by

which are all right-to-left computable operations. What is going on here? Can
you think of another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

xy,

x 0,

y x x x–&( )+

x x y¬&

while x 1&( ) = 0( ) x x 1>>
s

x x 1>>
s

y y x | 

x x 1&( )<<

x x 1&( )*x,   or+
x x x 1&( )–( )&( ),+

x y&( ) x y( ) 1>>
u( ).+
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4. Give an overflow-free method for computing the average of four unsigned
integers,

5. Many of the comparison predicates shown on page 23 can be simplified sub-
stantially if bit 31 of either x or y is known. Show how the seven-instruction
expression for  can be simplified to three basic RISC, non-comparison,
instructions if

6. Show that if two numbers, possibly distinct, are added with “end-around
carry,” the addition of the carry bit cannot generate another carry out of the
high-order position.

7. Show how end-around carry can be used to do addition if negative numbers
are represented in one’s-complement notation. What is the maximum number
of bit positions that a carry (from any bit position) might be propagated
through?

8. Show that the MUX operation, (x & m) | (y & ~m), can be done in three
instructions on the basic RISC (which does not have the and with complement
instruction).

9. Show how to implement  in four instructions with and-or-not logic.

10. Given a 32-bit word x and two integer variables i and j (in registers), show
code to copy the bit of x at position i to position j. The values of i and j have
no relation, but assume that 

11. How many binary Boolean instructions are sufficient to evaluate any n-variable
Boolean function if it is decomposed recursively by the method of the theorem?

12. Show that alternative decompositions of Boolean functions of three variables
are
(a)  (the “negative Davio decomposition”), and
(b)

13. It is mentioned in the text that all 16 binary Boolean operations can be done
with the eight instructions shown in Table 2-3, by interchanging the inputs or
by having both register fields of the instruction refer to the same register.
Show how to do this.

14. Suppose you are not concerned about the six Boolean functions that are really
constants or unary functions, namely f(x, y) = 0, 1, x, y,  and  but you want
your instruction set to compute the other ten functions with one instruction.
Can this be done with fewer than eight binary Boolean instruction types
(opcodes)?

15. Exercise 13 shows that eight instruction types suffice to compute any of the 16
two-operand Boolean operations with one R-R (register-register) instruction.
Show that six instruction types suffice in the case of R-I (register-immediate)

a b c d+ + +( ) 4⁄ .

x yu

y31 0.=

x y

0 i j, 31.

f x y z, ,( ) g x y,( ) zh x y,( )=
f x y z, ,( ) g x y,( ) z h x y,( )+( ).=

x, y,
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instructions. With R-I instructions, the input operands cannot be interchanged
or equated, but the second input operand (the immediate field) can be comple-
mented or, in fact, set to any value at no cost in execution time. Assume for
simplicity that the immediate fields are the same length as the general purpose
registers.

16. Show that not all Boolean functions of three variables can be implemented
with three binary logical instructions.
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INDEX

0-bits, leading zeros. See nlz function.
0-bits, trailing zeros. See also ntz (number

of trailing zeros) function.
counting, 107–114.
detecting, 324. See also CRC (cyclic 

redundancy check).
plots and graphs, 466

0-bytes, finding, 117–121
1-bits, counting. See Counting bits.
3:2 compressor, 90–95
The 16 Boolean binary operations, 53–57

A
Absolute value

computing, 18
multibyte, 40–41
negative of, 23–26

add instruction
condition codes, 36–37
propagating arithmetic bounds, 70–73

Addition
arithmetic tables, 453
combined with logical operations, 

16–17
double-length, 38–39
multibyte, 40–41
of negabinary numbers, 301–302
overflow detection, 28–29
plots and graphs, 461
in various number encodings, 304–305

Advanced Encryption Standard, 164
Alternating among values, 48–51
Alverson's method, 237–238
and

plots and graphs, 459
in three instructions, 17

and with complement, 131
Answers to exercises, by chapter

1: Introduction, 405–406
2: Basics, 407–415
3: Power-of-2 Boundaries, 415–416
4: Arithmetic Bounds, 416–417
5: Counting Bits, 417–418

6: Searching words, 418–423
7: Rearranging Bits and Bytes, 

423–425
8: Multiplication, 425–428
9: Integer Division, 428–430
10: Integer Division by Constants, 

431–434
11: Some Elementary Functions, 

434–435
12: Unusual Bases for Number Sys-

tems, 435–439
13: Gray Code, 439–441
14: Cyclic Redundancy Check, 

441–442
15: Error-Correcting Codes, 442–445
16: Hilbert's Curve, 446
17: Floating-Point, 446–448
18: Formulas for Primes, 448–452

Arithmetic, computer vs. ordinary, 1
Arithmetic bounds

checking, 67–69
of expressions, 70–71
propagating through, 70–73
range analysis, 70
searching for values in, 122

Arithmetic tables, 4-bit machine, 453–456
Arrays

checking bounds. See Arithmetic 
bounds.

counting 1-bits, 89–96
indexes, checking. See Arithmetic 

bounds.
indexing a sparse array, 95
permutation, 161–163
rearrangements, 165–166
of short integers, 40–41

Autodin-II polynomial, 323
Average, computing, 19, 55–56

B
Base –1 + i number system, 306–308

extracting real and imaginary parts, 310
Base –1 – i number system, 308–309



482 INDEX

Base –2 number system, 299–306
Gray code, 315
rounding down, 310

Basic RISC instruction set, 5–6
Basic, Wang System 2200B, 55
Big-endian format, converting to little-

endian, 129
Binary decomposition, integer exponentia-

tion, 288–290
Binary forward error-correcting block 

codes (FEC), 331
Binary search

counting leading 0's, 99–104
integer logarithm, 291–297
integer square root, 279–287

Bit matrices, multiplying, 98
Bit operations

compress operation, 150–156
computing parity. See Parity.
counting bits. See Counting bits.
finding strings of 1-bits, 123–128
flipping bits, 135
general permutations, 161–165
generalized bit reversal, 135
generalized extract, 150–156
half shuffle, 141
inner perfect shuffle, plots and graphs, 

468–469
inner perfect unshuffle, plots and 

graphs, 468
inner shuffle, 139–141
numbering schemes, 1
outer shuffle, 139–141, 373
perfect shuffle, 139–141
reversing bits. See Reversing bits and 

bytes.
on rightmost bits. See Rightmost bits.
searching words for bit strings, 107, 

123–128
sheep and goats operation, 161–165
shuffling bits, 139–141, 165–166
transposing a bit matrix, 141–150
unshuffling bits, 140–141, 150, 162

Bit reversal function, plots and graphs, 467
Bit vectors, 1
bitgather instruction, 163–165
Bits. See specific topics.
bitsize function, 106–107

Bliss, Robert D., xv
Bonzini, Paolo, 263
BOOL function, 54–55
Boole, George, 54
Boolean binary operations, all 16, 53–57
Boolean decomposition formula, 51–53, 

56–57
Boundary crossings, powers of 2, 63–64
Bounds, arithmetic. See Arithmetic 

bounds.
Bounds checking. See Checking arithmetic 

bounds.
branch on carry and register result non-

zero instruction, 63
Bytes. See also specific topics.

definition, 1
finding first 0-byte, 117–121

C
C language

arithmetic on pointers, 105, 240
GNU extensions, 105
iIterative statements, 4, 10
referring to same location with different 

types, 104
representation of character strings, 117
summary of elements, 2–4

Caches, 166-167
Carry-save adder (CSA) circuit, 90–95
CCITT (Le Comité Consultatif Internatio-

nale...), 321
Ceiling function, identities, 183–184
Chang, Albert, 123
Character strings, 117
Check bits

Hamming code, 332
SEC-DED code, 334–335

Checking arithmetic bounds, 67–69
Chinese ring puzzle, 315
Chipkill technology, 336
Code, definition, 343
Code length, 331, 343
Code rate, 343
Code size, 343
Comparison predicates

from the carry bit, 26–27
definition, 23
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number of leading zeros (nlz) function, 
23–24, 107

signed comparisons, from unsigned, 25
true/false results, 23
using negative absolute values, 23–26

Comparisons
computer evaluation of, 27
floating-point comparisons using inte-

ger operations, 381–382
three-valued compare function, 21–22.

See also sign function.
Compress function, plots and graphs, 

464–465
compress operation, 119, 150–161

with insert and extract instruc-
tions, 155–156

Computability test, right-to-left, 13–14, 55
Computer algebra, 2–4
Computer arithmetic

definition, 1
plots and graphs, 461–463

Condition codes, 36–37
Constants

dividing by. See Division of integers by 
constants.

multiplying by, 175–178
Counting bits. See also ntz (number of 

trailing zeros) function; nlz (number
of leading zeros) function; popula-
tion count function.

1-bits in
7- and 8-bit quantities, 87
an array, 89–95
a word, 81–88

bitsize function, 106–107
comparing two words, 88–89
divide and conquer strategy, 81–82
leading 0's, with

binary search method, 99–100
floating-point methods, 104–106
population count instruction, 

101–102
rotate and sum method, 85–86
search tree method, 109
with table lookup, 86–87
trailing 0's, 107–114
by turning off 1-bits, 85

CRC (cyclic redundancy check)
background, 319–320
check bits, generating, 319–320
checksum, computing

generator polynomials, 322–323, 
329

with hardware, 324–326
with software, 327–329
with table lookup, 328–329
techniques for, 320

code vector, 319
definition, 319
feedback shift register circuit, 325–326
generator polynomial, choosing, 

322–323, 329
parity bits, 319–320
practice

hardware checksums, 324–326
leading zeros, detecting, 324
overview, 323–324
residual/residue, 324
software checksums, 327–329
trailing zeros, detecting, 324

theory, 320–323
CRC codes, generator polynomials, 322, 

323
CRC-CITT polynomial, 323
Cryptography

Advanced Encryption Standard, 164
bitgather instruction, 164–165
DES (Data Encryption Standard), 164
Rijndael algorithm, 164
SAG method, 162–165
shuffling bits, 139–141, 165
Triple DES, 164

CSA (carry-save addr) circuit, 90–95
Cube root, approximate, floating-point, 389
Cube root, integer, 287–288
Curves. See also Hilbert's curve.

Peano, 371–372
space-filling, 355–372

Cycling among values, 48–51

D
Davio decomposition, 51-53, 56–57
de Bruijn cycles, 111–112
de Kloet, David, 55
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De Morgan's laws, 12–13
DEC PDP-10 computer, xiii, 84
Decryption. See Cryptography.
DES (Data Encryption Standard), 164
Dietz's formula, 19, 55
difference or zero (doz) function, 41–45
Distribution of leading digits, 385–387
Divide and conquer strategy, 81–82
Division

arithmetic tables, 455
doubleword

from long division, 197–202
signed, 201–202
by single word, 192–197
unsigned, 197–201

floor, 181–182, 237
modulus, 181–182, 237
multiword, 184–188
of negabinary numbers, 302–304
nonrestoring algorithm, 192–194
notation, 181
overflow detection, 34–36
plots and graphs, 463–464
restoring algorithm, 192–193
shift-and-subtract algorithms (hard-

ware), 192–194
short, 189–192, 195–197
signed

computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

unsigned
computer, 181
doubleword, 197–201
long, 192–197
short from signed, 189–192

Division of integers by constants
by 3, 207–209, 276–277
by 5 and 7, 209–210
exact division

converting to, 274–275
definition, 240
multiplicative inverse, Euclidean 

algorithm, 242–245
multiplicative inverse, Newton's 

method, 245–247

multiplicative inverse, samples, 
247–248

floor division, 237
incorporating into a compiler, signed, 

220–223
incorporating into a compiler, 

unsigned, 232–234
magic numbers

Alverson's method, 237–238
calculating, signed, 212–213, 

220–223
calculating, unsigned, 231–234
definition, 211
sample numbers, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
magicu2 algorithm, 236
modulus division, 237
remainder by multiplication and shift-

ing right
signed, 273–274
unsigned, 268–272

remainder by summing digits
signed, 266–268
unsigned, 262–266

signed
by divisors  –2, 218–220
by divisors  2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 

220–223
not using mulhs (multiply high 

signed), 259–262
remainder by multiplication and 

shifting right, 273–274
remainder by summing digits, 

266–268
remainder from powers of 2, 

206–207
test for zero remainder, 250–251
uniqueness, 224

timing test, 276
unsigned

best programs for, 234–235
by 3 and 7, 227–229
by divisors  1, 230–232
by powers of 2, 227
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Division of integers by constants, unsigned 
(continued)
incorporating into a compiler, 

232–234
incremental division and remainder 

technique, 232–234
not using mulhu (multiply high 

unsigned) instruction, 251–259
remainder by multiplication and 

shifting right, 268–272
remainder by summing digits, 

262–266
remainder from powers of 2, 227
test for zero remainder, 248–250

Double buffering, 46
Double-length addition/subtraction, 38–39
Double-length shifts, 39–40
Doubleword division

by single word, 192–197
from long division, 197–202
signed, 201–202
unsigned, 197–201

Doublewords, definition, 1
doz (difference or zero) function, 41–45
Dubé, Danny, 112

E
ECCs (error-correcting codes)

check bits, 332
code, definition, 343
code length, 331, 343
code rate, 343
code size, 343
coding theory problem, 345–351
efficiency, 343
FEC (binary forward error-correcting 

block codes), 331
Gilbert-Varshamov bound, 348–350
Hamming bound, 348, 350
Hamming code, 332-342

converting to SEC-DED code, 
334–337

extended, 334–337
history of, 335–337
overview, 332–334
SEC-DED on 32 information bits, 

337–342

Hamming distance, 95, 343–345
information bits, 332
linear codes, 348–349
overview, 331, 342–343
perfect codes, 333, 349, 352
SEC (single error-correcting) codes, 

331
SEC-DED (single error-correcting, 

double error-detecting) codes
on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 

334–337
definition, 331

singleton bound, 352
sphere-packing bound, 348, 350
spheres, 347–351

Encryption. See Cryptography.
End-around-carry, 38, 56, 304–305
Error detection, digital data. See CRC 

(cyclic redundancy check).
Estimating multiplication overflow, 33–34
Euclidean algorithm, 242–245
Euler, Leonhard, 392
Even parity, 96
Exact division

definition, 240
multiplicative inverse, Euclidean algo-

rithm, 242–245
multiplicative inverse, Newton's 

method, 245–247
multiplicative inverse, samples, 

247–248
overview, 240–242

Exchanging
conditionally, 47
corresponding register fields, 46
two fields in same register, 47
two registers, 45–46

exclusive or
plots and graphs, 460
propagating arithmetic bounds through, 

77–78
scan operation on an array of bits, 97
in three instructions, 17

Execution time model, 9–10
Exercise answers. See Answers to exercises.
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Expand  operation, 156–157, 159–161
Exponentiation

by binary decomposition, 288–290
in Fortran, 290

Extended Hamming code, 334–342
on 32 information bits, 337-342

Extract, generalized, 150–156

F
Factoring, 178
FEC (binary forward error-correcting 

block codes), 331
feedback shift register circuit, 325–326
Fermat numbers, 391
FFT (Fast Fourier Transform), 137–139
find leftmost 0-byte, 117–121
find rightmost 0-byte, 118–121
Finding

decimal digits, 122
first 0-byte, 117–121
first uppercase letter, 122
length of character strings, 117
next higher number, same number of 1-

bits, 14–15
the nth prime, 391–398, 403
strings of 1-bits

first string of a given length, 
123–125

longest string, 125–126
shortest string, 126–128

values within arithmetic bounds, 122
Flipping bits, 135
Floating-point numbers, 375–389

distribution of leading digits, 385–387
formats (single/double), 375–376
gradual underflow, 376
IEEE arithmetic standard, 375
IEEE format, 375–377
NaN (not a number), 375–376
normalized, 375–377
subnormal numbers, 375–377
table of miscellaneous values, 387–389
ulp (unit in the last position), 378

Floating-point operations
approximate cube root, 389
approximate reciprocal square root, 

383–385

approximate square root, 389
comparing using integer operations, 

381–382
conversion table, 378–381
converting to/from integers, 377–381
counting leading 0's with, 104–106
simulating, 107

Floor division, 181–182, 237
Floor function, identities, 183, 202–203
Floyd, R. W., 114
Formula functions, 398–403
Formulas for primes, 391–403
Fortran

IDIM function, 44
integer exponentiation, 290
ISIGN function, 22
MOD function, 182

Fractal triangles, plots and graphs, 460
Full adders, 90
Full RISC instruction set, 7
Fundamental theorem of arithmetic, 404

G
Gardner, Martin, 315
Gaudet, Dean, 110
Gaudet's algorithm, 110
generalized extract operation, 150–156
Generalized unshuffle. See SAG (sheep 

and goats) operation.
Generator polynomials, CRC codes, 

321–323
Gilbert-Varshamov bound, 348–350
Golay, M. J. E., 331
Goryavsky, Julius, 103
Gosper, R. W.

iterating through subsets, 14–15
loop-detection, 114–116

Gradual underflow, 376
Graphics-rendering, Hilbert's curve, 

372–373
Graphs. See Plots and graphs.
Gray, Frank, 315
Gray code

applications, 315–317
balanced, 317
converting integers to, 97, 312–313
cyclic, 312
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definition, 311
history of, 315–317
incrementing Gray-coded integers, 

313–315
negabinary Gray code, 315
plots and graphs, 466
reflected, 311–312, 315
single track (STGC), 316–317

Greatest common divisor function, plots 
and graphs, 464

GRP instruction, 165

H
Hacker, definition, xvi
HAKMEM (hacks memo), xiii
Half shuffle, 141
Halfwords, 1
Hamiltonian paths, 315
Hamming, R. W., 331
Hamming bound, 348, 350
Hamming code

on 32 information bits, 337–342
converting to SEC-DED code, 334–337
extended, 334–337
history of, 335–337
overview, 332–334
perfect, 333, 352

Hamming distance, 95, 343–345
triangle inequality, 352

Hardware checksums, 324–326
Harley, Robert, 90, 101
Harley's algorithm, 101, 103
Hexadecimal floating-point, 385
High-order half of product, 173–174
Hilbert, David, 355
Hilbert's curve. See also Space-filling 

curves.
applications, 372–373
coordinates from distance

curve generator driver program, 359
description, 358–366
Lam and Shapiro method, 362–364, 

368
parallel prefix operation, 3

65–366
state transition table, 361, 367

description, 355–356

distance from coordinates, 366–368
generating, 356–358
illustrations, 355, 357
incrementing coordinates, 368–371
non-recursive generation, 371
ray tracing, 372
three-dimensional analog, 373

Horner's rule, 49

I
IBM

Chipkill technology, 336
Harvest computer, 336
PCs, error checking, 336
PL/I language, 54
Stretch computer, 81, 336
System/360 computer, 385
System/370 computer, 63

IDIM function, 44
IEEE arithmetic standard, 375
IEEE format, floating-point numbers, 

375–377
IEEE Standard for Floating-Point Arith-

metic, 375
Image processing, Hilbert's curve, 372
Incremental division and remainder tech-

nique, 232–234
Inequalities, logical and arithmetic expres-

sions, 17–18
Information bits, 332
Inner perfect shuffle function, plots and 

graphs, 468–469
Inner perfect unshuffle function, plots and 

graphs, 468
Inner shuffle, 139–141
insert instruction, 155–156
Instruction level parallelism, 9
Instruction set for this book, 5–8
integer cube root function, 287–288, 297
Integer exponentiation, 288–290
integer fourth root function, 297
integer log base 2 function, 106, 291
integer log base 10 function, 292–297
Integer quotient function, plots and graphs, 

463
integer remainder function, 463
integer square root function, 279–287
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Integers. See also specific operations on 
integers.

complex, 306–309
converting to/from floating-point, 

377–381
converting to/from Gray code, 97, 

312–313
reversed, incrementing, 137–139
reversing, 129–137

Inverse Gray code function
formula, 312
plots and graphs, 466

An Investigation of the Laws of Thought,
54

ISIGN (transfer of sign) function, 22
Iterating through subsets, 14–15
ITU-TSS (International Telecommunica-

tions Union...), 321
ITU-TSS polynomial, 323

K
Knuth, Donald E., 132
Knuth's Algorithm D, 184–188
Knuth's Algorithm M, 171–172, 174–175
Knuth's mod operator, 181
Kronecker, Leopold, 375

L
Lam and Shapiro method, 362–364, 368
Landry, F., 391
Leading 0's, counting, 99–106. See also nlz 

(number of leading zeros) function.
Leading 0’s, detecting, 324. See also CRC 

(cyclic redundancy check).
Leading digits, distribution, 385–387
Least common multiple function, plots and 

graphs, 464
Linear codes, 348–349
Little-endian format, converting to/from 

big-endian, 129
load word byte-reverse (lwbrx) instruc-

tion, 118
Logarithms

binary search method, 292–293
definition, 291
log base 2, 106–107, 291
log base 10, 291–297

table lookup, 292, 294–297
Logical operations

with addition and subtraction, 16–17
and, plots and graphs, 459
binary, table of, 17
exclusive or, plots and graphs, 460
or, plots and graphs, 459
propagating arithmetic bounds through, 

74–76, 78
tight bounds, 74–78

Logical operators on integers, plots and 
graphs, 459–460

Long Division, definition, 189
Loop detection, 114–115
LRU (least recently used) algorithm, 

166–169
lwbrx (load word byte-reverse) instruc-

tion, 118

M
MacLisp, 55
magic algorithm

incremental division and remainder 
technique, 232–234

signed division, 220–223
unsigned division, 232–234

Magic numbers
Alverson's method, 237–238
calculating, signed, 212–213, 220–223
calculating, unsigned, 232–234
calculating, Python code for
definition, 211
samples, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
in Python, 240

magicu2 algorithm, 236–237
max function, 41–45
Mills, W. H., 403
Mills’s theorem, 403–404
min function, 41–45
MIT PDP-6 Lisp, 55
MOD function (Fortran), 182
modu (unsigned modulus) function, 98
Modulus division, 181–182, 237
Moore, Eliakim Hastings, 371–372
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mulhs (multiply high signed) instruction
division with, 207–210, 212, 218, 222, 

235
implementing in software, 173–174
not using, 259–262

mulhu (multiply high unsigned) instruction
division with, 228–229, 234–235, 238
implementing in software, 173
not using, 251–259

Multibyte absolute value, 40–41
Multibyte addition/subtraction, 40–41
Multiplication

arithmetic tables, 454
of complex numbers, 178–179
by constants, 175–178
factoring, 178
low-order halves independent of signs, 

178
high-order half of 64-bit product, 

173–174
high-order product signed from/to 

unsigned, 174–175
multiword, 171–173
of negabinary numbers, 302
overflow detection, 31–34
plots and graphs, 462

Multiplicative inverse
Euclidean algorithm, 242–245
Newton's method, 245–247, 278
samples, 247–248

multiply instruction, condition codes, 
36–37

Multiword division, 184–189
Multiword multiplication, 171–173
MUX (multiplex) operation, 42, 56, 131, 

163, 406

N
NAK (negative acknowledgment), 319
NaN (not a number), 375–376
Negabinary number system, 299–306

Gray code, 315
Negative absolute value, 23–26
Negative overflow, 30
Newton-Raphson calculation, 383
Newton's method, 457–458

integer cube root, 287–288

integer square root, 279–283
multiplicative inverse, 245–248

Next higher number, same number of 1-
bits, 14–15

Nibbles, 1
nlz (number of leading zeros) function

applications, 79, 107, 128
bitsize function, 106–107
comparison predicates, 23–24, 107
computing, 99–106
for counting trailing 0's, 107
finding 0-bytes, 118
finding strings of 1-bits, 123–124
incrementing reversed integers, 138
and integer log base 2 function, 106
rounding to powers of 2, 61

Nonrestoring algorithm, 192–194
Normalized numbers, 376
Notation used in this book, 1–4
nth prime, finding

formula functions, 398–401
Willans's formulas, 393–397
Wormell's formula, 397–398

ntz (number of trailing zeros) function
applications, 114–116
from counting leading 0's, 107
loop detection, 114–115
ruler function, 114

Number systems
base –1 + i, 306–308
base –1 – i, 308–309
base –2, 299–306, 315
most efficient base, 309–310
negabinary, 299–306, 315

O
Odd parity, 96
1-bits, counting. See Counting bits.
or

plots and graphs, 459
in three instructions, 17

Ordinary arithmetic, 1
Ordinary rational division, 181
Outer perfect shuffle bits function, plots 

and graphs, 469
Outer perfect shuffle function, plots and 

graphs, 467
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Outer perfect unshuffle function, plots and 
graphs, 468

Outer shuffle, 139–141, 373
Overflow detection

definition, 28
division, 34–36
estimating multiplication overflow, 

33–34
multiplication, 31–34
negative overflow, 30
signed add/subtract, 28–30
unsigned add/subtract, 31

P
Parallel prefix operation

definition, 97
Hilbert's curve, 364–366
inverse, 116
parity, 97

Parallel suffix operation
compress operation, 150–155
expand operation, 156–157, 159–161
generalized extract, 150–156
inverse, 116

Parity
adding to 7-bit quantities, 98
applications, 98
computing, 96–98
definition, 96
parallel prefix operation, 97
scan operation, 97
two-dimensional, 352

Parity bits, 319–320
PCs, error checking, 336
Peano, Giuseppe, 355
Peano curves, 371–372. See also Hilbert's 

curve.
Peano-Hilbert curve. See Hilbert's curve.
Perfect codes, 333, 349
Perfect shuffle, 139–141, 373
Permutations on bits, 161–165. See also

Bit operations.
Planar curves, 355. See also Hilbert's curve.
Plots and graphs, 459–469

addition, 461
bit reversal function, 467
compress function, 464–465

division, 463–464
fractal triangles, 460
Gray code function, 466
greatest common divisor function, 464
inner perfect shuffle, 468–469
inner perfect unshuffle, 468
integer quotient function, 463
inverse Gray code function, 466
least common multiple function, 464
logical and function, 459
logical exclusive or function, 460
logical operators on integers, 459–460
logical or function, 459
multiplication, 462
number of trailing zeros, 466
outer perfect shuffle, 467–469
outer perfect unshuffle, 468
population count function, 467
remainder function, 463
rotate left function, 465
ruler function, 466
SAG (sheep and goats) function, 

464–465
self-similar triangles, 460
Sierpinski triangle, 460
subtraction, 461
unary functions, 466–469
unsigned product of x and y, 462

Poetry, 278, 287
population count function. See also Count-

ing bits.
applications, 95–96
computing Hamming distance, 95
counting 1-bits, 81
counting leading 0's, 101–102
counting trailing 0's, 107–114
plots and graphs, 467

Position sensors, 315–317
Powers of 2

boundary crossings, detecting, 63–64
rounding to, 59–62, 64
signed division, 205–206
unsigned division, 227

PPERM instruction, 165
Precision, loss of, 385–386
Prime numbers

Fermat numbers, 391
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finding the nth prime
formula functions, 398–403
Willans's formulas, 393–397
Wormell's formula, 397–398

formulas for, 391–403
from polynomials, 392

Propagating arithmetic bounds
add and subtract instructions, 70–73
logical operations, 73–78
signed numbers, 71–73
through exclusive or, 77–78

PSHUFB (Shuffle Packed Bytes) instruc-
tion, 163

PSHUFD (Shuffle Packed Doublewords)
instruction, 163

PSHUFW (Shuffle Packed Words) instruc-
tion, 163

Q
Quicksort, 81

R
Range analysis, 70
Ray tracing, Hilbert's curve, 372
Rearrangements and index transforma-

tions, 165–166
Reed-Muller decomposition, 51-53, 

56–57
Reference matrix method (LRU), 166–169
Reflected binary Gray code, 311–312, 

315
Registers

exchanging, 45–46
exchanging conditionally, 47
exchanging fields of, 46–47
reversing contents of, 129–135
RISC computers, 5

Reiser, John, 113
Reiser's algorithm, 113–114
Remainder function, plots and graphs, 

463
Remainders

arithmetic tables, 456
of signed division

by multiplication and shifting right, 
273–274

by summing digits, 266–268

from non-powers of 2, 207–210
from powers of 2, 206–207
test for zero, 248–251

of unsigned division
by multiplication and shifting right, 

268–272
by summing digits, 262–266
and immediate instruction, 227
incremental division and remainder 

technique, 232–234
test for zero, 248–250

remu function, 119, 135–136
Residual/residue, 324
Restoring algorithm, 192–193
Reversing bits and bytes, 129–137

6-, 7-, 8-, and 9-bit quantities, 135–137
32-bit words, 129–135
big-endian format, converting to little-

endian, 129
definition, 129
generalized, 135
load word byte-reverse (lwbrx)

instruction, 118
rightmost 16 bits of a word, 130
with rotate shifts, 129–133
small integers, 135–137
table lookup, 134

Riemann hypothesis, 404
Right justify function, 116
Rightmost bits, manipulating, 11–12, 15

De Morgan's laws, 12–13
right-to-left computability test, 13–14, 

55
Rijndael algorithm, 164
RISC

basic instruction set, 5–6
execution time model, 9–10
extended mnemonics, 6, 8
full instruction set, 7–8
registers, 5–6

Rotate and sum method, 85–86
Rotate left function, plots and graphs, 

464–465
Rotate shifts, 37–38, 129–133
Rounding to powers of 2, 59–62, 64
Ruler function, 114, 466
Russian decomposition, 51-53, 56–57
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S
SAG (sheep and goats) operation

description, 162–165
plots and graphs, 464–465

Scan operation, 97
Seal, David, 90, 110
Search tree method, 109
Searching. See Finding.
SEC (single error-correcting) codes, 331
SEC-DED (single error-correcting, double 

error-detecting) codes
on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 

334–335
definition, 331

Select instruction, 406
Self-reproducing program, xvi
Self-similar triangles, plots and graphs, 460
shift left double operation, 39
shift right double signed operation, 39–40
shift right double unsigned operation, 39
shift right extended immediate (shrxi)

instruction, 228–229
shift right signed instruction

alternative to, for sign extension, 19–20
division by power of 2, 205–206
from unsigned, 20

Shift-and-subtract algorithm
hardware, 192–194
integer square root, 285–287

Shifts
double-length, 39–40
rotate, 37–38

Short division, 189–192, 195–196
Shroeppel's formula, 305–306
shrxi (shift right extended immediate)

instruction, 228–229
Shuffle Packed Bytes (PSHUFB) instruc-

tion, 163
Shuffle Packed Doublewords (PSHUFD)

instruction, 163
Shuffle Packed Words (PSHUFW) instruc-

tion, 163
Shuffling

arrays, 165–166
bits

half shuffle, 141

inner perfect shuffle, plots and 
graphs, 468–469

inner perfect unshuffle, plots and 
graphs, 468

inner shuffle, 139–141
outer shuffle, 139–141, 373
perfect shuffle, 139–141
shuffling bits, 139–141, 165–166
unshuffling, 140–141, 150, 162, 

165-166
Sierpinski triangle, plots and graphs, 460
Sign extension, 19–20
sign function, 20–21. See also three-valued 

compare function.
Signed bounds, 78
Signed comparisons, from unsigned, 25
Signed computer division, 181–182
Signed division

arithmetic tables, 455
computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

Signed division of integers by constants
best programs for, 225–227
by divisors  –2, 218–220
by divisors  2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 

220–223
remainder from non-powers of 2, 

207–210
remainder from powers of 2, 206–207
test for zero remainder, 250–251
uniqueness of magic number, 224

Signed long division, 189
Signed numbers, propagating arithmetic 

bounds, 71–73
Signed short division, 190–192
signum function, 20–21
Single error-correcting, double error-

detecting (SEC-DED) codes. See
SEC-DED (single error-correcting, 
double error-detecting) codes.

Single error-correcting (SEC) codes, 331
snoob function, 14–15
Software checksums, 327–329
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Space-filling curves, 371–372. See also
Hilbert's curve.

Sparse array indexing, 95
Sphere-packing bound, 348–350
Spheres, ECCs (error-correcting codes), 

347–350
Square root, integer

binary search, 281–285
hardware algorithm, 285–287
Newton's method, 279–283
shift-and-subtract algorithm, 285–287

Square root, approximate, floating-point, 
389

Square root, approximate reciprocal, float-
ing-point, 383–385

Stibitz, George, 308
Strachey, Christopher, 130
Stretch computer, 81, 336
Strings. See Bit operations; Character 

strings.
strlen (string length) C function, 117
Subnormal numbers, 376
Subnorms, 376
subtract instruction

condition codes, 36–37
propagating arithmetic bounds, 70–73

Subtraction
arithmetic tables, 453
difference or zero (doz) function, 41–45
double-length, 38–39
combined with logical operations, 

16–17
multibyte, 40–41
of negabinary numbers, 301–302
overflow detection, 29–31
plots and graphs, 461

Swap-and-complement method, 362–365
Swapping pointers, 46
System/360 computer, 385
System/370 computer, 63

T
Table lookup, counting bits, 86–87
three-valued compare function, 21–22. See

also sign function.
Tight bounds

add and subtract instructions, 70–73
logical operations, 74–79

Timing test, division of integers by 
constants, 276

Toggling among values, 48–51
Tower of Hanoi puzzle, 116, 315
Trailing zeros. See also ntz (number of 

trailing zeros) function.
counting, 107–114
detecting, 324. See also CRC (cyclic 

redundancy check).
plots and graphs, 466

Transfer of sign (ISIGN) function, 22
Transposing a bit matrix

8 x 8, 141–145
32 x 32, 145–149

Triangles
fractal, 460
plots and graphs, 460
self-similar, 460
Sierpinski, 460

Triple DES, 164
True/false comparison results, 23
Turning off 1-bits, 85

U
Ulp (unit in the last position), 378
Unaligned load, 65
Unary functions, plots and graphs, 

466–469
Uniqueness, of magic numbers, 224
Unshuffling

arrays, 162
bits, 140–141, 162, 468

Unsigned division
arithmetic tables, 455
computer, 181
doubleword, 197–201
long, 192–197
short from signed, 189–192

Unsigned division of integers by constants
best programs for, 234–235
by 3 and 7, 227–229
by divisors  1, 230–232
by powers of 2, 227
incorporating into a compiler, 232–234
incremental division and remainder 

technique, 232–234
remainders, from powers of 2, 227
test for zero remainder, 248–250
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unsigned modulus (modu) function, 84
Unsigned product of x and y, plots and 

graphs, 462
Uppercase letters, finding, 122

V
Voorhies, Douglas, 373

W
Willans, C. P., 393
Willans's formulas, 393–397
Wilson's theorem, 393, 403
Word parity. See Parity.
Words

counting bits, 81–87
definition, 1
division

doubleword by single word, 192–197

Knuth's Algorithm D, 184–188
multiword, 184–189
signed, multiword, 188

multiplication, multiword, 171–173
reversing, 129–134
searching for

first 0-byte, 117–121
first uppercase letter, 122
strings of 1-bits, 123–128
a value within a range, 122

word parallel operations, 13
Wormell, C. P., 397
Wormell's formula, 397–398

Z
zbytel function, 117–121
zbyter function, 117–121
Zero means 2n, 22–23
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