
221

Chapter

15
 15 UML INTERACTION DIAGRAMS

Cats are smarter than dogs. You can’t
get eight cats to pull a sled through snow.

—Jeff Valdez

Introduction

The UML includes interaction diagrams to illustrate how objects interact via
messages. They are used for dynamic object modeling. There are two com-
mon types: sequence and communication interaction diagrams. This chapter
introduces the notation—view it as a reference to skim through—while subse-
quent chapters focus on a more important question: What are key principles in
OO design?

In the following chapters, interaction diagrams are applied to help explain and
demonstrate object design. Hence, it’s useful to at least skim these examples
before moving on.

Objectives

■ Provide a reference for frequently used UML interaction diagram nota-
tion—sequence and communication diagrams.

What’s Next?
Having introduced OO design (OOD), this chapter summarizes UML

interaction diagrams for dynamic OO design. The next chapter summarizes

UML class diagrams for static OO design.

UML Interaction

Diagrams

On to Object

Design

Object Design

with GRASP

Logical

Layered

Architecture

UML Class

Diagrams

UML and Patterns.book Page 221 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

222

15.1 Sequence and Communication Diagrams

The term interaction diagram is a generalization of two more specialized
UML diagram types:

■ sequence diagrams

■ communication diagrams

Both can express similar interactions.

A related diagram is the interaction overview diagram; it provides a big-pic-
ture overview of how a set of interaction diagrams are related in terms of logic
and process-flow. However, it’s new to UML 2, and so it’s too early to tell if it will
be practically useful.

Sequence diagrams are the more notationally rich of the two types, but commu-
nication diagrams have their use as well, especially for wall sketching. Through-
out the book, both types will be used to emphasize the flexibility in choice.

Sequence diagrams illustrate interactions in a kind of fence format, in which
each new object is added to the right, as shown in Figure 15.1.

Figure 15.1 Sequence diagram.

What might this represent in code?1 Probably, that class A has a method named
doOne and an attribute of type B. Also, that class B has methods named doTwo
and doThree. Perhaps the partial definition of class A is:

public class A
{
private B myB = new B();

public void doOne()
{

myB.doTwo();
myB.doThree();

}
// …
}

1. Code mapping or generation rules will vary depending on the OO language.

: A myB : B

doTwo

doOne

doThree

UML and Patterns.book Page 222 Thursday, September 16, 2004 9:53 PM

223

SEQUENCE AND COMMUNICATION DIAGRAMS

Communication diagrams illustrate object interactions in a graph or network
format, in which objects can be placed anywhere on the diagram (the essence of
their wall sketching advantage), as shown in Figure 15.2.

Figure 15.2 Communication diagram.

What are the Strengths and Weaknesses of Sequence vs. Communication
Diagrams?

Each diagram type has advantages, and modelers have idiosyncratic prefer-
ence—there isn’t an absolutely “correct” choice. However, UML tools usually
emphasize sequence diagrams, because of their greater notational power.

Sequence diagrams have some advantages over communication diagrams. Per-
haps first and foremost, the UML specification is more sequence diagram cen-
tric—more thought and effort has been put into the notation and semantics.
Thus, tool support is better and more notation options are available. Also, it is
easier to see the call-flow sequence with sequence diagrams—simply read top to
bottom. With communication diagrams we must read the sequence numbers,
such as “1:” and “2:”. Hence, sequence diagrams are excellent for documentation
or to easily read a reverse-engineered call-flow sequence, generated from source
code with a UML tool.

three ways to use
UML p. 11

But on the other hand, communication diagrams have advantages when apply-
ing “UML as sketch” to draw on walls (an Agile Modeling practice) because they
are much more space-efficient. This is because the boxes can be easily placed or
erased anywhere—horizontal or vertical. Consequently as well, modifying wall
sketches is easier with communication diagrams—it is simple (during creative
high-change OO design work) to erase a box at one location, draw a new one
elsewhere, and sketch a line to it. In contrast, new objects in a sequence dia-
grams must always be added to the right edge, which is limiting as it quickly
consumes and exhausts right-edge space on a page (or wall); free space in the
vertical dimension is not efficiently used. Developers doing sequence diagrams
on walls rapidly feel the drawing pain when contrasted with communication dia-
grams.

Likewise, when drawing diagrams that are to be published on narrow pages
(like this book), communication diagrams have the advantage over sequence
diagrams of allowing vertical expansion for new objects—much more can be
packed into a small visual space.

: A

myB : B

1: doTwo

2: doThree

doOne

UML and Patterns.book Page 223 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

224

Example Sequence Diagram: makePayment

Figure 15.3 Sequence diagram.

The sequence diagram shown in Figure 15.3 is read as follows:

1. The message makePayment is sent to an instance of a Register. The sender is
not identified.

2. The Register instance sends the makePayment message to a Sale instance.

3. The Sale instance creates an instance of a Payment.

From reading Figure 15.3, what might be some related code for the Sale class
and its makePayment method?

public class Sale
{
private Payment payment;

public void makePayment(Money cashTendered)
{

payment = new Payment(cashTendered);
//…

}
// …
}

Type Strengths Weaknesses

sequence clearly shows sequence or time order-
ing of messages

large set of detailed notation options

forced to extend to the right when
adding new objects; consumes hori-
zontal space

communication space economical—flexibility to add
new objects in two dimensions

more difficult to see sequence of
messages

fewer notation options

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

: Payment
create(cashTendered)

UML and Patterns.book Page 224 Thursday, September 16, 2004 9:53 PM

225

NOVICE UML MODELERS DON’T PAY ENOUGH ATTENTION TO INTERACTION DIAGRAMS!

Example Communication Diagram: makePayment

Figure 15.4 Communication diagram.

The communication diagram shown in Figure 15.3 has the same intent as the
prior sequence diagram.

15.2 Novice UML Modelers Don’t Pay Enough Attention to
Interaction Diagrams!

Most UML novices are aware of class diagrams and usually think they are the
only important diagram in OO design. Not true!

Although the static-view class diagrams are indeed useful, the dynamic-view
interaction diagrams—or more precisely, acts of dynamic interaction modeling—
are incredibly valuable.

Why? Because it’s when we have to think through the concrete details of what
messages to send, and to whom, and in what order, that the “rubber hits the
road” in terms of thinking through the true OO design details.

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

direction of message

Guideline

Spend time doing dynamic object modeling with interaction
diagrams, not just static object modeling with class diagrams.

UML and Patterns.book Page 225 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

226

15.3 Common UML Interaction Diagram Notation

Illustrating Participants with Lifeline Boxes

In the UML, the boxes you’ve seen in the prior sample interaction diagrams are
called lifeline boxes. Their precise UML definition is subtle, but informally they
represent the participants in the interaction—related parts defined in the con-
text of some structure diagram, such as a class diagram. It is not precisely accu-
rate to say that a lifeline box equals an instance of a class, but informally and
practically, the participants will often be interpreted as such. Therefore, in this
text I’ll often write something like “the lifeline representing a Sale instance,” as
a convenient shorthand. See Figure 15.5 for common cases of notation.

Figure 15.5 Lifeline boxes to show participants in interactions.

Basic Message Expression Syntax

Interaction diagrams show messages between objects; the UML has a standard
syntax for these message expressions:2

sales:

ArrayList<Sale>

:Sale s1 : Sale

lifeline box representing an

instance of an ArrayList class,

parameterized (templatized) to

hold Sale objects

lifeline box representing an

unnamed instance of class Sale

lifeline box representing a

named instance

sales[i] : Sale

lifeline box representing

one instance of class Sale,

selected from the sales

ArrayList <Sale> collection

x : List

«metaclass»

Font

lifeline box representing the class

Font, or more precisely, that Font is

an instance of class Class – an

instance of a metaclass

related

example

List is an interface

in UML 1.x we could not use an

interface here, but in UML 2, this (or

an abstract class) is legal

2. An alternate syntax, such as C# or Java, is acceptable—and supported by UML tools.

UML and Patterns.book Page 226 Thursday, September 16, 2004 9:53 PM

227

BASIC SEQUENCE DIAGRAM NOTATION

return = message(parameter : parameterType) : returnType

Parentheses are usually excluded if there are no parameters, though still legal.

Type information may be excluded if obvious or unimportant.

For example:

initialize(code)
initialize
d = getProductDescription(id)
d = getProductDescription(id:ItemID)
d = getProductDescription(id:ItemID) : ProductDescription

Singleton Objects

Singleton p. 442
In the world of OO design patterns, there is one that is especially common,
called the Singleton pattern. It is explained later, but an implication of the pat-
tern is that there is only one instance of a class instantiated—never two. In
other words, it is a “singleton” instance. In a UML interaction diagram
(sequence or communication), such an object is marked with a ‘1’ in the upper
right corner of the lifeline box. It implies that the Singleton pattern is used to
gain visibility to the object—the meaning of that won’t be clear at this time, but
will be upon reading its description on p. 442. See Figure 15.6.

Figure 15.6 Singletons in interaction diagrams.

15.4 Basic Sequence Diagram Notation

Lifeline Boxes and Lifelines

lifeline boxes
p. 226

In contrast to communication diagrams, in sequence diagrams the lifeline boxes
include a vertical line extending below them—these are the actual lifelines.
Although virtually all UML examples show the lifeline as dashed (because of
UML 1 influence), in fact the UML 2 specification says it may be solid or dashed.

: Register
1

: Store

doA
doX

the ‘1’ implies this is a

Singleton, and accessed

via the Singleton pattern

UML and Patterns.book Page 227 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

228

Messages

Each (typical synchronous) message between objects is represented with a mes-
sage expression on a filled-arrowed3 solid line between the vertical lifelines (see
Figure 15.7). The time ordering is organized from top to bottom of lifelines.

Figure 15.7 Messages and focus of control with execution specification bar.

In the example of Figure 15.7 the starting message is called a found message
in the UML, shown with an opening solid ball; it implies the sender will not be
specified, is not known, or that the message is coming from a random source.
However, by convention a team or tool may ignore showing this, and instead use
a regular message line without the ball, intending by convention it is a found
message.4

Focus of Control and Execution Specification Bars

As illustrated in Figure 15.7, sequence diagrams may also show the focus of con-
trol (informally, in a regular blocking call, the operation is on the call stack)
using an execution specification bar (previously called an activation bar or
simply an activation in UML 1). The bar is optional.

Guideline: Drawing the bar is more common (and often automatic) when using
a UML CASE tool, and less common when wall sketching.

3. An open message arrow means an asynchronous message in an interaction diagram.
4. Therefore, many of the book examples won’t bother with the found message notation.

: Register : Sale

doA

doB

doX

doC

doD

typical sychronous message

shown with a filled-arrow line

a found message

whose sender will not

be specified

execution specification

bar indicates focus of

control

UML and Patterns.book Page 228 Thursday, September 16, 2004 9:53 PM

229

BASIC SEQUENCE DIAGRAM NOTATION

Illustrating Reply or Returns

There are two ways to show the return result from a message:

1. Using the message syntax returnVar = message(parameter).

2. Using a reply (or return) message line at the end of an activation bar.

Both are common in practice. I prefer the first approach when sketching, as it’s
less effort. If the reply line is used, the line is normally labelled with an arbi-
trary description of the returning value. See Figure 15.8.

Figure 15.8 Two ways to show a return result from a message.

Messages to “self” or “this”

You can show a message being sent from an object to itself by using a nested
activation bar (see Figure 15.9).

Figure 15.9 Messages to “this.”

Creation of Instances

Object creation notation is shown in Figure 15.10. Note the UML-mandated
dashed line.5 The arrow is filled if it’s a regular synchronous message (such as
implying invoking a Java constructor), or open (stick arrow) if an asynchronous

: Register : Sale

d1 = getDate

getDate

doX

aDate

: Register

doX

clear

5. I see no value in requiring a dashed line, but it’s in the spec… Many author examples
use a solid line, as early draft versions of the spec did as well.

UML and Patterns.book Page 229 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

230

call. The message name create is not required—anything is legal—but it’s a
UML idiom.

The typical interpretation (in languages such as Java or C#) of a create message
on a dashed line with a filled arrow is “invoke the new operator and call the con-
structor”.

Figure 15.10 Instance creation and object lifelines.

Object Lifelines and Object Destruction

In some circumstances it is desirable to show explicit destruction of an object.
For example, when using C++ which does not have automatic garbage collection,
or when you want to especially indicate an object is no longer usable (such as a
closed database connection). The UML lifeline notation provides a way to
express this destruction (see Figure 15.11).

Figure 15.11 Object destruction.

Diagram Frames in UML Sequence Diagrams

To support conditional and looping constructs (among many other things), the
UML uses frames.6 Frames are regions or fragments of the diagrams; they have

: Register : Sale

makePayment(cashTendered)

: Payment
create(cashTendered)

authorize

note that newly created

objects are placed at their

creation "height"

: Sale

: Payment
create(cashTendered)

...
the «destroy» stereotyped

message, with the large

X and short lifeline

indicates explicit object

destruction
«destroy»

X

UML and Patterns.book Page 230 Thursday, September 16, 2004 9:53 PM

231

BASIC SEQUENCE DIAGRAM NOTATION

an operator or label (such as loop) and a guard7 (conditional clause). See Figure
15.12.

Figure 15.12 Example UML frame.

The following table summarizes some common frame operators:

Looping

The LOOP frame notation to show looping is shown in Figure 15.12.

Conditional Messages

An OPT frame is placed around one or more messages. Notice that the guard is

6. Also called diagram frames or interaction frames.
7. The [boolean test] guard should be placed over the lifeline to which it belongs.

enterItem(itemID, quantity)

: B

endSale

a UML loop

frame, with a

boolean guard

expression description, total

makeNewSale

[more items]loop

: A

Frame
Operator Meaning

alt Alternative fragment for mutual exclusion conditional logic
expressed in the guards.

loop Loop fragment while guard is true. Can also write loop(n) to indi-
cate looping n times. There is discussion that the specification
will be enhanced to define a FOR loop, such as loop(i, 1, 10)

opt Optional fragment that executes if guard is true.

par Parallel fragments that execute in parallel.

region Critical region within which only one thread can run.

UML and Patterns.book Page 231 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

232

placed over the related lifeline. See Figure 15.13.

Figure 15.13 A conditional message.

Conditional Messages in UML 1.x Style—Still Useful?

The UML 2.x notation to show a single conditional message is heavyweight,
requiring an entire OPT frame box around one message (see Figure 15.13). The
older UML 1.x notation for single conditional messages in sequence diagrams is
not legal in UML 2, but so simple that especially when sketching it will probably
be popular for years to come. See Figure 15.14.

Figure 15.14 A conditional message in UML 1.x notation—a simple style.

Guideline: Use UML 1 style only for simple single messages when sketching.

Mutually Exclusive Conditional Messages

An ALT frame is placed around the mutually exclusive alternatives. See Figure
15.15.

calculate

: Bar

yy

xx

[color = red]opt

: Foo

[color = red] calculate

: Bar

yy

xx

: Foo

UML and Patterns.book Page 232 Thursday, September 16, 2004 9:53 PM

233

BASIC SEQUENCE DIAGRAM NOTATION

Figure 15.15 Mutually exclusive conditional messages.

Iteration Over a Collection

A common algorithm is to iterate over all members of a collection (such as a list
or map), sending the same message to each. Often, some kind of iterator object
is ultimately used, such as an implementation of java.util.Iterator or a C++
standard library iterator, although in the sequence diagram that low-level
“mechanism” need not be shown in the interest of brevity or abstraction.

At the time of this writing, the UML specification did not (and may never) have
an official idiom for this case. Two alternatives are shown—reviewed with the
leader of the UML 2 interaction specification—in Figure 15.16 and Figure 15.17.

Figure 15.16 Iteration over a collection using relatively explicit notation.

: B: A

calculate

doX

: C

calculate

[x < 10]alt

[else]

st = getSubtotal

lineItems[i] :

SalesLineItem

t = getTotal

[i < lineItems.size]loop

: Sale This lifeline box represents one

instance from a collection of many

SalesLineItem objects.

lineItems[i] is the expression to

select one element from the

collection of many

SalesLineItems; the ‘i” value

refers to the same “i” in the guard

in the LOOP frame

an action box may contain arbitrary language

statements (in this case, incrementing ‘i’)

it is placed over the lifeline to which it applies

i++

UML and Patterns.book Page 233 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

234

Note the selector expression lineItems[i] in the lifeline of Figure 15.16. The
selector expression is used to select one object from a group. Lifeline partici-
pants should represent one object, not a collection.

In Java, for example, the following code listing is a possible implementation that
maps the explicit use of the incrementing variable i in Figure 15.16 to an idiom-
atic solution in Java, using its enhanced for statement (C# has the same).

public class Sale
{
private List<SalesLineItem> lineItems =

new ArrayList<SalesLineItem>();

public Money getTotal()
{

Money total = new Money();
Money subtotal = null;

for (SalesLineItem lineItem : lineItems)
{

subtotal = lineItem.getSubtotal();
total.add(subtotal);

}
return total;

}
// …
}

Another variation is shown in Figure 15.17; the intent is the same, but details
are excluded. A team or tool could agree on this simple style by convention to
imply iteration over all the collection elements.8

Figure 15.17 Iteration over a collection leaving things more implicit.

8. I use this style later in the book.

st = getSubtotal

lineItems[i] :

SalesLineItem

t = getTotal

loop

: Sale

UML and Patterns.book Page 234 Thursday, September 16, 2004 9:53 PM

235

BASIC SEQUENCE DIAGRAM NOTATION

Nesting of Frames

Frames can be nested. See Figure 15.18.

Figure 15.18 Nesting of frames.

How to Relate Interaction Diagrams?

Figure 15.19 illustrates probably better than words. An interaction occur-
rence (also called an interaction use) is a reference to an interaction within
another interaction. It is useful, for example, when you want to simplify a dia-
gram and factor out a portion into another diagram, or there is a reusable inter-
action occurrence. UML tools take advantage of them, because of their
usefulness in relating and linking diagrams.

They are created with two related frames:

■ a frame around an entire sequence diagram9, labeled with the tag sd and a
name, such as AuthenticateUser

■ a frame tagged ref, called a reference, that refers to another named
sequence diagram; it is the actual interaction occurrence

Interaction overview diagrams also contain a set of reference frames (inter-
action occurrences). These diagrams organized references into a larger structure
of logic and process flow.

calculate

: Bar

xx

[color = red]opt

: Foo

loop(n)

9. Interaction occurrences and ref frames can also be used for communication diagrams.

UML and Patterns.book Page 235 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

236

Guideline: Any sequence diagram can be surrounded with an sd frame, to
name it. Frame and name one when you want to refer to it using a ref frame.

Figure 15.19 Example interaction occurrence, sd and ref frames.

Messages to Classes to Invoke Static (or Class) Methods

You can show class or static method calls by using a lifeline box label that indi-
cates the receiving object is a class, or more precisely, an instance of a meta-
class (see Figure 15.20).

What do I mean? For example, in Java and Smalltalk, all classes are conceptu-
ally or literally instances of class Class; in .NET classes are instances of class
Type. The classes Class and Type are metaclasses, which means their instances
are themselves classes. A specific class, such as class Calendar, is itself an

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to

has the same lifelines: B and C

doA

: A : B : C

doB

sd AuthenticateUser

ref
AuthenticateUser

authenticate(id)

doX

doM1

: B : C

authenticate(id)

doM2

ref
DoFoo

sd DoFoo

doX

: B : C

doY

doZ

UML and Patterns.book Page 236 Thursday, September 16, 2004 9:53 PM

237

BASIC SEQUENCE DIAGRAM NOTATION

instance of class Class. Thus, class Calendar is an instance of a metaclass! It
may help to drink some beer before trying to understand this.

Figure 15.20 Invoking class or static methods; showing a class object as an
instance of a metaclass.

In code, a likely implementation is:

public class Foo
{
public void doX()
{

// static method call on class Calendar
Locale[] locales = Calendar.getAvailableLocales();
// …

}
// …
}

Polymorphic Messages and Cases

Polymorphism is fundamental to OO design. How to show it in a sequence dia-
gram? That’s a common UML question. One approach is to use multiple
sequence diagrams—one that shows the polymorphic message to the abstract
superclass or interface object, and then separate sequence diagrams detailing
each polymorphic case, each starting with a found polymorphic message. Figure
15.21 illustrates.

: Foo

locales = getAvailableLocales
doX

«metaclass»

Calendar

message to class, or a

static method call

UML and Patterns.book Page 237 Thursday, September 16, 2004 9:53 PM

Figure 15.21 An approach to modeling polymorphic cases in sequence diagrams.

Asynchronous and Synchronous Calls

An asynchronous message call does not wait for a response; it doesn’t block.
They are used in multi-threaded environments such as .NET and Java so that
new threads of execution can be created and initiated. In Java, for example,
you may think of the Thread.start or Runnable.run (called by Thread.start) mes-
sage as the asynchronous starting point to initiate execution on a new thread.

The UML notation for asynchronous calls is a stick arrow message; regular syn-
chronous (blocking) calls are shown with a filled arrow (see Figure 15.22).

:Register

authorize

doX

:Payment {abstract}

polymorphic message
object in role of abstract

superclass

:DebitPayment

doA

authorize

:Foo

stop at this point – don’t show any

further details for this message

doB

:CreditPayment

doX

authorize

:Bar

Payment {abstract}

authorize() {abstract}

...

CreditPayment

authorize()

...

DebitPayment

authorize()

...

Payment is an abstract

superclass, with concrete

subclasses that implement the

polymorphic authorize operation

separate diagrams for each polymorphic concrete case

UML and Patterns.book Page 238 Thursday, September 16, 2004 9:53 PM

239

BASIC SEQUENCE DIAGRAM NOTATION

active class p. 269

An object such as the Clock in Figure 15.22 is also known as an active object—
each instance runs on and controls its own thread of execution. In the UML, it
may be shown with double vertical lines on the left and right sides of the lifeline
box. The same notation is used for an active class whose instances are active
objects.

Figure 15.22 Asynchronous calls and active objects.

In Java, a likely implementation for Figure 15.22 follows. Notice that the
Thread object in the code is excluded from the UML diagram, because it is sim-
ply a consistent “overhead” mechanism to realize an asynchronous call in Java.

public class ClockStarter
{
public void startClock()
{

Thread t = new Thread(new Clock());
t.start(); // asynchronous call to the ‘run’ method on the Clock
System.runFinalization(); // example follow-on message

}
// …
}

Guideline

This arrow difference is subtle. And when wall sketching UML, it is common
to use a stick arrow to mean a synchronous call because it’s easier to draw.
Therefore, when reading a UML interaction diagram don’t assume the shape
of the arrow is correct!

:ClockStarter

:Clock

run

startClock

create

a stick arrow in UML implies an asynchronous call

a filled arrow is the more common synchronous call

In Java, for example, an asynchronous call may occur as

follows:

// Clock implements the Runnable interface

Thread t = new Thread(new Clock());

t.start();

the asynchronous start call always invokes the run method

on the Runnable (Clock) object

to simplify the UML diagram, the Thread object and the

start message may be avoided (they are standard

“overhead”); instead, the essential detail of the Clock

creation and the run message imply the asynchronous call

runFinalization

System :

Class

active

object

UML and Patterns.book Page 239 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

240

// objects should implement the Runnable interface
// in Java to be used on new threads

public class Clock implements Runnable
{
public void run()
{

while (true) // loop forever on own thread
{

// …
}

}
// …
}

15.5 Basic Communication Diagram Notation

Links

A link is a connection path between two objects; it indicates some form of navi-
gation and visibility between the objects is possible (see Figure 15.23). More for-
mally, a link is an instance of an association. For example, there is a link—or
path of navigation—from a Register to a Sale, along which messages may flow,
such as the makePayment message.

Figure 15.23 Link lines.

Messages

Each message between objects is represented with a message expression and
small arrow indicating the direction of the message. Many messages may flow
along this link (Figure 15.24). A sequence number is added to show the sequen-
tial order of messages in the current thread of control.

Note

Note that multiple messages, and messages both ways, flow along the same
single link. There isn’t one link line per message; all messages flow on the
same line, which is like a road allowing two-way message traffic.

1: makePayment(cashTendered)

2: foo

2.1: bar

: Register :Sale

link line

UML and Patterns.book Page 240 Thursday, September 16, 2004 9:53 PM

241

BASIC COMMUNICATION DIAGRAM NOTATION

Figure 15.24 Messages.

Messages to “self” or “this”

A message can be sent from an object to itself (Figure 15.25). This is illustrated
by a link to itself, with messages flowing along the link.

Figure 15.25 Messages to “this.”

Creation of Instances

Any message can be used to create an instance, but the convention in the UML
is to use a message named create for this purpose (some use new). See Figure
15.26. If another (less obvious) message name is used, the message may be
annotated with a UML stereotype, like so: «create». The create message may
include parameters, indicating the passing of initial values. This indicates, for
example, a constructor call with parameters in Java. Furthermore, the UML
tagged value {new} may optionally be added to the lifeline box to highlight the
creation. Tagged values are a flexible extension mechanism in the UML to add
semantically meaningful information to a UML element.

Guideline

Don’t number the starting message. It’s legal to
do so, but simplifies the overall numbering if you don’t.

1: msg2

2: msg3

3: msg4

3.1: msg5

: Register :Sale

all messages flow on the same link

msg1

: Register

msg1

1: clear

UML and Patterns.book Page 241 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

242

Figure 15.26 Instance creation.

Message Number Sequencing

The order of messages is illustrated with sequence numbers, as shown in Fig-
ure 15.27. The numbering scheme is:

1. The first message is not numbered. Thus, msg1 is unnumbered.10

2. The order and nesting of subsequent messages is shown with a legal num-
bering scheme in which nested messages have a number appended to them.
You denote nesting by prepending the incoming message number to the out-
going message number.

1: create(cashier)

: Register :Sale

create message, with optional initializing parameters. This will

normally be interpreted as a constructor call.

«create»

1: make(cashier)
: Register :Sale

if an unobvious creation message name is used, the

message may be stereotyped for clarity

1: create(cashier)

: Register :Sale {new}

Three ways to show creation in a

communication diagram

10.Actually, a starting number is legal, but it makes all subsequent numbering more
awkward, creating another level of number-nesting deeper than otherwise necessary.

UML and Patterns.book Page 242 Thursday, September 16, 2004 9:53 PM

243

BASIC COMMUNICATION DIAGRAM NOTATION

Figure 15.27 Sequence numbering.

Figure 15.28 shows a more complex case.

Figure 15.28 Complex sequence numbering.

Conditional Messages

You show a conditional message (Figure 15.29) by following a sequence number
with a conditional clause in square brackets, similar to an iteration clause. The
message is only sent if the clause evaluates to true.

: A
msg1

: B
1: msg2

: C

1.1: msg3
not numbered

legal numbering

: A
msg1

: B
1: msg2

: C

1.1: msg3

2.1: msg5

2: msg4

: D

2.2: msg6

first second

fourth

sixth

fifth

third

UML and Patterns.book Page 243 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

244

Figure 15.29 Conditional message.

Mutually Exclusive Conditional Paths

The example in Figure 15.30 illustrates the sequence numbers with mutually
exclusive conditional paths.

Figure 15.30 Mutually exclusive messages.

In this case we must modify the sequence expressions with a conditional path
letter. The first letter used is a by convention. Figure 15.30 states that either 1a
or 1b could execute after msg1. Both are sequence number 1 since either could
be the first internal message.

Note that subsequent nested messages are still consistently prepended with
their outer message sequence. Thus 1b.1 is nested message within 1b.

Iteration or Looping

Iteration notation is shown in Figure 15.31. If the details of the iteration clause
are not important to the modeler, a simple * can be used.

1 [color = red] : calculate
: Foo : Bar

message1

conditional message, with test

1a [test1] : msg2

: A : B

: C

1a.1: msg3

msg1

: D

1b [not test1] : msg4

1b.1: msg5

: E

2: msg6

unconditional after

either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

UML and Patterns.book Page 244 Thursday, September 16, 2004 9:53 PM

245

BASIC COMMUNICATION DIAGRAM NOTATION

Figure 15.31 Iteration.

Iteration Over a Collection

A common algorithm is to iterate over all members of a collection (such as a list
or map), sending the same message to each. In communication diagrams, this
could be summarized as shown in Figure 15.32, although there is no official
UML convention.

Figure 15.32 Iteration over a collection.

Messages to a Classes to Invoke Static (Class) Methods

See the discussion of metaclasses in the sequence diagram case on p. 236, to
understand the purpose of the example in Figure 15.33.

1 * [i = 1..n]: num = nextInt
: Simulator

runSimulation
: Random

iteration is indicated with a * and an optional

iteration clause following the sequence number

1 * [i = 1..n]: st = getSubtotal
: Sale

t = getTotal

This lifeline box represents one instance from a

collection of many SalesLineItem objects.

lineItems[i] is the expression to select one

element from the collection of many

SalesLineItems; the ‘i” value comes from the

message clause.

lineItems[i]:

SalesLineItem

this iteration and recurrence clause indicates

we are looping across each element of the

lineItems collection.

1 *: st = getSubtotal
: Sale

t = getTotal lineItems[i]:

SalesLineItem

Less precise, but usually good enough to imply

iteration across the collection members

UML and Patterns.book Page 245 Thursday, September 16, 2004 9:53 PM

15 – UML INTERACTION DIAGRAMS

246

Figure 15.33 Messages to a class object (static method invocation).

Polymorphic Messages and Cases

Refer to Figure 15.21 for the related context, class hierarchy, and example for
sequence diagrams. As in the sequence diagram case, multiple communication
diagrams can be used to show each concrete polymorphic case (Figure 15.34).

Figure 15.34 An approach to modeling polymorphic cases in communication
diagrams.

Asynchronous and Synchronous Calls

As in sequence diagrams, asynchronous calls are shown with a stick arrow; syn-
chronous calls with a filled arrow (see Figure 15.35).

1: locs = getAvailableLocales
: Foo

«metaclass»

Calendar

doX

message to class, or a

static method call

:Register
authorizedoX

:Payment {abstract}

polymorphic message

object in role of abstract

superclass

:DebitPayment

authorize

:Foo

stop at this point – don’t show any

further details for this message

separate diagrams for each polymorphic concrete case

doA

doB
:CreditPayment

authorize

:Bar
doX

UML and Patterns.book Page 246 Thursday, September 16, 2004 9:53 PM

247

BASIC COMMUNICATION DIAGRAM NOTATION

Figure 15.35 Asynchronous call in a communication diagram.

3: runFinalization
:ClockStarter System : Class

startClock

:Clock

1: create

2: run

asynchronous message

active object

UML and Patterns.book Page 247 Thursday, September 16, 2004 9:53 PM

UML and Patterns.book Page 248 Thursday, September 16, 2004 9:53 PM

