
IN THIS CHAPTER

About ColdFusion’s Java-Based Form Controls 1

Using <CFTREE> 2

Using <CFGRID> 16

Using <CFSLIDER> 36

About <CFTEXTINPUT> and <CFAPPLET> 39

CHAPTER 24
Enhancing
Forms with
Client-Side Java

About ColdFusion’s Java-Based Form Controls
In Chapter 11, “ColdFusion Forms”; Chapter 12, “Form Data Validation”; and Chapter 13, “Using
Forms to Add or Change Data,” you learned a great deal about creating forms for your Web applica-
tions. Not only did you learn about using standard HTML forms using <FORM>, <INPUT>, and <SELECT>
tags, you also learned how to take advantage of ColdFusion’s beefed-up, JavaScript-enriched encap-
sulations of those tags (<CFFORM>, <CFINPUT>, and <CFSELECT>).

ColdFusion also provides a collection of useful Java-based form controls, which you can use to create
forms that present or collect information in ways that aren’t possible with standard HTML form
controls. 

The controls are:

■ Tree Control. Similar to the tree-based file-navigation pane in the Windows Explorer,
the <CFTREE> form control provides a professional-looking, compact, and intuitive way to
present hierarchical information to your users.

■ Grid Control. Somewhat similar to a spreadsheet application, the <CFGRID> form control
provides an easy way for your users to view or edit rows and columns of data. You can add
check boxes, drop-down lists, and color-coding to the grid.

■ Slider Control. The <CFSLIDER> control is ideal for situations in which you want to
collect a rating, ranking, or some other numeric value that falls within a definite range.

■ Text Input Control. ColdFusion also provides a Java-based text input applet, which—like
the <CFINPUT> tags you learned about in Chapters 12 and 13—can be used to get validated
text input from the user. In most cases, <CFINPUT> is better.



2 CHAPTER 24 Enhancing Forms with Client-Side Java

About the Java Controls and the Java Plug-In
The Java-based form controls included with ColdFusion are compatible with nearly all versions of
the major browsers. You don’t need to know anything about Java to use these controls; the deployment
of the applets is taken care of by the ColdFusion server.

Before the controls will work on a user’s browser, the Java Plug-in must be installed on the user’s
machine. The Java Plug-in enables Java applets (such as <CFTREE>, <CFGRID>, and <CFSLIDER>) to run
using a Java runtime environment provided by the plug-in, rather than the Java virtual machine
provided by the browser, if any.

If the Java Plug-in has never been installed, it is installed automatically if the user is using Internet
Explorer (IE downloads and installs the plug-in from your ColdFusion server). If the user is using
Netscape or some other browser, she might have to download and install the plug-in before the controls
will work. For more information about the Java Plug-in, visit www.javasoft.com/products/plugin.

NOTE

In either case, you need to be aware that the initial Java Plug-in software is an approximately 5MB download. The download should
need to be performed only once per machine, but you might want to consider not using these controls in applications geared toward
people who might be accessing your pages via a slow connection.

NOTE

ColdFusion 4.5 and earlier supported an ENABLECAB attribute for <CFFORM>, which caused the <CFFORM> Java applets to be
available for Internet Explorer users more quickly than for Netscape users because all the Java classes needed by the applets were
delivered in a single Windows Cabinet (.cab) file. In ColdFusion MX, the classes are now delivered in a single Java Archive (.jar) file
for both IE and Netscape users, which results in good performance for all supported browsers. The ENABLECAB attribute is thus no
longer necessary. You don’t have to remove it from your existing templates, but you should leave it out of any new ones.

Using <CFTREE>
The <CFTREE> tag creates one of the most powerful and useful controls in ColdFusion—a branched
tree control for the display of data. To add a tree control to a form, use opening and closing <CFTREE>
tags, which control the tree’s width, height, and other basic attributes.

Then, within the <CFTREE> tag pair, add one or more <CFTREEITEM> tags for each item you want to
be displayed in the tree. Of course, as you would expect from ColdFusion, the <CFTREEITEM> tags
easily can be generated from the results of a query.

Table 24.1 shows the attributes supported by the <CFTREE> tag, which creates the shell for the tree
control itself. Table 24.2 explains the attributes for the <CFTREEITEM> tag, which populates the tree
with actual information to show to the user.

Don’t worry too much about how many attributes exist for these tags. As you will soon see, these
tags are actually very easy to use.



3Using <CFTREE>

Table 24.1 <CFTREE> Tag Attributes

ATTRIBUTE DESCRIPTION

NAME Required. A name for the tree control, similar to the NAME attribute for other
form elements, such as <INPUT> and <CFSELECT>.

BORDER Optional. Places a border around the tree. Default is Yes.

HSCROLL Optional. Yes or No. Determines whether to show a horizontal scrollbar.
Default is Yes.

VSCROLL Optional. Yes or No. Determines whether to show a vertical scrollbar. Default
is Yes.

REQUIRED Optional. Yes or No. User must select an item in the tree control. Default is No.

MESSAGE Optional. Message text to appear if REQUIRED=”Yes” and the user attempts
to submit the form without selecting an item in the tree first.

DELIMITER Optional. The character used to separate elements in the treename.path
form variable that is provided when a form that contains a tree is submitted.
The default is \. See the section “Getting the Chosen Tree Item When the
Form Is Submitted,” later in this chapter.

COMPLETEPATH Optional. Yes passes the root level of the tree in the treename.path form
variable that is provided when a form that contains a tree is submitted. If
omitted or No, the root level is not included. It is recommended that you set
this value to Yes when using trees for data entry. See the section, “Getting
the Chosen Tree Item When the Form Is Submitted,” later in this chapter.

HIGHLIGHTHREF Optional. Relevant only if the tree contains <CFTREEITEM> tags that specify
an HREF attribute (see Table 24.2). Yes shows such items as underlined so
they look like ordinary Web page hyperlinks; No gets rid of the underlining.
Default is Yes.

APPENDKEY Optional. Relevant only if the tree contains <CFTREEITEM> tags that specify
an HREF attribute. Yes passes a URL variable called CFTREEITEMKEY when a
user clicks such a tree item. The value of CFTREEITEMKEY indicates the VALUE
of the selected <CFTREEITEM>. The default is Yes. In general, it is more
straightforward to simply pass whatever URL parameters you want by adding
them to the HREF attribute yourself, as shown in Listing 24.2, later in this
chapter.

NOTE

In addition, the <CFTREE> tag supports the look and feel attributes (such as LOOKANDFEEL and FONTSIZE) listed in Table
24.3. See the section “Controlling the Look and Feel,” later in this chapter.



4 CHAPTER 24 Enhancing Forms with Client-Side Java

Table 24.2 <CFTREEITEM> Tag Attributes

ATTRIBUTE DESCRIPTION

DISPLAY Optional. The label to display to the user for the tree item. If you don’t provide
a value for DISPLAY, the VALUE attribute (see the following) is used as the
default.

VALUE Required. The underlying value (such as an ID number) that corresponds with
the tree item. When the form is submitted, the value of the user-selected item
will be available to the receiving template as the FORM variable specified by the
NAME parameter of the <CFTREE> tag.

PARENT Optional. The value of the tree item’s parent, if any. Use this parameter to
control which tree items are nested within other items. If you provide a value for
PARENT, and the value corresponds with the VALUE of some other item in the
tree, the new item will appear nested within the parent item, in a nested folder-
like manner. If you don’t provide a value for PARENT (or if the specified parent
item doesn’t exist in the tree), the new item becomes a root item in the tree 
(that is, not nested within any other items at all).

EXPAND Optional. Yes or No. If Yes (the default), the tree item is expanded when the
page first appears, revealing its children (if any). If No, the tree item is tree is
closed when the page first appears; its children don’t appear until the user
expands the tree item by clicking it.

IMG Optional. Image name or filename for the tree item. A number of images are
supplied and can be specified using only the image name (no file extension):
folder, floppy, fixed, cd, document, or element. The default image that
appears when you don’t specify an IMG value of your own varies depending on
the LOOKANDFEEL attribute of the <CFTREE> tag. To specify your own custom
image, specify the path in the same way that you would in an HTML <IMG>
tag: IMG=”../images/filmicon.gif”

IMGOPEN Optional. The image to display when the tree item is expanded. You can use the
same values or paths previously described for the IMG attribute.

HREF Optional. URL to associate with the tree item or a query column for a tree that
is populated from a query. If HREF is a query column, the HREF value is the value
populated by the query. If HREF is not recognized as a query column, it is
assumed that the HREF text is an actual HREF.

TARGET Optional. Relevant only if the HREF attribute is specified. Target frame to
activate if the user clicks the item. You can supply any of the values that you
would normally supply to the TARGET attribute of an <A> or <FORM> tag
(_parent, _self, _top, _blank, or a frame name you have defined yourself).

QUERY Optional. Query name used to generate data for the tree item. If you provide a
query name here, a tree item is generated for each row of the query. If you
provide a QUERY attribute, the values you supply to the VALUE, DISPLAY, HREF,
TARGET, and IMG attributes should be column names. In practice, using this
QUERY attribute can get confusing rather quickly and often doesn’t provide the
flexibility required to create the trees you need for your application. It is
generally recommended that you use a <CFLOOP> tag to iterate over the query,
instead of using this attribute.

QUERYASROOT Optional. Relevant only if you are providing a QUERY attribute. If Yes, the query
itself appears as a item in the tree, using the query’s name as the DISPLAY
attribute. The default is No.



5Using <CFTREE>

Listing 24.1 shows how to use <CFTREE> and <CFTREEITEM> to put together a basic tree. This tree
contains five items which correspond to the five <CFTREEITEM> tags (Figure 24.1). The first item,
labeled Orange Whip Studios, has no PARENT attribute and so appears at the root level of the tree.
Because the Films and Cast Members items specify a PARENT attribute that corresponds to the VALUE
of the first item (its value is root), they appear nested within the Orange Whip Studios item. Simi-
larly, because the Actresses and Actors specify Cast as their PARENT, and because Cast is the VALUE
of the Cast Members item, they appear nested within Cast Members when the form is displayed.

Listing 24.1 TreeControl1.cfm—Building a Simple Tree Control with <CFTREE>
<!--- 
Filename: TreeControl1.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFTREE> tag

--->

<HTML>
<HEAD><TITLE>Seeing The Forest For The Trees</TITLE></HEAD>
<BODY>

<!--- Tree controls must appear between <CFFORM> tags --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”POST”>

<!--- Tree control --->
<CFTREE
NAME=”NavTree”
WIDTH=”300”
HEIGHT=”400”
BORDER=”Yes”

Figure 24.1

A simple <CFTREE>
example.



6 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.1 (continued)
APPENDKEY=”No”>

<!--- Root tree item --->  
<CFTREEITEM 
VALUE=”root” 
DISPLAY=”Orange Whip Studios” 
EXPAND=”Yes”>

<!--- Tree item for films --->  
<CFTREEITEM 
PARENT=”root” 
VALUE=”Films” 
DISPLAY=”Films” 
EXPAND=”No”>

<!--- Tree item for actors --->  
<CFTREEITEM 
PARENT=”root” 
VALUE=”Cast” 
DISPLAY=”Cast Members” 
EXPAND=”Yes”>

<!--- Tree item for actors --->  
<CFTREEITEM 
PARENT=”Cast” 
VALUE=”CastFemale” 
DISPLAY=”Actresses” 
EXPAND=”No”>

<!--- Tree item for actors --->  
<CFTREEITEM 
PARENT=”Cast” 
VALUE=”CastMale” 
DISPLAY=”Actors” 
EXPAND=”No”>

</CFTREE>
</CFFORM>  

</BODY>
</HTML>

As you can see in Figure 24.1, no really helpful information is being presented to the user yet. This
example is here mainly to help you see how the PARENT and VALUE attributes work together to define
the relationships between the items in a tree. The next listing adds more tree items that correspond
to information in the database, which will make the tree a bit more interesting.

Using Queries to Generate Tree Items
Frequently, you will want to create trees that contain information from a database. For instance,
you might use <CFQUERY> to run a query named GetFilms and then add a tree item for each film to a
tree you’re building.

There are two ways to add items to a tree based on the results of a query. The easiest, most flexible
method is to use an ordinary <CFLOOP> tag that loops over the rows of your query. Within the <CFLOOP>,
place a <CFTREEITEM> tag to include a tree item for each row returned by the query. Of course, you
can refer to the query’s columns in the VALUE, DISPLAY, and other attributes of the <CFTREEITEM> tag.



7Using <CFTREE>

The second method is to use the QUERY attribute of the <CFTREEITEM> tag. This method is a bit more
concise because it allows you to skip the <CFLOOP>, but it is generally more tedious to use in practice
because any formatting, filtering, and so on must be done at the query level. The <CFLOOP> method
gives you more flexibility and makes your code easier to understand; it is the one that is shown in
the examples in this chapter.

Listing 24.2 expands on the tree created in Listing 24.1. This version includes the same static tree
elements as the first version. It then adds tree items for each of Orange Whip Studio’s quality films
and actors. The films are organized by rating.

Listing 24.2 TreeControl2.cfm—Adding Queried Information to a <CFTREE>
<!--- 
Filename: TreeControl2.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFTREE> tag

--->

<HTML>
<HEAD><TITLE>Seeing The Forest For The Trees</TITLE></HEAD>
<BODY>

<!--- Get list of ratings from database --->
<CFQUERY NAME=”GetRatings” DATASOURCE=”ows”>
SELECT RatingID, Rating
FROM FilmsRatings
ORDER BY Rating

</CFQUERY>

<!--- Get information about films from database --->
<CFQUERY NAME=”GetFilms” DATASOURCE=”ows”>
SELECT FilmID, MovieTitle, RatingID
FROM Films
ORDER BY MovieTitle

</CFQUERY>

<!--- Fetch a listing of current actors from the database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT ActorID, NameFirst, NameLast, Gender
FROM Actors
ORDER BY NameLast, NameFirst

</CFQUERY>

<!--- Tree controls must appear between <CFFORM> tags --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”POST”>

<!--- Tree control --->
<CFTREE
NAME=”NavTree”
WIDTH=”300”
HEIGHT=”400”
BORDER=”Yes”
APPENDKEY=”No”>



8 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.2 (continued)
<!--- Root tree item --->  
<CFTREEITEM 
VALUE=”root” 
DISPLAY=”Orange Whip Studios” 
EXPAND=”Yes”>

<!--- Tree item for films --->  
<CFTREEITEM 
PARENT=”root” 
VALUE=”Films” 
DISPLAY=”Films” 
EXPAND=”No”>

<!--- For each rating, generate a tree item --->
<!--- Specify Films as its parent, so it appears within films visually --->
<CFLOOP QUERY=”GetRatings”>
<CFTREEITEM
PARENT=”Films” 
VALUE=”Rating #RatingID#”
DISPLAY=”#Rating#”>

<!--- For each film with this rating, generate a tree item --->
<CFLOOP QUERY=”GetFilms”>
<CFIF GetFilms.RatingID EQ GetRatings.RatingiD[GetRatings.CurrentRow]>
<!--- Generate actual tree item --->
<CFTREEITEM
PARENT=”Rating #GetFilms.RatingID#” 
VALUE=”#FilmID#”
DISPLAY=”#MovieTitle#”
HREF=”ShowFilm.cfm?FilmID=#FilmID#”>

</CFIF>
</CFLOOP>

</CFLOOP>

<!--- Tree item for actors --->  
<CFTREEITEM 
PARENT=”root” 
VALUE=”Cast” 
DISPLAY=”Cast Members” 
EXPAND=”Yes”>

<!--- Tree item for actresses --->  
<CFTREEITEM 
PARENT=”Cast” 
VALUE=”CastFemale” 
DISPLAY=”Actresses” 
EXPAND=”No”>

<!--- Tree item for each actress --->  
<CFLOOP QUERY=”GetActors”>
<CFIF GetActors.Gender EQ “F”>
<!--- Generate actual tree item --->
<CFTREEITEM 
PARENT=”CastFemale”



9Using <CFTREE>

Listing 24.2 (continued)
VALUE=”#ActorID#”
DISPLAY=”#NameFirst# #NameLast#”
EXPAND=”No”
HREF=”ShowActor.cfm?ActorID=#ActorID#”>

</CFIF>    
</CFLOOP>

<!--- Tree item for actors --->  
<CFTREEITEM 
PARENT=”Cast” 
VALUE=”CastMale” 
DISPLAY=”Actors” 
EXPAND=”No”>

<!--- Tree item for each actor --->  
<CFLOOP QUERY=”GetActors”>
<CFIF GetActors.Gender EQ “M”>
<!--- Generate actual tree item --->
<CFTREEITEM 
PARENT=”CastMale”
VALUE=”#ActorID#”
DISPLAY=”#NameFirst# #NameLast#”
EXPAND=”No”
HREF=”ShowActor.cfm?ActorID=#ActorID#”>

</CFIF>    
</CFLOOP>

</CFTREE>
</CFFORM>  

</BODY>
</HTML>

Within each of the <CFLOOP> tags, a variable called ParentItem is set to determine which tree item
the film or actor should appear within. For films, the ParentItem is determined by the film’s rating;
for actors, the ParentItem is determined by the actor’s gender. The ParentItem variable is then fed
to the PARENT attribute of <CFTREEITEM>, which causes the hierarchical relationship between the
items to be expressed visually to the user.

As you can see, tree controls are a great way to present a lot of information to the user in a familiar,
organized manner (Figure 24.2). Because each of the generated <CFTREEITEM> tags for films and
actors has HREF attributes, the user will be able to click the film or actor name to be taken to some
type of detail page for that film or actor. 

NOTE

Please note that the ShowActor.cfm and ShowFilm.cfm templates referred to in Listing 24.2 are not provided as examples
for this chapter, so you will get Not Found errors if you actually try to click the underlined items in the tree (as shown in Figure
24.2). If you want, you could quickly put ShowActor.cfm and ShowFilm.cfm templates together that query the database
based on the ActorID or FilmID parameters the <CFTREEITEM> tags pass in the URL. 



10 CHAPTER 24 Enhancing Forms with Client-Side Java

Using Trees for Data Entry
So far, the trees you have seen have all used the <CFTREEITEM> tag’s HREF attribute to create links for
the user to click. In other words, so far the tree control essentially has been used as a navigational
construct—a structured container for URLs. As you already have seen in Listings 24.1 and 24.2,
this can be a useful way to use the <CFTREE> tag.

You also can use the <CFTREE> tag to create a tree about data entry, rather than navigation. For instance,
you might create a data-entry form for adding new expenses into the Expenses table, and you might
want the user to identify a category for the new expense. If these categories are organized in a cate-
gory/subcategory fashion, a natural and efficient way to display the categories is with a <CFTREE>
control (look ahead at Figure 24.3 to see what we’re talking about).

Working with Categories and Subcategories

A number of ways are available to provide a category/subcategory structure for things such as expenses,
company departments, parts explosions, and so on. This section explains one of the most common
and flexible approaches.

The basic idea is simple. You create a database table with columns called CatID, ParentCatID, and
Description (or similar names). After the table has been created, fill it with categories and subcate-
gories. For a top-level category, leave the ParentCatID column blank. For a subcategory, set the
ParentCatID column to the parent category’s CatID. This simple technique enables you to easily
represent a hierarchical category structure in your database. You can have as many categories and
subcategories as you need, and they can be nested within each other as deeply as you want. To move
a category within some other category, you need only change its ParentCatID value.

Figure 24.2

This version of the
<CFTREE> includes
queried information
about films and actors.



11Using <CFTREE>

There is no such table in the Orange Whip Studios sample database, so I will use a text file to hold
the category and subcategory entries. The text file is shown in Listing 24.3.

NOTE

Normally, you would just create a ExpenseCats table in your database, rather than keeping the category information in a separate
file. In fact, you might want to create such a table and adapt the following example to use that table instead. Just create the table with
columns named CatID, ParentCatID, and Description and fill it with the rows of data shown in Listing 24.3.

Listing 24.3 ExpenseCats.txt—Sample Categories and Subcategories for Expenses
CatID,ParentCatID,Description
1,0,”One-Time Expenses”
2,1,”Props and Sets”
3,2,”Special Effects”
4,0,”Recurring Expenses”
5,4,”Food and Catering”
6,4,”Travel”
7,1,”Miscellaneous”
8,3,”Make-Up”
9,3,”Explosives”
10,1,”Properties”

This simple text file establishes two top-level categories, named One-Time Expenses and Recurring
Expenses (they are top-level categories because their ParentCatID values have been left blank). Within
the One-Time Expenses category are three subcategories—called Props and Sets, Miscellaneous,
and Properties (they are subcategories of One-Time Expenses because their ParentCatID values
match the CatID value for One-Time Expenses). Within Props and Sets is a subcategory named 
Special Effects; Special Effects has two subcategories named Explosives and Make-Up, and so on. 

Displaying Categories and Subcategories in a Tree

Listing 24.4 shows how the category and subcategory information from Listing 24.3 can be displayed
in a <CFTREE>. The <CFTREE> control is part of a data-entry form that requires the user to select an
expense category from the tree, select a film from a drop-down list, and provide a description and
expense amount (Figure 24.3).

Listing 24.4 ExpenseEntry.cfm—Displaying Categories and Subcategories in a Data-Entry Form
<!--- 
Filename: ExpenseEntry.cfm
Author:   Nate Weiss (NMW)
Purpose:  Data entry interface with tree display of categories

--->

<!--- If the form is being submitted --->
<CFIF IsDefined(“FORM.Description”)>
<!--- Database insersion code would go here. The chosen expense --->
<!--- category from tree would be available as #FORM.ExpenseCat.node# --->

</CFIF>

<!--- Use <CFHTTP> to retrieve the ExpenseCats.txt file, parse its data as --->



12 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.4 (continued)
<!--- comma-separated text, and return it as a query object called GetCats --->
<CFHTTP
URL=”http://localhost:#CGI.SERVER_PORT#/ows/24/ExpenseCats.txt”
NAME=”GetCats”
DELIMITER=”,”
FIRSTROWASHEADERS=”Yes”>

<!--- Query Films.txt file for list of films --->
<CFQUERY NAME=”GetFilms” DATASOURCE=”ows”>
SELECT * FROM Films
ORDER BY MovieTitle

</CFQUERY>

<HTML>
<HEAD><TITLE>Expense Entry Form</TITLE></HEAD>
<BODY>

<!--- Tree controls must appear between <CFFORM> tags --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”POST”>

<!--- Tree control --->
<B>Expense Category:</B><BR>
<CFTREE
NAME=”ExpenseCat”
WIDTH=”200”
HEIGHT=”300”
BORDER=”Yes”
COMPLETEPATH=”Yes” 
REQUIRED=”Yes”
MESSAGE=”Please pick a category from the tree.”
ALIGN=”LEFT”>

<!--- For each category, generate a tree item --->
<CFLOOP QUERY=”GetCats”>
<CFTREEITEM
PARENT=”#GetCats.ParentCatID#” 
VALUE=”#GetCats.CatID#”
DISPLAY=”#GetCats.Description#”
IMG=”folder”>

</CFLOOP>
</CFTREE>

<!--- Drop-down list of films --->
<B>Film:</B><BR>
<CFSELECT
NAME=”FilmID”
QUERY=”GetFilms”
VALUE=”FilmID”
DISPLAY=”MovieTitle”
MESSAGE=”Please choose a Film first.”/><BR>

<!--- Text entry field for expense description --->
<P><B>Expense Description:</B><BR>
<CFINPUT 
NAME=”Description” 
SIZE=”50” 
MAXLENGTH=”200”



13Using <CFTREE>

Listing 24.4 (continued)
REQUIRED=”Yes” 
MESSAGE=”Please don’t leave the Description blank.”><BR>

<!--- Text entry field for expense amount --->
<P><B>Expense Amount:</B><BR>
<CFINPUT 
NAME=”ExpenseAmount” 
SIZE=”10” 
MAXLENGTH=”200”
REQUIRED=”Yes” 
VALIDATE=”float” 
MESSAGE=”You must fill in an amount first.”><BR>

<!--- Submit button for form --->
<P><INPUT TYPE=”Submit” VALUE=”Submit New Expense”>

</CFFORM>  

</BODY>
</HTML>

NOTE

The ALIGN=”LEFT” attribute used in the <CFTREE> tag in this listing is explained in the section “Controlling the Look and Feel,”
later in this chapter.

The first thing this listing needs to do is to get access to the categories in the ExpenseCats.txt file
(Listing 24.3). Because that file contains simple comma-separated text, the <CFHTTP> tag can be used
to retrieve the file and parse the data in the file into a query object. After this <CFHTTP> tag executes, the
information in the text file will be available as a query object called GetCats, which can be used just like
any other query object (such as the results of a <CFQUERY> tag). Because of the FIRSTROWASHEADERS=”Yes”
attribute, the query object will contain columns named CatID, ParentCatID, and Description (from
the first row of the text file). Please refer to Appendix B, “ColdFusion Tag Reference,” for details
about <CFHTTP>. If the category information was in a table in your database, you could just use an
ordinary <CFQUERY> instead of <CFHTTP>. 

Figure 24.3

The <CFTREE> tag 
can be used as a data-
entry control in your
application’s forms.



14 CHAPTER 24 Enhancing Forms with Client-Side Java

NOTE

The CGI.SERVER_NAME and CGI.SERVER_PORT variables are used in the URL attribute of the <CFHTTP> tag so that the
listing will continue to work regardless of what server you place this listing on, or whether ColdFusion MX has been installed in stand-
alone mode. If you want, you could just hardcode the localhost:8500 part of the URL (or whatever is appropriate for your
server) instead. For details about these CGI variables, please refer to Appendix D, “Special ColdFusion Variables and Result Codes”.

Next, a normal query named GetFilms also is used to get a list of current films from the database, and
a data entry form is created using the <CFFORM> tag. The form’s ACTION is set to #CGI.SCRIPT_NAME#,
which means the ExpenseEntry.cfm file will be called again when the user submits the form. See
Appendix D, “Special ColdFusion Variables and Result Codes,” for more information about this
CGI variable.

The most important control within the form is the <CFTREE> tag, which allows the user to pick the
appropriate expense category from the tree. The REQUIRED attribute is used to ensure that the user
has indeed selected a category in the tree before he can submit the form; if not, he sees the message
supplied to the MESSAGE attribute. Note that REQUIRED and MESSAGE work just like the equivalent
attributes for the <CFINPUT> tag; see Chapter 12 for more information about this type of data 
validation. 

Within the <CFTREE> tag pair, a <CFLOOP> is used to add a tree item for each row in the GetCats query.
Because the PARENT and VALUE attributes are supplied with the category’s CatID and ParentCatID
values, the tree will visually reflect the category/subcategory structure implied by the data in the
ExpenseCats.txt file (refer to Listing 24.3).

The rest of the form is straightforward and will be familiar to you if you have read Chapters 12 and
13. If you have not, you might want to take a glance at those chapters now if the use of <CFINPUT>
and <CFSELECT> is unfamiliar to you. 

Getting the Chosen Tree Item When the Form Is Submitted

After a form with a <CFTREE> on it is submitted, ColdFusion makes the user’s choice available to you
in the FORM scope, similar to other types of form fields. However, instead of providing you with just
a single value, ColdFusion provides you with two values for each tree in the form. The first value
is called Node and indicates the VALUE of the <CFTREEITEM> that the user selected before submitting
the form. The second value is called Path and indicates the parent tree items of the selected item,
if any.

Both values are named after the NAME of the <CFTREE> tag, using dot notation. For instance, after
the form in Listing 24.4 is submitted, there will be a variable called FORM.ExpenseCat.Node, which
would hold a value of 9 if the user has selected the Explosives item in the tree. There will also be a
variable called FORM.ExpenseCat.Path, which will be set to 1\2\3\9 to indicate that the selected cat-
egory was 9, which was nested within category 3 (Special Effects), which was in category 2 (Props
and Sets), which was in category 1 (One-Time Expenses).

Listing 24.4 doesn’t actually insert a record into the Expenses table when the form is submitted
because the Expenses table doesn’t currently have a column to hold the expense category number. If
you were to add such a column (called ExpenseCatID, for instance), you could populate the column



15Using <CFTREE>

when the form was submitted by using a query similar to the following. You would place this between
the <CFIF> tags at the top of the template:

<CFQUERY DATASOURCE=”ows”>
INSERT INTO Expenses(FilmID, ExpenseCatID, ExpenseAmount, Description)
VALUES (#FORM.FilmID#, #FORM.ExpenseCat.Node#, 

#FORM.ExpenseAmount#, ‘#FORM.Description#’)
</CFQUERY>

Note that the FORM.ExpenseCat.Node variable is used to supply the value for the fictitious
ExpenseCatID column. 

Controlling the Look and Feel
ColdFusion enables you to control the look and feel of the <CFTREE> and other Java-based controls
discussed in this chapter (<CFGRID>, <CFSLIDER>, and <CFTEXTINPUT>). Table 24.3 lists the additional
attributes you can add to these tags to tweak the way they appear in your application’s pages. If you
want, you can experiment a bit with these attributes by adding them to the <CFTREE> tag in Listing 24.4.

Table 24.3 Common Attributes for Controlling the Look of the Java-Based <CFFORM> Controls

ATTRIBUTE DESCRIPTION

LOOKANDFEEL Optional. Setting that describes the general look and feel of the control, such
as the way its borders are drawn and the general three-dimensional effect it
has. Valid values for this attribute are Windows, Metal, and Motif. The
default is the look and feel appropriate for the user’s machine. 

FONT Optional. Font name for text.

FONTSIZE Optional. Font size for text.

BOLD Optional. Enter Yes for boldface text and No for regular text. This has the
same effect as <B></B> in HTML. The default is No.

ITALIC Optional. Enter Yes for italicized text and No for normal text. This has the
same effect as <I></I> in HTML. Default is No. 

ALIGN Optional. Alignment value for the CFFORM element. Valid entries are top,
middle, left, right, bottom, baseline, texttop, absbottom, and
absmiddle. Similar to the ALIGN attribute of the HTML <IMG> tag.

BORDER Optional. Whether to show a border around the control. Yes or No.

VSPACE Optional. Amount of vertical space to reserve as an invisible margin (gutter)
above and below the control. You can use VSPACE and HSPACE together to
ensure the control doesn’t appear to be too close to other elements on the
page. Similar to the VSPACE attribute of the HTML <IMG> tag.

HSPACE Optional. Amount of horizontal space to reserve as an invisible margin (gutter)
to the left and right of the control. You can use VSPACE and HSPACE together
to ensure the control doesn’t appear to be too close to other elements on the
page. Similar to the HSPACE attribute of the HTML <IMG> tag.

WIDTH Optional. The control’s width, in pixels.

HEIGHT Optional. The control’s height, in pixels.



16 CHAPTER 24 Enhancing Forms with Client-Side Java

If the Control Does Not Load
Normally, you should be able to just go ahead and start using the <CFTREE>, <CFGRID>, and <CFSLIDER>
controls discussed in this chapter. However, if your ColdFusion templates are being served on a
virtual Web server (that is, a single machine that hosts a number of Web sites, each with its own
document root), or if certain directories have been deleted, you might need to take a few extra steps
before the controls will work.

Basically, the user’s Web browser must be capable of accessing a file called cfapplets.jar, at the relative
location /CFIDE/classes/cfapplets.jar. After a typical ColdFusion installation, this should already 
be the case (there will be a folder within your Web server’s document root called CFIDE, which will
contain a folder called classes, which will contain the cfapplets.jar file). If the Java-based controls do 
not appear to load properly—especially if a class-not-found error is displayed in the browser’s status
line—try to visit the following URL in your browser (substituting www.yourcompany.com with the
hostname for your ColdFusion server):

http://www.yourcompany.com/CFIDE/classes/cfapplets.jar

If you get a Not Found, Forbidden, 404, or some similar error message, then the browser is incapable
of accessing the cfapplets.jar file for one reason or another. There are generally two ways to solve
this problem: 

■ Create a folder called CFIDE within your document root, and copy the classes folder
(including the cfapplets.jar file) into it. You would copy the file from the Web server’s
default document root, if you have access to it, or from some other ColdFusion server
(perhaps your local machine). If the folder already exists, ensure that the cfapplets.jar file is
still there and doesn’t have some kind of password (or other type of access control)
protecting it.

■ Or, using your Web server software’s configuration tools, create a virtual folder or virtual
directory called CFIDE that points to the CFIDE folder in the Web server’s default
document root. This assumes that the folder hasn’t been deleted. The steps you take to
accomplish this will vary depending on the Web server software you are using. 

Using <CFGRID>
In early versions of ColdFusion, the <CFGRID> tag was simply a method  of presenting spreadsheet-
style grids of information to your users. Over the years, <CFGRID> has become a capable data-entry
tool as well (meaning that users can edit the information in the grid and submit it to the server for
processing). The current version enables the adding of new data rows, deleting of rows, sorting of
columns, and instant updating of all data in the grid. It even allows you to show check boxes and
drop-down lists within the grid and provides a simple way to color-code individual cells on-the-fly.
In short, the tag provides a nice, clean way of exposing spreadsheet-type data on a Web page.

As with the other <CFFORM> tags, you really have to build some sample applications to see what this
tag looks like and what it does. <CFGRID> has more than 30 attributes you can use to customize its



17Using <CFGRID>

appearance and behavior. Any attributes set in the <CFGRID> tag affect the entire grid. You can also
specify options for specific rows or columns by passing attributes to <CFGRIDCOLUMN> and <CFGRIDROW>.
Options passed to <CFGRIDCOLUMN> and <CFGRIDROW> override any options set at the <CFGRID> level.

Table 24.4 is an abbreviated list of the attributes supported by <CFGRID>. I’ve kept this list short to
make it easier for you to concentrate on the most important attributes. The complete list is pro-
vided in Appendix B, “ColdFusion Tag Reference.” 

Table 24.4 An Abbreviated List of <CFGRID> Tag Attributes

ATTRIBUTE DESCRIPTION

NAME Optional. A name for the grid, which should be unique for the form.

QUERY Optional. The name of the query to be displayed in the grid. Required unless
you use the <CFGRIDROW> tag (see Table 24.6, later in this chapter).

MAXROWS Optional. Maximum number of query rows to display; same as the MAXROWS
attribute for the <CFOUTPUT> tag.

COLHEADERS Optional. Yes to display column headers at the top of the grid; No to hide
column headers. Default is Yes. You have further control over the column
headers via COLHEADERALIGN, COLHEADERFONT, COLHEADERFONTSIZE,
COLHEADERTEXTCOLOR, COLHEADERITALIC, and COLHEADERBOLD (see Appendix B
for details).

ROWHEADERS Optional. Yes to display row headers at the left edge of the grid; No to hide row
headers. Default is Yes. You have further control over the look of the row headers
via ROWHEADERALIGN, ROWHEADERFONT, ROWHEADERFONTSIZE, ROWHEADERITALIC,
ROWHEADERBOLD, ROWHEADERWIDTH, ROWHEIGHT, and ROWHEADERTEXTCOLOR.

SELECTMODE Optional. Controls how users can select cells, if at all, and enables editing. Valid
entries are BROWSE (no selecting or editing), EDIT (user can edit the data in the
grid), SINGLE (user can select a single cell, but can’t edit it), ROW (user can select
only whole rows at a time), and COLUMN (user can select only whole columns at a
time). The default is BROWSE.

INSERT Optional. Relevant only if SELECTMODE=”EDIT”. If set to Yes, the user is
provided with a button to add new records to the grid. The label shown on the
button can be controlled with INSERTBUTTON (see Appendix A). Default is No.

DELETE Optional. Relevant only if SELECTMODE=”EDIT”. If set to Yes, the user is
provided with a button to delete records from the grid. The label shown on the
button can be controlled with DELETEBUTTON (see Appendix B). Default is No.

NOTE

The <CFGRID> tag also supports most of the look and feel attributes listed in Table 24.3, earlier in this chapter.

The <CFGRID> tag can be used alone or in conjunction with <CFGRIDCOLUMN> and <CFGRIDROW> tags.
When used alone, the grid simply displays all the data returned by the query specified in its QUERY
attribute (Figure 24.4). All columns are displayed, and you don’t have much control over the indi-
vidual columns (in terms of width, header, and so on). But it’s ridiculously easy. Listing 24.5 shows
how to use <CFGRID> in this way.



18 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.5 ActorGrid1.cfm—A Simple <CFGRID> Example
<!--- 
Filename: ActorGrid1.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFGRID> tag

--->

<!--- Get list of Actors from database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT ActorID, NameFirst, NameLast, Age, Gender, IsEgomaniac, IsTotalBabe
FROM Actors
ORDER BY NameFirst, NameLast

</CFQUERY>

<HTML>
<HEAD><TITLE>Orange Whip Studios Actors Stable</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Actors Stable</H2>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetActors”
WIDTH=”500”
HEIGHT=”300”
ROWHEADERS=”No”
COLHEADERBOLD=”Yes”

Figure 24.4

When used without
<CFGRIDCOLUMN>, 
the <CFGRID> tag
produces a default grid
based on the column
names in the query.



19Using <CFGRID>

Listing 24.5 (continued)
COLHEADERALIGN=”CENTER”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML> 

This example uses the minimum code necessary for a grid. No <CFGRIDCOLUMN> tag is needed because
the database fields were used as the default column names. In general, the resulting grid will be too
clunky to present to end users, but it will probably be good enough for putting together quick
administrative pages for you (or your team’s) own use. 

NOTE

When you use <CFGRID> in this way, the order of the columns is determined by the alphabetical order of the column names. 
To control the order, use <CFGRIDCOLUMN> as discussed in the next section.

Adding <CFGRIDCOLUMN> Tags
To produce more sophisticated grids, you must add <CFGRIDCOLUMN> tags between your opening and
closing <CFGRID> tags. This enables you to set display options for each individual column, such as
header labels, column widths, alignments, and so on.

Table 24.5 is an abbreviated list of the attributes supported by <CFGRIDCOLUMN>. We’ve shortened the
list here to make it easier for you to concentrate on the most important attributes. The complete
list is provided in Appendix B.

Table 24.5 An Abbreviated List of <CFGRIDCOLUMN> Attributes

ATTRIBUTE DESCRIPTION

NAME Required. A name for the column; this should be the name of the query
column you want to display in this column of the grid.

HEADER Optional. Text to display in the column’s header; the NAME attribute’s text is
used if this is omitted.

WIDTH Optional. The width of the column, in pixels.

DISPLAY Optional. Yes or No. If set to No, the column is hidden from view but is still
submitted to the server when the form is submitted. In general, you use
DISPLAY=”No” for a table’s ID number column. Similar conceptually to an
<INPUT> form field of TYPE=”Hidden”. Default is Yes.

TYPE Optional. Controls how the column can be sorted by the user by clicking the
column header. If numeric, the user can sort the column numerically. If 
text or textnocase, the column is sorted alphabetically (text_nocase is
generally more user friendly). You can also set TYPE=”boolean” to make
check boxes appear in the column instead of text values. This is a great way to
enable users to turn a database table’s Yes/No or Bit type columns on and
off. You also can set TYPE=”Image” to display images in the grid; see
Appendix B or the ColdFusion documentation for details.



20 CHAPTER 24 Enhancing Forms with Client-Side Java

Table 24.5 (continued)

ATTRIBUTE DESCRIPTION

DATAALIGN Optional. The alignment for the data shown in the column. Valid entries are
Left, Right, and Center. Defaults to Left. 

NUMBERFORMAT Optional. A formatting mask for displaying numbers. You can use the same
mask characters supported by the NumberFormat() function (see Appendix C).

TEXTCOLOR Optional. The color of the text in the column’s cells, as a named color or
hexadecimal RBG value. The color can change conditionally in real time,
based on a formula you provide; see the section “Conditional Color Coding”
for more information.

BGCOLOR Optional. The background color for the column’s cells, as a named color or
hexadecimal RBG value. The color can change conditionally in real time,
based on a formula you provide; see the section “Conditional Color Coding”
for more information.

VALUES Optional. If you provide a VALUES attribute and the column is editable (see
SELECTMODE attribute in Table 24.4), the column becomes a drop-down list.
The VALUES attribute is assumed to be a ColdFusion list, in which each list
value creates a new choice in the drop-down list. Similar conceptually to the
VALUE attribute of the <CFSELECT> tag (see Chapter 13).

VALUESDISPLAY Optional. Relevant only if you provide a VALUES attribute. A list of values to
show in the drop-down list. The VALUESDISPLAY attribute should also be a
ColdFusion list, in which each list value is the user-friendly version of the
corresponding list value in VALUES. Similar conceptually to the DISPLAY
attribute of the <CFSELECT> tag. 

VALUESDELIMITER Optional. Relevant only if you provide a VALUES attribute. The delimiter
character to use for the lists supplied to the VALUES and VALUESDISPLAY
attributes. If the individual VALUESDISPLAY values might contain commas,
you should change this to a delimiter that will not show up in your data, such
as a semicolon or pipe character. See Chapter 8, “Using ColdFusion,” for
more information about ColdFusion lists and delimiters.

Listing 24.6 builds on the code from Listing 24.5, this time using <CFGRIDCOLUMN> tags to set indi-
vidual attributes for each column that should be displayed in the grid. The ActorID column is hid-
den from view, and the widths and alignments and number masks of the other columns have been
tweaked to make the grid more visually pleasing (Figure 24.5).

Listing 24.6 ActorGrid2.cfm—Using <CFGRIDCOLUMN> to Control the Display of Individual Columns
<!--- 
Filename: ActorGrid2.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFGRID> tag

--->



21Using <CFGRID>

Listing 24.6 (continued)
<!--- Get list of Actors from database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT * FROM Actors
ORDER BY NameFirst, NameLast

</CFQUERY>

<HTML>
<HEAD><TITLE>Orange Whip Studios Actors Stable</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Actors Stable</H2>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetActors”
WIDTH=”295”
HEIGHT=”300”
ROWHEADERS=”No”
COLHEADERBOLD=”Yes”
COLHEADERALIGN=”CENTER”
SELECTMODE=”ROW”>
<!--- Hidden column for ActorID - does not actually get displayed --->
<CFGRIDCOLUMN 
NAME=”ActorID”
DISPLAY=”No”>

<!--- Column for actor’s first name --->
<CFGRIDCOLUMN 
NAME=”NameFirst”
HEADER=”First Name”
WIDTH=”100”>

<!--- Column for actor’s last name --->
<CFGRIDCOLUMN 
NAME=”NameLast”
HEADER=”Last Name”
WIDTH=”120”
BOLD=”Yes”>

<!--- Column for actor’s age--->
<CFGRIDCOLUMN 
NAME=”Age”
HEADER=”Age”
DATAALIGN=”Center”
WIDTH=”50”
NUMBERFORMAT=”999.”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML> 



22 CHAPTER 24 Enhancing Forms with Client-Side Java

Making Editable Grids
To make a grid editable, set the SELECTMODE of the <CFGRID> column to EDIT. The user will then be
able to edit the data in the grid, almost as if she were using a spreadsheet program such as Microsoft
Excel. If you enable the INSERT and DELETE options for the <CFGRID> (see Table 24.5), she will even
be able to insert new records and delete existing ones from the grid.

TIP

If you want the user to be able to edit only certain columns, set the SELECT attribute of the <CFGRIDCOLUMN> tag (see Table 24.5).

Using the <CFGRIDUPDATE> Tag

As the user edits the values in the grid, she is changing the values only on her local machine (that is,
the Java-based grid applet generated by <CFGRID> is not connected in real time to the database on
the ColdFusion server). After a user has edited the grid to her satisfaction, she should have a way
to commit her edits to the underlying database table. ColdFusion makes this easy to accomplish by
providing the <CFGRIDUPDATE> tag, which takes care of updating the database accordingly when your
users submit forms that contain editable grids.

The <CFGRIDUPDATE> tag is conceptually similar to the <CFUPDATE> tag you learned about in Chapter 13.
In general, you need only provide the tag with the GRID, DATASOURCE, and TABLENAME attributes; the
tag will take care of the rest. Any rows the user has added to the grid will be inserted into the speci-
fied database table, any rows the user has removed from the grid will be deleted from the table, and
any existing cells the user has edited will be updated accordingly. 

Figure 24.5

The <CFGRIDCOLUMN>
tag gives you additional
control over the
display of your grids.



23Using <CFGRID>

Table 24.6 is an abbreviated list of the attributes supported by <CFGRIDUPDATE>. I’ve shortened the
list here to make it easier for you to concentrate on the most important attributes. The other
attributes are explained in Appendix B.

Table 24.6 An Abbreviated List of <CFGRIDUPDATE> Attributes

NAME STATUS DESCRIPTION

GRID Required. The NAME of the <CFGRID> form element being
submitted.

DATASOURCE Required. The name of the data source for the update action.
Presumably the same DATASOURCE name you provided
to the <CFGRID> tag.

TABLENAME Required. The name of the table you want to update. Presumably
the same table from which you selected records to
populate the <CFGRID>.

KEYONLY Optional. Yes or No. Yes specifies that in the update action, the WHERE
criteria is confined to the key values. No specifies that
in addition to the key values, the original values of
any changed fields are included in the WHERE criteria.
The default is Yes. In other words, if this attribute is
set to No, records that have been changed by some
other user since the page was loaded will not be
changed again when the grid is submitted. Only
those database rows that are unchanged since the
grid was originally displayed will be affected by the
<CFGRIDUPDATE> action. This is a simple but very
effective way of ensuring that several users who are
editing the same table at the same time do not
overwrite each other’s changes.

NOTE

The <CFGRIDUPDATE> tag also supports DATASOURCE, USERNAME, PASSWORD, TABLEOWNER, and TABLEQUALIFIER
attributes, which work the same way as the corresponding attributes for the <CFUPDATE> tag discussed in Chapter 13. See
Appendix B for details about these attributes. 

Committing the User’s Edits to the Database

Listing 24.7 takes the previous version of the template (refer to Listing 24.6) and makes it editable.
After the user makes whatever edits she desires and submits the form, the <CFIF> test at the top of
the template evaluates to True, which causes the <CFGRIDUPDATE> tag to execute. The user can now
edit the data in the grid, add new records, delete existing records, and submit the changes to the
server (Figure 24.6). 

TIP

Always consider setting the KEYONLY attributes to No (see Table 24.6) to prevent multiple users from accidentally overwriting each
other’s edits to the database.



24 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.7 ActorGrid3.cfm—An Editable Grid
<!--- 
Filename: ActorGrid3.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFGRID> tag

--->

<!--- If form is being submitted, commit changes to the database --->
<CFIF CGI.REQUEST_METHOD is “Post”>
<CFGRIDUPDATE
DATASOURCE=”ows”
TABLENAME=”Actors”
GRID=”ActorGrid”
KEYONLY=”No”>

</CFIF>

<!--- Get list of Actors from database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT * FROM Actors
ORDER BY NameFirst, NameLast

</CFQUERY>

<HTML>
<HEAD><TITLE>Orange Whip Studios Actors Stable</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Actors Stable</H2>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

Figure 24.6

Editable grids provide
an easy way to enable
users to edit multiple
rows of data.



25Using <CFGRID>

Listing 24.7 (continued)
<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetActors” 
WIDTH=”425”
HEIGHT=”300”
ROWHEADERS=”No”
COLHEADERBOLD=”Yes”
COLHEADERALIGN=”CENTER”
SELECTMODE=”EDIT”
INSERT=”Yes”
DELETE=”Yes”
INSERTBUTTON=”Add New Actor”
DELETEBUTTON=”Delete Selected Actor”>
<!--- Hidden column for ActorID - does not actually get displayed --->
<CFGRIDCOLUMN 
NAME=”ActorID”
DISPLAY=”No”>

<!--- Column for actor’s first name --->
<CFGRIDCOLUMN 
NAME=”NameFirst”
HEADER=”First Name”
WIDTH=”100”>

<!--- Column for actor’s last name --->
<CFGRIDCOLUMN 
NAME=”NameLast”
HEADER=”Last Name”
WIDTH=”100”
BOLD=”Yes”>

<!--- Column for actor’s age--->
<CFGRIDCOLUMN 
NAME=”Age”
HEADER=”Age”
WIDTH=”50”
NUMBERFORMAT=”999.”>

<!--- Column for babe factor --->
<CFGRIDCOLUMN 
NAME=”IsTotalBabe”
HEADER=”Hottie”
WIDTH=”50”
TYPE=”boolean”>

<!--- Column for gender --->
<CFGRIDCOLUMN 
NAME=”Gender”
HEADER=”Sex”
WIDTH=”100”
VALUES=”M,F”
VALUESDISPLAY=”Actor,Actress”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML>



26 CHAPTER 24 Enhancing Forms with Client-Side Java

NOTE

This template uses the automatic CGI.REQUEST_METHOD variable to determine whether the form is currently being submitted. If
the REQUEST_METHOD is Post, that is an indication that the form (which has a METHOD attribute of Post) is being submitted.
If the page is simply being viewed normally (not as part of a form submission), the REQUEST_METHOD is Get instead. See Appen-
dix D for details. 

Processing Grid Edits Without <CFGRIDUPDATE>

As Listing 24.7 shows, the <CFGRIDUPDATE> tag makes updating a database table after a user makes
changes to an editable grid easy. It handles all the appropriate inserts, updates, and deletes for you,
all with just one line of code. In most cases, the <CFGRIDUPDATE> tag provides everything you need.

In some cases, however, you might want to handle each edit operation on your own. For instance,
perhaps you want the user to be able to delete records from the Actors table, but only those actors
who have not actually appeared in any films. ColdFusion enables you to handle this type of integrity
check or other special processing by exposing a number of special arrays you can inspect to find out
which edits the user made to the grid. Using the arrays, you can handle each edit operation sepa-
rately, even ignoring some of the edits when appropriate.

Table 24.7 shows the special arrays ColdFusion makes available when a <CFGRID> is submitted.
Normally, these array variables are used internally by the <CFGRIDUPDATE> tag to update the database
automatically, but you can use them to create customized update handling behavior.

Each of the variables listed in Table 24.7 is a one-dimensional array. Each of the arrays always has
the same number of elements in it, one for each grid row that was changed (edited, inserted, or
deleted). Therefore, you can use the ArrayLen() function to find out how many edits were made
to the grid. 

Table 24.7 Special Arrays Available After a <CFGRID> Submission

FORM ATTRIBUTE DESCRIPTION

gridname.RowStatus.Action[index] The type of edit made to the row. Will be U, I, or D to
indicate that the row was updated, inserted, or deleted,
respectively.

gridname.colname[index] The new value of the column indicated by colname.

gridname.original.colname[index] The original value of the column indicated by colname. 

NOTE

It is important to understand that these arrays will not contain an entry for each row in the grid; they will contain only entries for each
row in the grid that has been changed (edited, inserted, or deleted). 

Listing 24.8 demonstrates how to use these special arrays. As you can see, using these arrays instead
of <CFGRIDUPDATE> generally requires a lot of additional code. Of course, much of this code could be
eliminated if your grid did not allow inserts or deletes (see Table 24.4).



27Using <CFGRID>

Listing 24.8 ActorGrid3b.cfm—Handling Each Update on Your Own
<!--- 
Filename: ActorGrid3b.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFGRID> tag

--->

<HTML>
<HEAD><TITLE>Orange Whip Studios Actors Stable</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Actors Stable</H2>

<!--- If form is being submitted, commit changes to the database --->
<CFIF CGI.REQUEST_METHOD is “Post”>
<!--- The RowStatus.Action array contains a value for each change --->
<CFSET NumChanges = ArrayLen(FORM.ActorGrid.RowStatus.Action)>

<!--- For each change made to the grid... --->
<CFLOOP FROM=”1” TO=”#NumChanges#” INDEX=”i”>
<!--- What type of change was made? --->
<CFSET ThisAction = FORM.ActorGrid.RowStatus.Action[i]>

<!--- Depending on the type of change (update, insert, or delete) --->
<CFSWITCH EXPRESSION=”#ThisAction#”>
<!--- Handle updates (if existing values were edited in grid) --->
<CFCASE VALUE=”U”>
<CFQUERY DATASOURCE=”ows”>
UPDATE Actors SET
NameFirst = ‘#FORM.ActorGrid.NameFirst[i]#’,
NameLast = ‘#FORM.ActorGrid.NameLast[i]#’,
Age = #FORM.ActorGrid.Age[i]#,
IsTotalBabe = #FORM.ActorGrid.IsTotalBabe[i]#,
Gender = ‘#FORM.ActorGrid.Gender[i]#’

WHERE
ActorID = #FORM.ActorGrid.original.ActorID[i]#

</CFQUERY>
</CFCASE>
<!--- Handle inserts (if record was added to the grid) --->
<CFCASE VALUE=”I”>
<!--- The boss says we’re only hiring beautiful people from now on --->
<CFIF FORM.ActorGrid.IsTotalBabe[i] EQ 1>
<CFQUERY DATASOURCE=”ows”>
INSERT INTO Actors (
NameFirst, 
NameLast, 
NameFirstReal, 
NameLastReal, 
Age, 
IsTotalBabe, 
Gender

) VALUES (
‘#FORM.ActorGrid.NameFirst[i]#’, 
‘#FORM.ActorGrid.NameLast[i]#’,
‘#FORM.ActorGrid.NameFirst[i]#’, 
‘#FORM.ActorGrid.NameLast[i]#’,



28 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.8 (continued)
#FORM.ActorGrid.Age[i]#,
#FORM.ActorGrid.IsTotalBabe[i]#,
‘#FORM.ActorGrid.Gender[i]#’

)
</CFQUERY>

<CFELSE>
<CFOUTPUT>
<P>Sorry, #FORM.ActorGrid.NameFirst[i]# #FORM.ActorGrid.NameLast[i]# 
cannot be added because it’s company policy to only hire Hotties.<BR>
</CFOUTPUT>  
</CFIF>

</CFCASE>
<!--- Handle deletes (if existing row was deleted from grid) --->
<CFCASE VALUE=”D”>
<!--- Find out if this actor is in any films --->
<CFQUERY DATASOURCE=”ows” NAME=”GetActorFilms”>
SELECT FilmID FROM FilmsActors
WHERE ActorID = #FORM.ActorGrid.original.ActorID[i]#

</CFQUERY>
<!--- Only allow a delete if the actor is not in any films --->
<CFIF GetActorFilms.RecordCount EQ 0>
<CFQUERY DATASOURCE=”ows”>
DELETE FROM Actors
WHERE ActorID = #FORM.ActorGrid.original.ActorID[i]#

</CFQUERY>
<CFELSE>
<CFOUTPUT>
<P>Sorry, #FORM.ActorGrid.original.NameFirst[i]# 
#FORM.ActorGrid.original.NameLast[i]# 
cannot be deleted because that actor has been in 
#GetActorFilms.RecordCount# of our films already.<BR>

</CFOUTPUT> 
</CFIF>

</CFCASE>
</CFSWITCH>

</CFLOOP>
</CFIF>

<!--- Get list of Actors from database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT * FROM Actors
ORDER BY NameFirst, NameLast

</CFQUERY>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetActors” 
WIDTH=”425”
HEIGHT=”300”
ROWHEADERS=”No”
COLHEADERBOLD=”Yes”
COLHEADERALIGN=”CENTER”



29Using <CFGRID>

Listing 24.8 (continued)
SELECTMODE=”EDIT”    
INSERT=”Yes”
DELETE=”Yes”
INSERTBUTTON=”Add New Actor”
DELETEBUTTON=”Delete Selected Actor”>
<!--- Hidden column for ActorID - does not actually get displayed --->
<CFGRIDCOLUMN 
NAME=”ActorID”
DISPLAY=”No”>

<!--- Column for actor’s first name --->
<CFGRIDCOLUMN 
NAME=”NameFirst”
HEADER=”First Name”
WIDTH=”100”>

<!--- Column for actor’s last name --->
<CFGRIDCOLUMN 
NAME=”NameLast”
HEADER=”Last Name”
WIDTH=”100”
BOLD=”Yes”>

<!--- Column for actor’s age--->
<CFGRIDCOLUMN 
NAME=”Age”
HEADER=”Age”
WIDTH=”50”
NUMBERFORMAT=”999.”>

<!--- Column for babe factor --->
<CFGRIDCOLUMN 
NAME=”IsTotalBabe”
HEADER=”Hottie”
WIDTH=”50”
TYPE=”boolean”>

<!--- Column for gender --->
<CFGRIDCOLUMN 
NAME=”Gender”
HEADER=”Sex”
WIDTH=”100”
VALUES=”M,F”
VALUESDISPLAY=”Actor,Actress”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML>

First, the NumChanges variable is set to the length of the FORM.ActorGrid.RowStatus.Action array.
This is the number of edits (inserts, updates, or deletes) the user made to the grid. If the user sub-
mitted the form without making any changes, the value of NumChanges is 0. 

Next, a <CFLOOP> tag is used to loop over each of the elements in the special arrays. For instance,
for each iteration of the loop, the value of RowStatus.Action[i] is U, D, or I to indicate an update,
delete, or insert. This value is stored in the ThisAction variable. A <CFSWITCH> block is then used to
execute a different <CFCASE> block for each of the possible values of ThisAction (U, D, or I).



30 CHAPTER 24 Enhancing Forms with Client-Side Java

Within each of the <CFCASE> tags, the original and updated values for each column of the grid are
available for use in queries or other CFML code. For instance, within the <CFCASE> for deletes, the
value of FORM.ActorGrid.original.ActorID[i] is used to determine which actor’s record was deleted
from the grid. A quick query named GetActorFilms is used to determine whether the actor is already
in any films. If the actor is not in any films, the record is deleted. If the actor is in at least one film,
the deletion is skipped (Figure 24.7). 

Conditional Color-Coding
<CFGRID> includes the capability to display grid cells in various colors based on the current grid values.
Similar conceptually to the Conditional Formatting feature in Microsoft Excel, this gives you a way
to visually highlight values that are particularly low, high, or otherwise unusual or noteworthy. The
color-coding is applied in real time, so if the grid is updatable, cell colors can change while the user
is editing.

To use the conditional color-coding feature, you use a special formula syntax in the TEXTCOLOR or
BGCOLOR attribute of the <CFGRIDCOLUMN> tag (refer to Table 24.5). This formula looks similar to
CFML and JavaScript and always must appear within parentheses, as shown in the following. The
formula syntax is simple and is really much easier to show than to describe. Consider the following:

TEXTCOLOR=”(CX GT 25 ? black : red)”

This would cause each cell in the column to appear in black when the current value of the cell was
more than 25 and in red when less than or equal to 25. The CX stands for the value of the current
cell. The GT means greater than, just like in CFML. The ? and : characters are used to specify

Figure 24.7

If the user attempts to
delete an actor whose
ID number is already
used in some other
table, the deletion is
cancelled.



31Using <CFGRID>

the colors that should be used if the condition is met or not met, respectively. The color can be
specified as a named color or as a hexadecimal RGB color value, like so:

TEXTCOLOR=”(CX GT 25 ? 000000 : FF0000)”

You can use a numbered column number in place of the CX. The first column is C0, the second is C1,
and so on. This enables you to set a cell’s text color based on the values in other cells in the same
row of the grid. So, this expression would set the cell’s color based on the current value of the third
column in the grid:

TEXTCOLOR=”(C2 GT 25 ? black : red)”

You can also use LT (less than) or EQ (equal to) in place of the GT in the previous snippet. 

Listing 24.9 shows how to use the conditional formatting feature in your code. This example displays
actors who are 25 or older in black and younger actors in red. If the user changes the age column
for an actor, the cells in that row will be colored accordingly (Figure 24.8).

TIP

When using conditional formatting, be sure to give your users some type of legend or explanation to help them understand what each
color means. This listing provides such an explanation at the top of the page (see Figure 24.8). 

NOTE

You might not be able to see the difference between the red and black type in Figure 24.8 as printed in this book, but you will see the
difference if you visit this listing with your browser.

Figure 24.8

Conditional formatting
can be used to color-
code cells in real time
as the user edits 
the grid.



32 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.9 ActorGrid4.cfm—Highlighting Certain Values with Conditional Formatting
<!--- 
Filename: ActorGrid4.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonstrates use of the <CFGRID> tag

--->

<!--- If form is being submitted, commit changes to the database --->
<CFIF CGI.REQUEST_METHOD is “Post”>
<CFGRIDUPDATE
DATASOURCE=”ows”
TABLENAME=”Actors”
GRID=”ActorGrid”
KEYONLY=”No”>

</CFIF>

<!--- Get list of Actors from database --->
<CFQUERY NAME=”GetActors” DATASOURCE=”ows”>
SELECT * FROM Actors
ORDER BY NameFirst, NameLast

</CFQUERY>

<HTML>
<HEAD><TITLE>Orange Whip Studios Actors Stable</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Actors Stable</H2>

Luscious young things are shown in red.<BR> 
Over-the-hill, retirement-age wannabes (that is, over 25) are shown in black.<BR>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetActors”
WIDTH=”425”
HEIGHT=”300”
ROWHEADERS=”No”
COLHEADERBOLD=”Yes”
COLHEADERALIGN=”CENTER”
SELECTMODE=”EDIT”>
<!--- Hidden column for ActorID - does not actually get displayed --->
<CFGRIDCOLUMN 
NAME=”ActorID”
DISPLAY=”No”>

<!--- Column for actor’s first name --->
<CFGRIDCOLUMN 
NAME=”NameFirst”
HEADER=”First Name”
WIDTH=”100”
TEXTCOLOR=”(C2 GT 25 ? black : red )”>



33Using <CFGRID>

Listing 24.9 (continued)
<!--- Column for actor’s last name --->
<CFGRIDCOLUMN 
NAME=”NameLast”
HEADER=”Last Name”
WIDTH=”100”
BOLD=”Yes”
TEXTCOLOR=”(C2 GT 25 ? black : red )”>

<!--- Column for actor’s age--->
<CFGRIDCOLUMN 
NAME=”Age”
HEADER=”Age”
WIDTH=”50”
NUMBERFORMAT=”999.”
TEXTCOLOR=”(CX GT 25 ? black : red )”>

<!--- Column for babe factor --->
<CFGRIDCOLUMN 
NAME=”IsTotalBabe”
HEADER=”Hottie”
WIDTH=”50”
TYPE=”boolean”>

<!--- Column for gender --->
<CFGRIDCOLUMN 
NAME=”Gender”
HEADER=”Sex”
WIDTH=”100”
VALUES=”M,F”
VALUESDISPLAY=”Actor,Actress”
TEXTCOLOR=”(C2 GT 25 ? black : red )”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML>

NOTE

This example uses conditional formatting for the TEXTCOLOR attribute only, but you can also use it with the BGCOLOR attribute
(using the same formula syntax). 

Displaying Images in Grids
The <CFGRID> tag is capable of displaying images in individual cells. To display images in a grid 
column, set the TYPE attribute of the <CFGRIDCOLUMN> to Image; then make sure that the values in 
the corresponding column of your query contain URLs for the appropriate images to display in
each cell. If the grid is editable, the user will be able to double-click the image to edit the path and
submit the changes to the server.

Listing 24.10 demonstrates how to use TYPE=”Image” to display images in a grid. Each film record is
shown with the appropriate image, if one is currently available for the film. If no image exists for
the film, the Image column appears as empty (Figure 24.9).



34 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.10 FilmGrid.cfm—Displaying Images in an Editable Grid
<!--- 
Filename: FilmGrid.cfm
Author:   Nate Weiss (NMW)
Purpose:  Demonrates use of <CFGRID> to display images

--->

<!--- If form is being submitted, commit changes to the database --->
<CFIF CGI.REQUEST_METHOD is “Post”>
<CFGRIDUPDATE
DATASOURCE=”ows”
TABLENAME=”Actors”
GRID=”ActorGrid”
KEYONLY=”No”>

</CFIF>

<!--- Get list of films from database --->
<!--- Include a column of blank values called ImagePath --->
<CFQUERY NAME=”GetFilms” DATASOURCE=”ows”>
SELECT FilmID, MovieTitle, AmountBudgeted, ‘’ AS ImagePath 
FROM Films
ORDER BY MovieTitle

</CFQUERY>

<!--- For each film, check to see if we have a image for it --->
<CFLOOP QUERY=”GetFilms”>
<!--- This is the relative URL path for the image --->
<CFSET TestImagePath = “../images/f#GetFilms.FilmID#.gif”>
<!--- If the image file actually exists on this server’s drive --->
<CFIF FileExists(ExpandPath(TestImagePath))>
<!--- Set the ImagePath column of the current row --->

Figure 24.9

GIF and JPEG images
can be displayed in
grids, along with other
types of information.



35Using <CFGRID>

Listing 24.10 (continued)
<CFSET GetFilms.ImagePath[CurrentRow] = TestImagePath>

</CFIF>
</CFLOOP>

<HTML>
<HEAD><TITLE>Orange Whip Studios Films</TITLE></HEAD>
<BODY>
<H2>Orange Whip Studios Films</H2>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”Post”>

<!--- Grid control for expenses --->
<CFGRID 
NAME=”ActorGrid” 
QUERY=”GetFilms”
WIDTH=”525”
HEIGHT=”400”
ROWHEADERS=”No”
ROWHEIGHT=”130”
COLHEADERBOLD=”Yes”
COLHEADERALIGN=”Center”
SELECTMODE=”EDIT”>
<!--- Hidden column for FilmID - does not actually get displayed --->
<CFGRIDCOLUMN 
NAME=”FilmID”
DISPLAY=”No”>

<!--- Column for film’s title --->
<CFGRIDCOLUMN 
NAME=”MovieTitle”
HEADER=”Film Title”
WIDTH=”200”>

<!--- Column for film’s budget --->
<CFGRIDCOLUMN 
NAME=”AmountBudgeted”
HEADER=”Budget”
WIDTH=”100”
NUMBERFORMAT=”999,999,999,999.”>

<!--- Column for film’s publicity image, if any --->
<CFGRIDCOLUMN 
TYPE=”Image”
NAME=”ImagePath”
HEADER=”Image”
WIDTH=”200”>

</CFGRID>

<P><INPUT TYPE=”Submit” VALUE=”Submit Changes”>
</CFFORM>

</BODY>
</HTML>

First, a query called GetFilms is executed. Simple AS syntax is used to add another column called
ImagePath to the query as it is being returned to ColdFusion. This column will be filled with the
relative URL to each film’s image, if an image is currently available for the film. 



36 CHAPTER 24 Enhancing Forms with Client-Side Java

Next, a <CFLOOP> block is used to iterate over each row of the GetFilms query. Within the loop, the
TestImagePath variable is set to what the relative path for the film’s image should be, which is based
on the film’s ID number. The ExpandPath() and FileExists() functions are then used to determine
whether an image file actually exists for the film; if so, the URL path for the image is placed in the
ImagePath column of the query. When the loop has finished its work, each film that has an image
will have the relative path to the image (starting with ../images) as the ImagePath column; other
films will still have an empty string in that column.

Finally, the ImagePath column name is passed as the NAME attribute of a <CFGRIDCOLUMN> tag of
TYPE=”Image”, which causes the images to be displayed in the grid (as shown in Figure 24.9). 

About the <CFGRIDROW> Tag
Up to this point, you’ve been dealing with grids that get their data from a query. You also can add
rows to a grid without using a query by omitting the QUERY attribute from the <CFGRID> tag and then
adding a <CFGRIDROW> tag between the <CFGRID> tag pair.

I would recommend against using the <CFGRIDROW> tag. The main problem is that it requires you to
supply all data for the row as a comma-separated list, in which the commas indicate where the data
should be split into separate columns. However, in contrast to most uses of lists within ColdFusion,
you have no opportunity to supply an alternative delimiter character, which leads to problems if any
of the row’s values are empty strings or contain commas. It’s too bad that <CFGRIDROW> doesn’t take a
COLUMN attribute; that would solve the problem and turn it into a useful tag.

The good news is that there is really no need for <CFGRIDROW> in the first place. If you need to
supply nondatabase data to a query, simply create a query object yourself, using the QueryNew(),
QueryAddRow(), and QuerySetCell() functions. You can read more about these functions in Appen-
dix C; there is also an example in Chapter 27, “Online Commerce.”

If you want find out more about the <CFGRIDROW> tag, consult the CFML Reference section of the
ColdFusion documentation. 

Using <CFSLIDER>
The <CFSLIDER> tag places a sliding bar control on a page that enables you to select a numeric value
by moving a knob from side to side (or up and down). This type of control is ideal for situations in
which you need to collect some kind of rating or ranking from your users. The slider control can be
defined with a number of settings for its range, alignment, default value, and other features.

Table 24.8 is an abbreviated list of the attributes supported by the <CFSLIDER> tag. We’ve shortened
the list here to make it easier for you to concentrate on the most important attributes. The complete
list is provided in Appendix B.

NOTE

The <CFSLIDER> tag also supports most of the look-and-feel attributes listed in Table 24.3, earlier in this chapter. 



37Using <CFSLIDER>

Table 24.8 Abbreviated List of <CFSLIDER> Attributes

ATTRIBUTES DESCRIPTION

NAME Required. A name for the slider, which must be a unique name within the
form. When the form is submitted, the slider’s value will be available as the
FORM variable indicated by this name.

VALUE Optional. The value that should be preselected in the slider when the page first
appears. If omitted, defaults to the minimum RANGE value (see the following).

RANGE Optional. Determines the minimum and maximum values selectable with the
slider. Separate values by a comma. For example RANGE=”0,500”. Default is
0,100. Valid only for numeric data.

SCALE Optional. A number that indicates which values the slider should be capable
of being set to within the RANGE. So, if the RANGE is 0,500 and the SCALE is
50, the user would be able to use the slider to choose only 0, 50, 100, 150,
and so on. If omitted, the user can select any value within the RANGE.

LABEL Optional. A label that appears on the slider control so the user can easily see
the numeric value he has selected by sliding the control’s knob. Use the word
%value% (surrounded by percent signs, as shown) to represent the current
value of the slider, like so: LABEL=”Volume: %value%”. Remember to set
the REFRESHLABEL attribute to Yes whenever you provide a LABEL attribute.

REFRESHLABEL Optional. Yes or No. If Yes, the label is not refreshed when the slider is
moved. Default is Yes.

VERTICAL Optional. Yes or No. If No, the slider knob can be moved from side to side. 
If Yes, the knob moves up and down. Default is No.

TICKMARKMAJOR Optional. Yes or No. If Yes, large tick marks appear along the slider control
to help the user see where particular values will fall. Default is No. There is
also a TICKMARKMAJOR attribute (see Appendix B).

TICKMARKLABELS Optional. If No (the default), no labels are shown along the slider control to
mark where particular values fall. If Yes or Numeric, labels are automatically
displayed based on the RANGE and SCALE attributes. If any other value is
supplied, it is assumed to be a comma-separated list of tick labels to display
(see Listing 24.11 for an example).

To use the slider control, just add the <CFSLIDER> tag to your <CFFORM> code. Most of the time, you
will want to specify values for (at least) the NAME, WIDTH, HEIGHT, and RANGE attributes (see Table 24.8).
Listing 24.11 shows how to use the slider control in your ColdFusion templates (Figure 24.10). 

Figure 24.10

The <CFSLIDER>
tag emphasizes the
relationship between
the values in a
numeric range.



38 CHAPTER 24 Enhancing Forms with Client-Side Java

Listing 24.11 FilmEntry.cfm—Adding a Slider Control to a Data-Entry Form
<!--- 
Filename: FilmEntry.cfm
Author:   Nate Weiss (NMW)
Purpose:  Data entry interface with slider selection for rating

--->

<!--- Insert film into database when form is submitted --->
<CFIF IsDefined(“FORM.RatingID”)>
<CFQUERY DATASOURCE=”ows”>
INSERT INTO Films(MovieTitle, RatingID, AmountBudgeted, PitchText)
VALUES (‘#FORM.MovieTitle#’, #FORM.RatingID#, #FORM.AmountBudgeted#, ‘ ‘)

</CFQUERY>  
</CFIF>

<!--- Get list of ratings from database --->
<CFQUERY NAME=”GetRatings” DATASOURCE=”ows”>
SELECT RatingID, Rating
FROM FilmsRatings
ORDER BY RatingID

</CFQUERY>

<!--- Use query of queries feature to get highest and lowest rating ID --->
<CFQUERY NAME=”GetMinMax” DBTYPE=”query”>
SELECT MIN(RatingID) AS MinRating, MAX(RatingID) As MaxRating
FROM GetRatings

</CFQUERY>

<HTML>
<HEAD><TITLE>Film Entry Form</TITLE></HEAD>
<BODY>
<H2>Film Entry Form</H2>

<!--- Data entry form --->
<CFFORM ACTION=”#CGI.SCRIPT_NAME#” METHOD=”POST”>
<!--- Slider control for selecting the film’s rating --->
<CFSLIDER
NAME=”RatingID”
VALUE=”2”
LABEL=”Rating: %value%”
RANGE=”#GetMinMax.MinRating#,#GetMinMax.MaxRating#”
TICKMARKMAJOR=”Yes”
TICKMARKLABELS=”#ValueList(GetRatings.Rating)#”
VERTICAL=”Yes”
WIDTH=”160”
HEIGHT=”200”
LOOKANDFEEL=”Metal”
ALIGN=”LEFT”
HSPACE=”5”>

<!--- Text entry field for expense description --->
<P><B>New Film Title:</B><BR>
<CFINPUT NAME=”MovieTitle” SIZE=”50” MAXLENGTH=”50”
REQUIRED=”Yes” MESSAGE=”Please don’t leave the film title blank.”><BR>



39About <CFTEXTINPUT> and <CFAPPLET>

Listing 24.11 (continued)
<!--- Text entry field for expense description --->
<P><B>Short Description / One-Liner:</B><BR>
<CFINPUT NAME=”PitchText” SIZE=”50” MAXLENGTH=”50”
REQUIRED=”Yes” MESSAGE=”Please don’t leave the one-liner blank.”><BR>

<!--- Text entry field for expense description --->
<P><B>New Film Budget:</B><BR>
<CFINPUT NAME=”AmountBudgeted” SIZE=”15” 
REQUIRED=”Yes” MESSAGE=”Please don’t leave the film title blank.”
VALIDATE=”float”><BR>

<!--- Submit button for form --->
<P><INPUT TYPE=”Submit” VALUE=”Submit New Film”>

</CFFORM>  

</BODY>
</HTML>

About <CFTEXTINPUT> and <CFAPPLET>
This section describes two <CFFORM> tags that were not covered in detail in this chapter: <CFTEXTINPUT>
and <CFAPPLET>. Because these tags aren’t generally used in the majority of ColdFusion applications, we
aren’t providing specific examples for them here. You can find out more about them in the ColdFusion
documentation.

About <CFTEXTINPUT>
In this chapter, you have learned about the sophisticated Java-based controls provided by Cold-
Fusion for use in your forms (the tree control, grid control, and slider control). ColdFusion also
provides a Java-based alternative to HTML text form fields, called <CFTEXTINPUT>. It provides all
the validation options provided by the <CFINPUT> tag you learned about in Chapter 12, plus a num-
ber of additional attributes to control font color, size, and so on.

In general, we don’t recommend that you use this tag, so we aren’t providing a specific code exam-
ple for it in this chapter. You can get all the same validation functionality from <CFINPUT> without
the added overhead of Java, and recent versions of the major browsers allow you to specify font size
and color for text form fields via CSS formatting.

To learn more about <CFTEXTINPUT>, consult Appendix B or the CFML Language Reference section
of the ColdFusion documentation.

About <CFAPPLET>
One of the least used or understood ColdFusion form features is the <CFAPPLET> tag. This tag enables
you to extend the power of <CFFORM> by adding new Java elements that you create (or acquire or buy
from other companies or developers). You can have the results of the Java applet submitted with the



40 CHAPTER 24 Enhancing Forms with Client-Side Java

form, as if it were an ordinary form element. In addition, much of the code you normally would
write for a Java applet is handled by ColdFusion using default values you set during registration.

Because the writing of Java applets is a topic well beyond the scope of this book, and because free,
prebuilt Java controls that can effectively be used as form controls are in short supply, we aren’t pro-
viding any specific <CFAPPLET> examples in this chapter. In general, you will be provided with pre-
built syntax for using a particular applet in your code, so the services provided by the <CFAPPLET>
tag are not generally of much real-world benefit.

To use <CFAPPLET>, you first add an entry in the Java Applets page of the ColdFusion Administrator,
and then use the <CFAPPLET> tag in your form templates. For more information, consult Appendix B
or the ColdFusion documentation.


