IN THIS CHAPTER

About ColdFusion and Non-HTML Content 83
CHAPTER Comma-Separated Text 88

Generating Excel Files 92

Generating Word Files 100

[
G e n e rat I n g Serving Media Files 104
Getting Started with Wireless Applications 112
Non-HTML
Content

About ColdFusion and Non-HTML Content

Normally, ColdFusion is used to generate Web pages and Web pages only. Its main purpose in life
is to wait for requests from Web browsers and send back chunks of HI'ML in response. The Web
browsers then render the HI'ML visually for your users. With the exception of the Flash Remoting
listings in Chapter 23, HI'ML generation is what every code example in this book has been about.

However, there’s no law that says your ColdFusion templates have to send HTML back to the Web
browser. If you think about it, the only reason HTML tags such as <body> and <title> are in the

pages ColdFusion serves up is because you put them there. Take away the HTML tags, and your

ColdFusion templates are really just sending back plain old text files, such as you would create in

Notepad or any other text editor.

Okay, so if you remove the HT'ML tags from a page, could you format or mark up the text in some
other way? Sure you could. If the user’s browser knows how to display text formatted in that particu-
lar way, it will do so. If not, it will try to invoke some other application to display the content to
the user.

In this chapter, you learn about doing just that: getting ColdFusion to create other types of content
on-the-fly.

About MIME Content Types

If you’ve been working with Web pages for long, you might have heard of strange things called
MIME types or content types. But you may not have heard much of an explanation regarding what
exactly they are or what they are good for.

Basically, a MIME type is a short label that determines what type of content a particular document
or URL contains. The idea is that every file format—word processing files, spreadsheets, HTML
files, image files, multimedia files, and so on—has (or could have) its own MIME type. Any Web



84

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

browser, e-mail client, or other device can use the MIME type to determine what do to with a file
(or stream of content from a server), such as showing it as a picture, interpreting it as a document,
or opening up the file in some other program (such as the appropriate word processing or spread-

sheet application).

NOTE

Inaway, the concept of a MIME type is similar to the notion of a file extension in Windows; the file extension tells Windows which
icon to display in the Windows Explorer and which program should be launched when a user double-clicks a file. MIME types are

more flexible and appropriate for the Internet because they are not a Windows-specific concept. But both are simple schemes for
describing what exactly a computer should expect to find in a particular file or chunk of data.

NOTE

Although purists might disagree, the terms MIME type, MIME content type, and content type are often used interchangeably.
For purposes of this discussion, please consider them to be synonyms.

A MIME content type is always made up of two parts, separated by a forward slash:

= The first part describes the broad category that the content can be thought to belong to.
The common ones are text (generally something that could sensibly be opened in Notepad
or some other text editor), image, audio, video, and application. The application type is
somewhat of a catchall, generally meaning that the content is meant for a specific
application, such as Word, Photoshop, or something of that nature.

»  The second part, or subtype, is a more specific description of what exactly the content’s
format is. For instance, JPEG images, GIF images, and TIFF images been given MIME
types of image/jpeg, image/gif, and image/tiff, respectively.

Some common content types are listed in Table 32.1.

Table 32.1 Examples of Common MIME Content Types

MIME TYPE
text/html

text/plain

text/vnd.wap.wml

image/gif, image/jpeg

DESCRIPTION

Content that should be interpreted as HTML markup and thus
rendered by a Web browser natively. By far the most common in
use on the Web. Anything you would normally call a Web page has
this content type.

Just normal text content, such as you would create if you were just
typing a note for yourself in Notepad or some other text editor.

Markup content intended for WAP-enabled wireless devices, such
as cellular phones. This subject is discussed in the section “Getting
Started with Wireless Applications,” later in this chapter.

Common types of image content. Unlike the various text listed
above, images are binary files that mostly contain information about
individual pixels and can’t be opened in a text editor such as

Notepad.



Asout CoLpFusion aND Non-HTML CoNTENT

Table 32.1 (conTiNUED)

MIME TYPE DESCRIPTION

application/msword, Content tailored specifically for (and probably generated or saved
application/msexcel by) a specific application, such as Microsoft Word or Excel.
application/ Multimedia presentations or movies to be displayed by the
x-shockwave -flash Macromedia Flash Player.

video/x-msvideo, Multimedia presentations or movies to be displayed by the
video/vnd.rn-realvideo Windows Media Player or Real Player, respectively.
application/unknown or In general, a file or content that isn’t really meant to be opened or

application/octet-stream viewed in any particular way. When you download an executable
program (an .exe file, perhaps) from a Web site, the content type
typically is set to this value. Web browsers usually respond to this
content type by prompting the user for a download location by
displaying a Save As prompt.

How Your Browser Handles MIME Types

A good way to get a list of MIME content types—and which program your particular browser will
launch if it can’t display the content itself—is to examine how the browser has been configured.

If you are using a Netscape or Mozilla browser, select Preferences from the Edit menu, and then
select the Applications or Helper Applications option (depending on the version). You will be able
to scroll through the list of applications and see the types of content the browser has been config-
ured to launch for each application. For instance, URLSs that return a content type of application/
msexcel are passed off to Microsoft Excel for processing and viewing (Figure 32.1). This is how the
dialog box looks with Netscape 4.7; other versions will look different but provide the same basic
information.

If you are using Internet Explorer on a Windows machine, the equivalent place to look is in the
File Types tab of the Folder Options dialog box, which you can get to by selecting Folder Options
from the Tools menu in the Windows Explorer (not Internet Explorer).

NOTE
If no content type is provided by the Web server for a given file or steam of content, the browser will not know what to do with the
content. It usually will ask you what you want to do with the file, often by presenting a dialog box in which you select the appropriate
viewer or helper application. The exact behavior varies from browser to browser; it is generally the same behavior as when a content
typeof application/unknown orapplication/octet-streamisspecified (referto Table 32.1).

NOTE
Although it's not exactly bedtime reading, you can read the formal specification for the MIME type scheme by visiting the WC3's Web
siteathttp://www.w3.org.

85



86

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Figure 32.1 x|

Categary.

~ Colors Description

You can see how
Netscape associates

Specily helper applications for different fils types

content types with ) Navigator Microsoft Excel Diata Interchange Fomat 2| MewType.
. . L. - Languages Microsoft Excel HTML Document
apphcatlons m 1ts ~ Applications Micrasoft Excel HTML Templste Edt...
. -~ Smart Browsing Microsoft Excel ODBE Query files
Preferences dialog box. Mail & Newsaioups | MiorosoftEscel OLAP Cuery Fie 1 Bewove
Roaming Access Microzoft Exeel OLE DB Queny files
Composer Microssoft Excel SLK Data Import Format

Offline:
Advanced

El

Egtension: ~ XL§

MIME Type: application/msexcel

(<]

Handled By: EXCEL

0K | Concel Help

Introducing the <CFCONTENT> Tag

The HTTP specification requires that every response from a Web server include the appropriate
content type information. By default, ColdFusion always sends back a MIME type of text/html,
which is why Web browsers assume that the text returned by your templates should be rendered
as Web pages.

The <CFCONTENT> tag is provided for situations in which you want to send a different content type
back to the browser along with the content your template generates. Table 32.2 lists the various

attributes the <CFCONTENT> tag can take. The most important of these, as you might guess, is the

TYPE attribute.

Table 32.2 <CFCONTENT> Tag Syntax

ATTRIBUTE PURPOSE

TYPE Required. The MIME content type you want to send back to the browser along with
the content your template is generating. This could be one of the types listed in
Table 32.1 or some other type. For instance, if your template is written to
generate plain text (rather than HTML), you would set this value to text/plain.

FILE Optional. The complete path of a file on the server that you want to send back to
the browser. The actual content of the file should match up with the content type
you specified with the TYPE attribute. You can use this to respond to a page request
with an image or some other type of file that you want the user to download (perhaps
a .zip or an .exe file).

DELETEFILE Optional. You can set this attribute to Yes, which causes a file to be deleted from
the server’s drive after it has been sent to the browser. The default is No. Relevant
only if the FILE attribute is provided.

RESET Optional. Defaults to Yes, which means that any text that might have been output
before the <CFCONTENT> tag should be discarded (not sent to the browser). This is
handy if your code needs to make some decisions before deciding which content
type to specify. If it’s set to No, all content, even spaces and other whitespace, that
precedes the <CFCONTENT> tag will be sent back to the browser. This attribute is
discussed later in this chapter, in the section “Generating Comma-Separated Text.”



Asout CoLpFusion aND Non-HTML CoNTENT

Experimenting with Plain Text

As mentioned previously, ColdFusion always sends back a content type of text/html unless you
specify a different one using the <CFCONTENT> tag. As an experiment, you can try setting the content
type to text/plain, which means the browser is not obligated to parse the content as HTML. Instead,
the browser can display the content literally, just as you would expect to see the content in a simple
text editor such as Notepad.

Here’s a simple exercise to illustrate this point. Visit Listings 32.1 and 32.2 with your Web browser,
and compare the results. You can probably guess what Listing 32.1 will look like: The words
The time is now will be in italics, and then the current time will appear in bold on the next line.
Listing 32.2, on the other hand, tells the browser that the content type is plain text rather than
HTML, so it shows the text quite literally, without attempting to apply any tag-based formatting
(Figure 32.2).

Listing 32.1 TestMessagel.cfm—A Simple Message, Without Specifying a Content Type
<l---
Filename: TestMessageil.cfm
Author: Nate Weiss (NMW)

Purpose: Outputting an HTML message normally
-->

<!-- Display the current time -->
<P><I>The time is now:</I><BR>
<CFOUTPUT><B>#TimeFormat (Now() )#</B></CFOUTPUT>

Listing 32.2 TestMessage2.cfm—The Same Simple Message, Specifying text/plain as
the Content Type

<l---
Filename: TestMessagel.cfm
Author: Nate Weiss (NMW)

Purpose: Outputting an HTML message normally
- >

<CFCONTENT TYPE="text/plain">

<!-- Display the current time -->

<P><I>The time is now:</I><BR>
<CFOUTPUT><B>#TimeFormat (Now() )#</B></CFOUTPUT>

NOTE
Unlike the other listings in this book, Listings 32.1and 32.2 were purposefully written to not be well-formed HTML (no <htm1> or
<body> tags and so on). This is because Internet Explorer browsers try to second-guess the situation by assuming that any docu-
ment that contains well-formed HTML should be displayed as HTML, regardless of the content type specified by the Web server.
Whether that’s a bug or a feature depends on who you ask (see “Adding a Content -Disposition Header for Internet Explorer,”
later in this chapter). We just chose these short listings to avoid any confusion. You'll find that Netscape browsers will correctly
display even a well-formed HTML document as plain text if you specify a content type of text /plain.

NOTE
The TimeFormat () and Now () functions are both explained in Appendix C, “ColdFusion Function Reference.”

87



88

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Figure 32.2 [l Netscape (ol
. . Fle Edt View Go Bookmarks Tools Window Help
If the MIME type is N
set to text/plain, . @0 O @ O @ [ httpilocalost:8500jows/32(TestMessagez.cim | .
the browser won’t <1-- Display the current time ——>
kn . <P»<I>»The time is now:</I><BR»
Oow to Interpret any <B»01:34 PH</B>
HTML tags in your R
documents.
B @F | Document: Done (1.312 secs) =l =5

Comma-Separated Text

Now that you know how to use ColdFusion to serve plain text rather than HTML, let’s try to put
that knowledge to good use. One thing people do with plain-text files is to use them to hold
comma-separated text. Comma-separated text is a simple data format that gets used for many
purposes. Because it’s simple and easy to parse through, it’s often used for various types of logging
and simple integration projects. In fact, ColdFusion’s own log files are kept in a comma-separated
format (take a look at the files in the L0G folder, within ColdFusion’s program directory). Many
types of Web server software packages keep their logs in comma-separated format as well.

There are slightly different flavors of comma-separated text in common use, but they usually follow
these rules:

»  Each row of information sits in its own line in the text.

= Within each line, each column or field of information has a comma separating it from the
next column or field.

m  If the data in a particular column can contain commas, it’s traditional to put double-quote
characters around the data so the “real” commas can be distinguished from the commas
that separate the fields. If the data contains actual double-quote characters, they are
usually escaped by using two double-quote characters together.

= It’s common to put the names of each column on the first line, with each name
surrounded by quotation marks and separated from one another with commas.

Generating Comma-Separated Text

To generate comma-separated text with a ColdFusion template, you are generally going to create a
.cfm file that does the following:

1. Retrieves the information that should be presented in column-separated format, using a
database query or some other means.



CoMMA-SEPARATED TEXT

2. Sets the content type for the request to text/plain using the <CFCONTENT> tag, so the
generated content is not mistaken for HTML.

3. Outputs the names of the columns as the first line of the generated content.

4. Outputs the actual rows of data, each on its own line.

The code in Listing 32.3 retrieves some data from a database table and sends the data back to the
browser in a comma-separated text format (Figure 32.3).

Listing 32.3 FilmsCommaSep.cfm—Presenting Queried Data As Comma-Separated Text
<l---
Filename: FilmsCommaSep.cfm
Author: Nate Weiss (NMW)

Purpose: Outputs film information as comma-separated text
--->

Retrieving information about films...
<CFQUERY DATASOURCE="ows" NAME="GetFilms">
SELECT FilmID, MovieTitle

FROM Films

ORDER BY MovieTitle
</CFQUERY>
<!--- Now output as simple comma-separated text --->
<!--- Put the column names on first line, then --->
<!--- the actual data rows on their own lines --->

<CFCONTENT TYPE="text/plain">"FilmID", "MovieTitle"
<CFOUTPUT QUERY="GetFilms">#FilmID#, "#MovieTitle#"

</CFOUTPUT>
Figure 32.3 -loix
. He Edt Yew Go Bokmarks Tods ‘Window Help [
The <CFCONTENT> Q. © @ @ O i o]
tag makes generating e
"FilmID", "MovieTitle™ ml
1, "B Unb ably Lhghc™
comma—separated text L eing Ubesrey lgne
. arlie's Devils
3,"Closet Encounters of the Odd Eind"™
On_the_ﬁy eaSY' 18, "Folded Laundry, Concealed Tickern”
21, "Forrest Trump"
,"Four Bar-Mitzvah's and a Circumcision™ =
\| 8, "Geriatric Park" B
” 7, "Ground Hog Day"
+| 20, "Hannah and Her Blisters"™
5, "Harry's Pottery"
9, "Hramer vs. George™ .|
10, "Mission Improbahle™
11, "Nightmware on Overvhelmed Street”
1z, "3ilence of the Clams" |
13, "Starlet Wars" hd
[ ©F | Document: Dene (1463 s225) E=F]

In HTML, whitespace (such as multiple spaces together or new lines) is ignored-not so with comma-separated text. That's why there

is a new line after the list of column names but not before; it is important that the names show up as the first line of text. That's
also why there is a new line before the closing </ CFOUTPUT> tag but not after the opening <CFOUTPUT> tag. You want Cold-

Fusion to output a new line only after each row of data, so you can't freely indent and skip lines the way you can when you are out-

putting normal HTML content.

89



90

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

You'll notice that the Retrieving information about films message is not displayed by the browser.
Because you have not explicitly set the RESET attribute of the <CFCONTENT> tag to No, it defaults to
its Yes behavior, which is for all content that was generated before the tag to be discarded. If you
were to remove the <CFCONTENT> tag, not only would the data no longer be displayed as plain text
by the browser, but the retrieving message would be displayed, as you would expect it to normally
(Figure 32.4). The same results would appear if you added RESET="No" to the <CFCONTENT> tag.

Figure 32.4 =10 x|

. e Edt ¥ew Go Bockmarks Ieols Window Help \
Without <CFCONTENT>,
the new lines in the d @Q Q @ O @ [ npiijlocahost:as00jows{sa/FimsCommasep.cim o |
text are no longel‘ Retrieving information about filtns. .. "FilmTD","MovieTitle" 1,"Being Unbearably Light"
displayed. AlSO, the 2,"Charlie's Devils" 3,"Closet Encounters of the Odd Eind™18,"Folded Laundry, Concealed

. Ticket" 21,"Forrest Trump" 4,"Four Bar-Mitzwah's and a Circumeision” 6,"Geriatric Park"

message from earlier 23,"Gladly Ate Her" 7,"Ground Hog Day" 20,"Hannzh and Her Blisters" 5,"Harry's Pottery”
in thC template iS 8,'Tt's a Wonderful Wife" 9,"EKramer vs. George" 10,"Mission Improbable” 11,"Hightmare on
. . Owerwhelmed Street” 17,"Raiders of the Lost Aardvark" 12,"Silence of the Clams" 13,"Starlet
lnChlded mn the O‘HPUt~ | Wars" 22,"Strangers on a Stain" 14,"The Funeral Planmer" 15,"The Sixth Monsense" 19,"Use

Tour ColdFusion II" 16,"West End Story"

[ @F | pocument: Done (2,143 secs) =l

Adding a Content-Disposition Header for Internet Explorer

If you test Listing 32.3 with a Netscape browser, it should look similar to Figure 32.3. If you visit
the listing with Internet Explorer 5, you might see much different behavior. For instance, you
might find that the comma-separated text automatically opens in Dreamweaver as a file named
FilmsCommaSep[1].cfm or similar. Internet Explorer takes the .cfm extension in the URL as an
indication that the returned content is a ColdFusion template, which it clearly is not.

This illustrates one of Internet Explorer 5’s policies, which, contrary to most other browsers, is to
think of the file extension—and the format of the actual content itself—as being more important
than the specified content type. Only if the file extension does not have an associated program—or
when there is no file extension—is the content type considered.

NOTE
This behavior has changed a bit with the introduction of Internet Explorer 6. |E 6 behaves like Netscape browsers with respect to
content type handling. Previous versions of IE (versions 4, 5, and 5.5) behave as discussed in this section.

To get consistent behavior with IE, add a content-disposition header to the page request, using
a <CFHEADER> tag, such as the following. The <CFHEADER> tag is the method ColdFusion provides to
enable you to send custom HTTP headers back to the browser, along with the content your template
generates. You would add this line right before the <CFCONTENT> line in Listing 32.3:

<CFHEADER

NAME="Content-Disposition"
VALUE="filename=films">



CoMMA-SEPARATED TEXT

We don’t have space here to discuss the content-disposition header in detail. The short explana-
tion is that the content-disposition header suggests a filename for the file, if the user were to save
it. After Internet Explorer sees this header, it will think of the content as having an implied filename
of films, rather than of FilmsCommaSep.cfm. Because films has no extension, Internet Explorer will
then use the content type to decide how to display the content. The content therefore will be shown
as plain text, similar to Figure 32.3.

You could also provide a filename with an extension, like so:

<CFHEADER
NAME="Content-Disposition"
VALUE="filename=films.txt">

Now, if you visit the listing with Internet Explorer and then select Save As from the File menu,
the Save Web Page dialog box will appear with films.txt prefilled as the filename. Mozilla-based

browsers will behave in the same way.

You can also add the word Attachment to the header, as shown here:

<CFHEADER
NAME="Content-Disposition”
VALUE="Attachment; filename=films.txt">

"This will cause Internet Explorer to prompt the user to save the content as an attachment right
away when Listing 32.3 is visited, rather than displaying the content in the browser window.
Netscape browsers do not do anything special with the Attachment keyword, so the added line of
code should not cause any harm. The FilmsCommaSepIE.cfm template (on this book’s CD-ROM)
includes this content-disposition line.

NOTE
To read more about the content -disposition headerand the Attachment and filename keywords (thereis an
Inlinekeyword, too), see RFC1806athttp: / /www.ietf.org.

NOTE
If you want to know more about the way |E decides how to display incoming content, please refer to Article number Q293336 in the
Microsoft Knowledge Base at http: / /support.microsoft.com.

Retrieving the Comma-Separated Text with <CFHTTP>

Listing 32.4 is a bit of a digression, but it demonstrates a way you actually can use comma-separated
text in your applications. You can use ColdFusion’s <CFHTTP> tag to visit the URL for Listing 32.3,
as if ColdFusion itself were a Web browser. The <CFHTTP> tag grabs the comma-separated text gen-
erated by FilmsCommaSep.cfm and parses through it, effectively re-creating the query result set. You
can then use the resultset just as if it were returned by the original <CFQUERY> tag. This enables you
to share data between two different ColdFusion servers over the Internet.

NOTE
We're using the <CFHTTP> tag a bit ahead of ourselves here. It's discussed in full in the “Using Server-Side HTTP and FTP” chapter
in our companion volume, Advanced ColdFusion MX Application Development (Peachpit). You can find the syntax for the
<CFHTTP> tag in Appendix B, “ColdFusion Tag Reference”.

91



92

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

NOTE

ColdFusion’s <CFWDDX> tag gives you an even easier and more powerful way to share content between servers over the Internet,
using a clever XML format instead of comma-separated text. Unfortunately, that discussion is beyond the scope of this book. To learn
more about WDDX, please refer to the “Using WDDX" chapter in Advanced ColdFusion MX Application Development or visit
http://www.openwddx.org.

Listing 32.4 Fetchcommasep.cfm—The <CFHTTP> Tag Knows How to Grab Comma-Separated Text

Ge

You

Over the Internet and Return It to You as a Query Object
<l---
Filename: FetchCommaSep.cfm
Author: Nate Weiss (NMW)

Purpose: Retrieves comma-separated film information over the Web
“ee>

<!--- Visit our new "comma-separated" page, --->
<!--- and parse content into a query object --->
<CFHTTP

METHOD="Get"

URL="http://localhost:8500/ows/32/FilmsCommaSep.cfm"
NAME="GetFilmsViaHTTP"
DELIMITER=",">

<HTML>
<HEAD><TITLE>Fetching Comma-Separated Content</TITLE></HEAD>
<BODY>

<H3>Comma-Separated text has been fetched via CFHTTP</H3>
<!--- Now the "fetched" query may be used normally --->
<CFOUTPUT QUERY="GetFilmsViaHTTP">

Film <B>#FilmID#</B> is: <I>#MovieTitle#</I><BR>
</CFOUTPUT>

</BODY>
</HTML>

nerating Excel Files

might have seen Web sites that enable users to access or view some type of information in

spreadsheet or Excel format. For instance, the check stock quotes area at Yahoo! enables users to
download stock quotes in spreadsheet format. Because Microsoft Excel has become the de facto
standard for spreadsheet applications, and because so many PCs come with it preinstalled, this

type

of feature can be very useful for people.

In this section, you learn how you can add this type of functionality to your own ColdFusion appli-

cations. This will enable you to provide your users with a way to open customized data in Excel (such

as ki

nd of personalized purchase history or a list of other employees if you’re building an intranet

application).



GGENERATING ExcEL FILES

Creating Spreadsheets with Tab-Separated Text

One of the file formats Excel knows how to import is tab-separated text. Tab-separated text is basi-
cally the same as comma-separated text, except it uses tab characters instead of commas to separate
the columns on each line.

If you create a ColdFusion template that generates tab-separated text and specify a content type of
application/msexcel, the user’s browser will display the content to the user by launching Excel.
Excel should then seamlessly import the tab-separated text and display it in the same way it would
display a native Excel worksheet (.xls) file. As far as the end user is concerned, your Web site presented
him with a personalized spreadsheet file. Only you know that it was simply some tab-separated text.

Listing 32.5 shows how easy it is to get this effect. Note that this code is essentially the same as the
code from Listing 32.3, with just a few minor changes. Most importantly, the TYPE attribute of the
<CFCONTENT> tag has been changed to application/msexcel.

Listing 32.5 FilmsToExcel.cfm—Generating Tab-Separated Text for Use with Excel on the Client
<l---
Filename: FilmsToExcel.cfm
Author:  Nate Weiss (NMW)

Purpose: Outputs film information for Microsoft Excel
“e>

<!--- Don't output anything *not* in CFOUTPUT tags --->
<!--- This makes it easier to deal with whitespace --->
<CFSETTING ENABLECFOUTPUTONLY="Yes">

<!--- Retrieve information about films --->
<CFQUERY DATASOURCE="ows" NAME="GetFilms">
SELECT MovieTitle, AmountBudgeted
FROM Films
ORDER BY MovieTitle
</CFQUERY>

<!--- Set variables for special characters --->
<CFSET TabChar = Chr(9)>
<CFSET NewLine = Chr(13) & Chr(10)>

<!--- Suggest default filename for spreadsheet --->
<CFHEADER NAME="Content-Disposition" VALUE="filename=FilmBudgets.x1ls">

<!--- Set the content-type so Excel is invoked --->
<CFCONTENT TYPE="application/msexcel">

<!--- Output the header row, with column names --->
<!--- Put tab between columns, and newline at end --->
<CFOUTPUT>MOVIE TITLE#TabChar#BUDGET#NewLine#</CFOUTPUT>

<!--- Output actual data rows, each on own line --->

<!--- Put tab between columns, and newline at end --->

<CFLOOP QUERY="GetFilms">
<CFOUTPUT>#MovieTitle##TabChar##AmountBudgeted##NewLine#</CFOUTPUT>

</CFLOOP>

93



94

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

NOTE
When the spreadsheet is displayed in Excel, you might see hash marks (a series of # signs) where the budget numbers belong. Just
make the budget column a bit wider (by dragging in Excel) to see the full numbers. This is normal Excel behavior and does not repre-
sent a problem or bug.

Another difference is that this code uses the <CFHEADER> tag mentioned earlier to send a custom
Content-Disposition header to the browser, along with the content type. The Content-Disposition
header is used to suggest a default filename for the content going back to the browser (see the
following notes and the section, “Adding a Content -Disposition Header for Internet Explorer,”
earlier in this chapter).

NOTE
A complete discussion of all HTTP headers and the various things they are used for is beyond the scope of this book (and is some-
thing you generally don't need to know about because ColdFusion takes care of this kind of thing for you). In short, custom headers
can be used to provide the browser with various pieces of information, or metadata, about the server's response.

NOTE
The Content -Disposition headerreally should be optional, but because of the way Internet Explorer determines how to han-
dle incoming content, this particular <CFHEADER> tag is required for the code to work properly with IE. To make the decision about
which application to launch, IE doesn’t look only at the MIME content type the code provides; it also relies on other factors, such as
the suggested filename. Additionally, the extension of the suggested filename must be associated with Excel (that is, .xIs), but the first
part of the filename is up to you. If you want to know more about the way |E decides how to display incoming content, please refer to
Article number Q293336 in the Microsoft Knowledge Base at http: / / support.microsoft.com.

Listing 32.5 also sets a couple of variables for the two special characters needed to produce the
correct text, by using the Chr() function. This can be a more manageable way to get special characters
into your page output. Instead of actually pressing the Tab key to insert a Tab character into your
code (which would work but might be hard to notice or understand when you edit the code later),
you can use the chr() function, which returns the character specified by the ASCII code you supply.

NOTE
Chr(9) always retumns a Tab character, anda Chr (13) followed byachr (10) always returns a linefeed character followed by
acarriage return. A linefeed followed by a carriage return is known as a newline, which is the standard way to indicate the end of a line
in a text file.

Another difference is that this listing turns on the ENABLECFOUTPUTONLY mode of the <CFSETTING>
tag, which causes ColdFusion not to output anything that is not between CFOUTPUT tags. Together
with the TabChar and NewLine variables, this enables the code to explicitly tell ColdFusion about
every single character that needs to be output to the browser, rather than having to be overly careful
about positioning the tags within the code (refer to Listing 32.3). See Appendix B for more infor-
mation about the <CFSETTING> tag.

In any case, if you visit the URL for Listing 32.5 with your browser, it should launch Excel with the
film data loaded as a spreadsheet. Depending on the browser and platform being used, Excel might
be launched as a separate application, or it might appear within the browser window (Figure 32.5).



GENERATING ExceL FiLEs

Figure 325 ilms ToExcel.cfm - Microsoft Inters =181
Flle Edt Wew Insert Formst Took Dsta  Financisl Manager GoTo Favorites  Help |
If you send tab- Back - = - (D 2] 4| Doearch [CFavortes veda B | TP B S =l 2 H D
Separated text baCk to Address |@ http:£4127.0.0.1:8500)ows/32/Films ToExcel. cfm =| @eo |
the browser with the ReC2__ | = 5750m ‘ I I I I
1 2 3 1 5 5 |-
correct content type, |1 [MOVIE TITLE BUDGET =
it should be opened | 2 |Being Unbearably Light 300000
. 3 |Charlie's Devils 750000
in Excel. | 4 |Closet Encounters of the Odd Kind 350000
| 5 |Folded Laundry, Concealed Ticket 7000000
| B |Forrest Trump 135000000
| 7 |Four Bar-Mitzvah's and a Circumcision 175000
| 8 |Geriatric Park 570000}
| 9 |Gladly Ate Her B0000MI00
| 10 |Graund Hog Day 225000
| 11 |[Hannah and Her Blisters 13000000
| 12 [Harry's Pottery B00000
| 13 [lt's a Wonderful Wife 315000
| 14 [Kramer vs. Gearge 195000
| 15 |Mission Imprabable 900000
| 16 [Mightmare on Overwhelmed Street 475000
| 17 |Raiders of the Lost Aardvark 70000
| 18 |Silence of the Clams 700000
| 19 |Starlet Wars 800000
| 20 |Strangers on a Stain 7000000
| 21 |The Funeral Planner 375000
| 22 |The Sixth Monsense B50000
23 |Use Your ColdFusion Il 1700
| 24 st Fnd Stary 215000
[44» [ M\FilmsToExcel 1« QP
& [ [ [ 4 Unknown Zane 7
NOTE

Of course, you could create a template based on Listing 32.5 that uses a URL parameter to dynamically return spreadsheet data
based on some type of Film ID, actor, and so on.

Creating Spreadsheets with HTML

For Excel 2000, Microsoft created a special flavor of HT ML, which Excel can import as if it were a
normal .xIs file. If you have Excel 2000, Excel XP, or later, try creating a quick spreadsheet with a
few columns and rows. Select Save As from the File menu, and save the spreadsheet as an HTML
file. Now open that HTML file in a text editor such as Notepad or Dreamweaver MX. You will find
a decent amount of what seems like extraneous code in there, but after a moment you’ll realize that
the spreadsheet has basically just been converted into an ordinary HT'ML table, using the <table>,
<tr>, and <td> tags you are already familiar with.

If you were to create a ColdFusion template that created a similar HTML file, Excel could render it
as a spreadsheet, just as it could render the tab-separated text from Listing 32.5 as a spreadsheet.
The advantage to using the special HTML format over the tab-separated format is that Microsoft
designed the special HTML format to be more than just a data-export format; it actually holds all
the Excel-specific information about the spreadsheet, as well. This means you can dynamically
specify formatting options such as font, color, and alignment, and even provide autocalculating
formulas for specific cells. So, you easily can create a fully functioning Excel spreadsheet on-the-fly,
using relatively familiar HTML-looking syntax.

Listing 32.6 and Listing 32.7 are two examples that demonstrate how you can create formatted
spreadsheets for Excel by using HTML table syntax. Listing 32.6 again creates a spreadsheet that

95



96

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

lists the title and budget for each film. Note that you can provide width and alignment for the
columns and specify formatting using ordinary <font> and <b> tags.

Listing 32.6 FilmsToExcelPretty.cfm—OQutputting an HTML Table for Display in Excel
<l---
Filename: FilmsToPretty.cfm
Author: Nate Weiss (NMW)

Purpose: Outputs film information for Microsoft Excel
--->

<!--- Retrieve information about films --->
<CFQUERY DATASOURCE="ows" NAME="GetFilms">
SELECT MovieTitle, AmountBudgeted
FROM Films
ORDER BY MovieTitle
</CFQUERY>

<!--- Set the content-type so Excel is invoked --->
<CFCONTENT TYPE="application/msexcel">

<!--- Suggest default filename for spreadsheet --->
<CFHEADER NAME="Content-Disposition" VALUE="filename=FilmBudgets.x1ls">

<html>

<head><title>Film Budgets</title></head>

<body>

<!--- Output ordinary HTML table, which will --->
<!--- be displayed by Excel as a spreadsheet --->
<table>

<tr><th>Film</th><th>Budget</th></tr>
<CFOUTPUT QUERY="GetFilms">
<tr>
<td width="400">
<font face="verdana">#MovieTitle#</font>
</td>
<td align="center">
<font color="red"><b>#AmountBudgeted#</b></font>
</td>
</tr>
</CFOUTPUT>
</table>

</body>
</html>

Listing 32.7 is similar to Listing 32.6, except that it includes some additional color and formatting
instructions, so the resulting spreadsheet looks quite nice. It also adds another row of cells to the
bottom of the spreadsheet, which shows the total of the second column (the budgets of all films
combined). This is a live, formula-based total; if the user changes any of the prices, Excel updates
the total accordingly (Figure 32.6).



Figure 32.6

You can create
dynamic spreadsheets
that include live cell
formulas.

GENERATING ExceL FiLEs

127.0.0.1:8500/0ws; s ToExcelPrettier.cfm - Micross

S =l

Fle Edt Wew Insert Format Took Dsta FinancialManager GoTo Favortes Help

daback - = - ) [2] 4| @search [GiFavortes veds f | T ENY- S H R B D

Listing 32.7

23 |Use Your ColdFusion 1T

Address |@ http:{{127.0.0.1:8500)ows/32Films ToE xcelPrettier cfrm =| @eo |
racz  ~| = 575000

1 2 =

1 Movie Title Amount Budgeted —
| 2 |Being Unbearably Light $300,000.00
| 3 |Charlie’s Devils £750,000.00
| 4 |Closet Encounters of the 0dd Kind $350,000.00
| 5§ |Foided Laundry, Concealed Ticket $7,000,000.00
| B |Forrest Trump $135,000,000.00
| 7 |Four Bar-mMitzvah's and a Circumcision 175,000.00
| 8 |Geriatric park 575,000, 00}
| 9 |Gladiy Ate Her $800,000, .ao
| 10 |Grownd Hog Day $22E,000,.00
| 11 |Harnah and Her Blistars $13,000,000.00
| 12 |Harry's Pottery $600,000.00
| 13 |It's @ Wonderful Wifs £315,000.00
| 14 |Krarmer vs. George $195,000.00
| 15 mission Irmprobable £900,000.00
| 16 |vightmare on Overwhelmed Street $475,000,.00
| 17 |Raiders of the Lost Aardvark £70,000.00
| 18 |Silence of the Clams $700,000.00
| 19 |Stariet Wars £800,000.00
| 20 |Strangers on @ Stain $7,000,000.00
| 21 | 7he Funeral Plannsr £375,000.00
| 22 |The Sixth Nonsense $650,000.00

£1,700.00

24 |West Frd Store 215
[«[4]p [H]\FilmsToExcelPrettier /[«
5] [ [ [ |4 Unknown Zone

the Generated Spreadsheet
<l---
Filename: FilmsToExcelPrettier.cfm

FilmsToExcelPrettier.cfm—Adding CSS Formatting and Cell Formulas to

Author: Nate Weiss (NMW)

Purpose: Outputs film information for Microsoft Excel
--->
<!--- Retrieve information about films --->

<CFQUERY DATASOURCE="ows" NAME="GetFilms">
SELECT MovieTitle, AmountBudgeted
FROM Films
ORDER BY MovieTitle

</CFQUERY>

<!--- Set the content-type so Excel is invoked --->

<CFCONTENT TYPE="application/msexcel">

<!--- Suggest default filename for spreadsheet --->

<CFHEADER NAME="Content-Disposition" VALUE="filename=FilmBudgets.x1ls">

<!--- Include "XML Namespace" information to --->
<!--- allow using Excel "extensions" to HTML --->
<html

xmlns:o="urn:schemas-microsoft-com:office:office"

xmlns:x="urn:schemas-microsoft-com:office:excel"
xmlns="http://www.w3.0rg/TR/REC-htm140">
<head><title>Film Budgets</title></head>

97



98  CHAPTER 32 GeNERATING NoN-HTML CoNTENT

Listing 32.7 (coNTINUED)
<body>

<style TYPE="text/css">

.rowHeads {
color:white;
background:blue;

}

.titleCol {
width:400px;
font-style:italic;
font-family:verdana;

}

.priceCol {
width:170px;
font-family:verdana;

color:red;
mso-number-format:"\0022$\0022\#\, \#\#0\.00"
}s
</style>
<!--- Output ordinary HTML table, which will --->
<!--- be displayed by Excel as a spreadsheet --->
<table>
<l--- Top row --->
<tr>

<th class="rowHeads">Movie Title</th>
<th class="rowHeads">Amount Budgeted</th>

</tr>

<!--- Data rows --->

<CFOUTPUT QUERY="GetFilms">
<tr>

<td class="titleCol">#MovieTitle#</td>
<td class="priceCol">#AmountBudgeted#</td>

</tr>
</CFOUTPUT>
<!--- Last row, with "total" formula --->
<CFSET FirstPriceCell = "B2">
<CFSET LastPriceCell = "B" & GetFilms.RecordCount + 1>
<CFSET TotalFormula = "SUM(#FirstPriceCell#:#LastPriceCell#)">
<CFOUTPUT>

<tr>

<td

class="titleCol"
style="font-weight:bold;background:yellow">Total:</td>
<td

class="priceCol"
style="font-weight:bold;background:yellow"
x:fmla="=#TotalFormula#"></td>

</tr>

</CFOUTPUT>
</table>

</body>
</html>



GENERATING ExceL FiLEs

Near the end of Listing 32.7, a ColdFusion variable called TotalFormula is created, which will end
up having a value of SUM(B2:B24) if 23 rows of film information exist. That formula is then supplied
to the special x:fla attribute of the <td> tag, which is one of the Microsoft extensions to HT ML
geared especially for use with Excel. To use these extensions, the three xmlns attributes must be
included for the <html> tag at the top of the template.

NOTE
We couldn't possibly explain everything about these special extensions to HTML (and how they are implemented using XML
standards) in the space we have in this book. For purposes of putting together nice-looking and functional spreadsheets for
Excel, you will need to experiment a bit to figure out how to express the specific formatting or features you want using HTML.
A good way to do this is to simply create a similar spreadsheet using Excel normally; then save the spreadshest as HTML, as
explained earlier in this section. By examining the HTML file in a text editor, you will be able to figure out how to get the results
you want on-the-fly.

NOTE
Remember that the HTML approach used in Listing 32.7 is a solution only for Excel 2000 (sometimes called Excel 9) and later.
This technique will not work for earlier versions of the product.

Other Options for Creating Excel Files

A few other options are available with regard to generating Excel spreadsheets dynamically with
ColdFusion. Unfortunately, there isn’t space to go into a specific discussion about each of these
options here.

Creating Files Server-Side

Instead of generating a new Excel spreadsheet on-the-fly for every request, you could write
the necessary tab-delimited or HTML content to a file on the server, using the <CFFILE> tag.
Then, you could send that file to the browser in response to successive page requests, using the
FILE attribute of the <CFCONTENT> tag. You still would need the <CFHEADER> tag, as shown in
Listing 32.7. The file could be updated on a periodic basis (perhaps once a day) using the
<CFSCHEDULE> tag.

For more information about <CFFILE>, see Chapter 33, “Interacting with the Operating System.”
For more information about <CFSCHEDULE>, see Chapter 35, “Event Scheduling.”

Talking to Excel via <CFOBJECT>

ColdFusion can also communicate directly with a copy of Excel installed on the server by using
COM automation. You use the <CFOBJECT> tag with the TYPE attribute set to coM and the CLASS
attribute set to Excel.Application. You then use the objects, methods, and properties provided by
Excel (the same ones people normally use to create Excel macros, generally using the Visual Basic
for Applications (VBA) language) to create whatever spreadsheet you want, and save it to the
server’s drive as a temporary file. You then can use the FILE attribute of the <CFCONTENT> tag to send
the file back to the browser, perhaps also specifying a DELETEFILE attribute of Yes so the temporary
file is deleted from the server after it is delivered to the browser.

99



100

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

TIP
Two Web sites that might help you to find additional information about creating Excel content via COM/ActiveX are
http://www.cfcomet.comandhttp://www.softartisans.com.

For more information about <CFOBJECT>, please consult our Advanced ColdFusion MX Applica-
tion Development book or Appendix B in this book. For the Excel-specific objects, methods, and
properties mentioned previously, see your Excel documentation, the Microsoft Web site, or a third-
party book about writing Excel macros using VBA.

Generating Word Files

You can also use ColdFusion to create Microsoft Word files on-the-fly, using techniques similar
to the ones for creating Excel files (see the previous section). This opens up the possibility of cre-
ating personalized or customized sales documents, pricing sheets, product documentation, and
other documents you might want to deliver in the common Microsoft Word file format.

Although the idea of using a proprietary document format to deliver such documents—rather than
something more open, such as HTML—might rub some people the wrong way, there are some
clear benefits. Most obviously, you can produce documents that the end user can edit further, using
her own, familiar copy of Word. Also, in a Word document you generally have much greater
control over the way the document will look when printed (margins, headers, footers, leading,
kerning, widow and orphan paragraphs, and so on) than you do with HTML.

Creating Documents with RTF

If you have needed to exchange documents between word-processing programs, you might have
run into a file format called the Rich Text Format (RTF). RTF is a somewhat older file format,
designed to be a reasonably generic way to store formatted information, especially documents such
as those you create with a word processor. Word lets you work with RTF (.rtf) files in almost all the
same ways you can work with real Word (.doc) files.

Most importantly to you, RTF is a plain-text format, so it is made up of normal ASCII char-
acters, which ColdFusion is good at generating. So, just as you were able to create a tab-separated
text to be sent to Excel via <CFCONTENT>, you can create RTF files to be sent to Word.

Creating a Template Document

There are several approaches you could take to creating RTF files with ColdFusion. This section
discusses a relatively simple one, which is similar to performing a mail merge operation within a
word processor. First, you will create a template document and save it as an RTF file on your Cold-
Fusion server. Then, you will customize the document using simple string-manipulation functions
and send the customized version of the document back to the browser using the <CFCONTENT> tag.



GENERATING WoORD FILEs

NOTE
The following instructions assume you are using a recent version of Word, such as Word 2000 or Word XP. Earlier versions will also
work just fine, although the specific steps you take to save a document as RTF might be slightly different.

"To create your template document, do the following:
1. Open Word. Create some type of document, such as a form letter.

2. In the document, insert six placeholders by including the following terms somewhere
in the text, including the percent signs: %CurrentDate%, SNameFirst%, SNameLasts,
%NameFirstReal%, %NameLastReal%, and %FreePrizes.

3. Feel free to add some formatting to the document, using whatever features you want
(styles, margins, font colors, tables, and so on). Just try to stay away from including large
pictures in the document for the moment.

4. Select Save As from Word’s File menu, select Rich Text Format from the drop-down list
of file types, and save the document as DocTemplate.rtf in the same folder you’re using
to save code for this chapter.

5. Be sure you close the document in Word (otherwise, Word might keep it locked).

NOTE
Ifyou prefer, you can just use the Doc Template . rtf file included on this book's CD-ROM.

Now you can create a ColdFusion template that creates a personalized copy of the template, based
on information you retrieve with a database query. Listing 32.8 shows one way to get this done.
As you can see, this template has two sections. When you visit the template normally (with no URL
parameters), the top portion of the code executes and displays a list of actors. The user can then
click an actor’s name to cause the template to be executed again, this time with the appropriate
ActorID passed as a URL parameter.

Listing 32.8 RetireActor.cfm—Producing a Personalized Word Document from an RTF Template
<l---
Filename: RetireActor.cfm
Author: Nate Weiss (NMW)

Purpose: Generates a retirement memo as an RTF document for Microsoft Word
--->

<!--- If no Actor ID passed, diplay list of links --->
<CFIF IsDefined("URL.ActorID") EQ False>
<l--- Get a list of actors from database --->

<CFQUERY NAME="GetActors" DATASOURCE="ows">
SELECT ActorID, NameFirst, NameLast
FROM Actors
ORDER BY NameLast, NameFirst

</CFQUERY>

101



102  CcHAPTER 32 GENERATING NoN-HTML CoNTENT

Listing 32.8  (conTiNUED)

<!--- Page Title, etc --->

<html>

<head><title>Actor Retirement System</title></head>
<body>

<h3>Which Actor Would You Like To Retire?</h3>
<!--- For each Actor, include simple link to --->
<!--- this page, passing the Actor ID in URL --->

<CFOUTPUT QUERY="GetActors">
<CFSET LinkURL = "#CGI.SCRIPT_NAME#?ActorID=#ActorID#">
<a href="#LinkURL#">#NameFirst# <B>#NamelLast#</B></a><br>

</CFOUTPUT>

</body>

</html>
<!--- If Actor ID passed, generate Word doc --->
<CFELSE>

<!--- Make sure Actor ID in URL is a number --->

<CFPARAM NAME="URL.ActorID" TYPE="numeric">

<!--- Get this Actor's name from database --->
<CFQUERY NAME="GetActor" DATASOURCE="ows">
SELECT NameFirst, NamelLast,
NameFirstReal, NamelLastReal,
(SELECT Min(DateInTheaters)
FROM Films f, FilmsActors fa
WHERE fa.FilmID = f.FilmID
AND fa.ActorID = a.ActorID) AS DateFirstFilm
FROM Actors a
WHERE ActorID = #URL.ActorID#
</CFQUERY>

<!l--- How long has Actor been with company? --->
<CFSET MonthsEmployed = DateDiff("m", GetActor.DateFirstFilm, Now())>

<!--- Determine severance package --->
<CFIF MonthsEmployed GTE 36>
<CFSET SevPackage = "Gold Watch (Digital)">
<CFELSEIF MonthsEmployed GTE 18>
<CFSET SevPackage = "$100 Starbucks Gift Certificate">

<CFELSE>
<CFSET SevPackage = "ColdFusion Web Application Construction Kit">
</CFIF>
<!--- Location of our RTF "template" document --->
<CFSET ThisFolder = GetDirectoryFromPath(GetCurrentTemplatePath())>

<CFSET TemplatePath = ThisFolder & "DocTemplate.rtf">

<!--- Read RTF template into variable called "RTF" --->
<CFFILE

ACTION="Read"

FILE="#TemplatePath#"



GENERATING WoORD FILEs

Listing 32.8  (conTiNUED)
VARIABLE="RTF">

<!--- Replace "placeholders" with specific information --->

<CFSET TodaysDate = DateFormat(Now(), "dddd, mmmm d, yyyy")>

<CFSET RTF = Replace(RTF, "SCurrentDate%", TodaysDate)>

<CFSET RTF = Replace(RTF, "%FreePrize%", SevPackage)>

<CFSET RTF = Replace(RTF, "%NameFirst%", GetActor.NameFirst)>

<CFSET RTF = Replace(RTF, "%NameLast%", GetActor.NameLast )>

<CFSET RTF = Replace(RTF, "%NameFirstReal%", GetActor.NameFirstReal)>
<CFSET RTF = Replace(RTF, "%NameLastReal%", GetActor.NameLastReal )>

<!--- Suggest default filename for document --->
<CFHEADER NAME="Content-Disposition" VALUE="filename=RetireMemo.doc">

<!--- Set the content-type so Word is invoked --->
<CFCONTENT TYPE="application/msword"><CFOUTPUT>#RTF#</CFOUTPUT>

</CFIF>

When an actor ID is provided, the second part of the template executes, which is where the
dynamic Word generation occurs. First, some basic information about the employee is retrieved
from the database, using an ordinary <CFQUERY> tag. Then, a severance package is determined,
depending on how long ago the actor’s first film was released (if he was hired more than 12 months
ago, he gets a gold watch).

Next, the <CFFILE> tag is used to read the DocTemplate.rtf file (which is just a text file) into an
ordinary ColdFusion string variable called RTF. Now, you can use ColdFusion’s Replace () function
to replace the simple placeholders in the RTF file with the actor’s actual first and last names and
replace the %FreepPrizes placeholder with the value of the SevPackage variable (which contains the
determined severance package).

NOTE
See Chapter 33 for more information about using <CFFILE> to read in the contents of text files.

NOTE
In this example, ColdFusion looks for the DocTemplate. rtf file in the same folder the RetireActor. cfmfileisin. The
GetCurrentTemplatePath () function makes this possible. In practice, you might want to keep the RTF template some-
where else, outside the Web server's document root, so it can't be downloaded directly.

Now the customized RTF text is sitting in the RTF variable. All that’s left is to stream the RTF
text to the browser. As with the Excel examples earlier in this chapter, this is done by including a
<CFCONTENT> tag—this time with the TYPE attribute set to application/msword. This causes the
browser to launch the user’s copy of Microsoft Word on the local machine. Note that you also must
include the <CFHEADER> tag, which suggests a sensible default filename for the document (see the
discussion of Listing 32.5).

If you use the DocTemplate.rtf file that was included on this book’s CD-ROM,, the resulting Word
document will be a personalized retirement memo (Figure 32.7).

103



104

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Figure 32.7

3 http://127.0.0.1:8500/0ws/32/RetireActor.cim?ActorID=18

- Microsoft Internet Es =] 3]
Fle Edt Wew Insstt Fomst Took  Tabls GoTo  Fawortss  Hsp |

You can create Word ok - o - D [ | @earch Glreverte: Bveds 3| By O 2] W @ D

files On‘the‘ﬂy that Adress ] hrp:f127.0.0.1:9500 ows {3z Retirenictor. dimPactorlD=18 =| @eo |

the user can pI‘iDt or | aial BT | B 7 U BodyText

modify. : =
L

Memo

To: Stephanie Hawking
("Belinda Foxile")

From: Fersonnel Cffice
Date: Wednesday, July 3, 2002

Re:  Accelerated Retirement

Notice Of Accelerated Retirement

We would like to notify you at this time of our Accelerated Retirement policy. This new palicy
aims to correct the length of each actor's career against "Internet Time", which, as you no
doubt have heard, runs on a greatly accelerated schedule

In short, you are fired. Please pack up your dressing room immediately. As a token of our
esteem, wie will be mailing you a Gold Watch (Digital)

If you would like this Memaorandum framed in commemaoration of the valuable wiork you no
doubt contributed to Orange Whip Studios, please stop by Room 252 before 2PM today. If
you do so, $29.95 will be deducted from your final paycheck. Thank you

=g KD

sI_I«IOI»h

Other Options for Creating Word Files

A few other options are available if you want to learn more about creating Word documents with
ColdFusion:

= Similar to Excel 2000, Word 2000 understands an extended version of HT' ML that can
include extra code to deal with all the Word-specific features not normally found in HTML
documents. You could adapt the basic technique described in the “Creating Spreadsheets
with HTML” section of this chapter to generate the Word version of HT'ML.

m It should also be possible to communicate with a copy of Word installed on the Cold-
Fusion server via the <CFOBJECT> tag. See “Other Options for Creating Excel Files,”
earlier in this chapter, for a few pointers.

Serving Media Files

You have seen how you can create various types of document-type files with a little help from the
<CFCONTENT> tag. You also can use <CFCONTENT> to serve up images or other types of multimedia files,
such as audio or video.



SErRVING MEDIA FILES

Turning ColdFusion into an Image Server

For instance, say you have been asked to create a banner ad server application with ColdFusion. One
of the requirements is that your ad server must be capable of working for sites built with static HTML
files. You need to be able to provide a simple <IMG> tag people can cut and paste into their pages. But, if
the SRC of the <IMG> tag doesn’t change each time a user views a page, how will the banner ad rotate?
Similar to the other solutions discussed in this chapter, the answer to this head-scratcher involves
the <CFCONTENT> tag.

Although it’s certainly the norm, there is no law that says the SRC for an image has to have a .gif or
. ipg extension. The SRC can be the URL for a ColdFusion template, perhaps called AdServer.cfm.
Rather than returning some type of text, such as HIML code, the template should return an image.
In addition, it should specify a MIME content type of image/gif instead of the usual text/html
content type. Because of the content type, the browser will understand that it is receiving what it
expects to receive (an image) and should have no problems displaying it.

Serving Up Images

Listing 32.9 shows what this ad server template might look like. It assumes that a number of banner
images are located in a subfolder called Ads. It selects one of the ads at random and then uses
<CFCONTENT> to send the image back to the browser with the appropriate content type.

Before this example will work, however, you must do the following:
1. Save the code shown in Listing 32.9 to a ColdFusion template named AdServer.cfm.
2. Create a subdirectory called Ads, within the same folder you just saved AdServer.cfm in.

3. Place several banner ads or other GIF files in the Ads subfolder. If you want, you can
simply copy the images from the Ads subfolder from this chapter’s folder on the CD-
ROM that accompanies this book.

Listing 32.9 Adserver1.cfm—Using <CFCONTENT> to Respond with an Image Instead

of HTML Content
<l---
Filename: AdServer.cfm
Created by: Nate Weiss (NMW)
Purpose: Responds with the binary content of a randomly selected image
-2
<!--- Ad Images are in "Ads" subfolder, within current folder --->

<CFSET AdDir = GetDirectoryFromPath(GetCurrentTemplatePath()) & "Ads\">

<!--- Get a listing of GIF image files in the Ads folder --->
<!--- Result is a query object with a row for each image --->
<CFDIRECTORY

DIRECTORY="#AdDir#"
ACTION="LIST"

105



106

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Listing 32.9  (coNTINUED)

FILTER="*.gif"
NAME="GetAds">

<!--- Pick random number between one and number of images --->
<CFSET AdNum = RandRange(1, GetAds.RecordCount)>

<!--- Grab the filename in chosen row of the GetAds query --->
<CFSET AdFileName = GetAds.Name[AdNum]>

<!--- Prepend directory to get full filesystem path to ad image --->

<CFSET AdFilePath = AdDir & AdFileName>

<!--- Send the chosen image back to the client --->
<CFCONTENT TYPE="image/gif" FILE="#AdFilePath#">

NOTE
Because it is not returning HTML content, Listing 32.9 doesn’t contain the <HTML>, <BODY>, and other standard tags you're used
to seeing.

As you can see, you don’t need a lot of code to serve up an image with ColdFusion. You simply
select the file you want to serve and supply its complete filename to the FILE attribute of the
<CFCONTENT> tag, which is being used for the first time in this chapter (see Table 32.2). Any stream-
ing and network communication issues are handled for you.

First, the AdDir variable is set to the full filesystem path of the Ads folder. This is a nice use for the
GetDirectoryFromPath() and GetCurrentTemplatePath() functions. When you use the two together
as shown in Listing 32.9, they always return the full path to the folder in which the currently
executing template is located.

Next, the <CFDIRECTORY> tag is used to get a listing of all GIF files within the Ads folder. You can
find out more about <CFDIRECTORY> in Chapter 33. Here, it is used in a very basic way. It returns a
query object, such as the results of a <CFQUERY>, where each row of the query represents a file that
matches the FILTER attribute. The query object contains a column called NAME, which contains the
filename (with extension, but not the path) of each file.

Now, the RandRange () function is used to pick a number between 1 and the number of rows in the
query, which in turn is the number of GIF files in the Ads folder. So, if eight images are in the
folder, the AdNum variable will be set to a random number between 1 and 8. Next, the AdFileName
variable is set to the value of the NAME column of the appropriate row of the GetAds query object.
If AdNum turns out to be 5, AdFileName is set to the filename in the fifth row of the query.

NOTE
You can gain more control over how random numbers are generated by using the Rand () and Randomize () functions together.
See Appendix C for details.

Finally, another variable called AdFilePath is created, which just concatenates the AdDir and
AdFileName variables together, resulting in the complete filesystem path to the randomly selected
image file. All that’s left is to feed the path to the FILE attribute of the <CFCONTENT> tag.



SErRVING MEDIA FILES

You should be able to test the template at this point by visiting the AdServer.cfm template with your
browser. All you should see is the randomly selected banner ad. If you reload the template’s URL a
few times, you should see that the ads rotate on a fairly even, random basis.

NOTE
Ifyou visit the AdServer . cfm template and then try to View Source with your browser, you will find that your browser either pre-
vents it or shows garbage characters. This is because there is no HTML source to show. The template is returning the binary image
information itself, not an <IMG> tag, which is a pointer to an image on the Net.

Displaying the Images in Other Web Pages

The goal of this exercise was to use a simple <IMG> tag to create a rotating banner ad system that
could be used by static HTML files—and that’s exactly what you have. You can include the following
line of code in a static HTML file:

<IMG SRC="http://localhost/ows/34/AdServer.cfm">

When the browser encounters the <IMG> tag, it communicates with the AdServer.cfm template and
displays whatever image content is returned. As long as you use a fully qualified URL (including the
http://), you are free to save the HTML file on any server in the world. It doesn’t have to be on
the same machine as the ad server.

Handling Click-Throughs

Listing 32.9 now correctly serves up banner ads, but it can’t be really considered a fully featured
ad-management system at this point. For instance, what about tracking the number of ads served?
What happens when the user clicks an ad?

Unfortunately, there isn’t space to develop and discuss a world-class ad server here that would meet
everyone’s needs. That said, a few lines of code can be added to the AdServer.cfm template to make
the example a bit more complete.

NOTE
The main purpose of these examples is to demonstrate how <CFCONTENT> can be combined with client or session variables to
build a useful application based on serving media files, such as images. If you were building a real-world ad-server utility, you would
probably do some things differently (for instance, use a database).

Listing 32.10 shows an Application.cfm file that turns on ColdFusion’s Session Management feature
and then creates a structure called SESSION.AdsOnPages if it doesn’t exist already. Because the structure
is kept in the SESSION scope, it is maintained separately for each user who is shown an ad. You’ll see
how this structure is used in a moment.

NOTE
The following examples use variables in the SESSTON scope without locking the accesses with the <CFLOCK> tag. This is an
acceptable practice if the Single Threaded Sessions option is checked in the Locking page of the ColdFusion Administrator. Other-
wise, you must add <CFLOCK> tags around all accesses to the SESSION scope. See the section “Locking Revisited” in Chapter 17,
“Working with Sessions.”

107



108 CHAPTER 32 GENERATING NoN-HTML CoNTENT

Listing 32.10 Application.cfm—Getting Ready to Track Ad Views Per Page and Per User
<l---
Filename: Application.cfm
Created by: Nate Weiss (NMW)

Please Note: Executes for every page request!
e

<!--- Give application a name, and enable Session variables --->
<CFAPPLICATION

NAME="AdServer"

SESSIONMANAGEMENT="Yes">

<!--- Make sure "AdsOnPage" structure exists for this Session --->
<!--- Each time we serve an ad, we'll record page/ad in this. --->
<CFIF NOT IsDefined("Session.AdsOnPages")>

<CFSET SESSION.AdsOnPages = StructNew()>
</CFIF>

The version of AdServer.cfmin Listing 32.11 is almost the same as Listing 32.9. Only one line of
code has been added, before the <CFCONTENT> tag at the end:

<!--- Record fact that this ad is now placed on this page --->
<!--- You could record the ad-showing in database instead --->
<CFSET SESSION.AdsOnPages[CGI.HTTP_REFERER] = AdFileName>

Listing 32.11  Adserver2.cfm—Recording Each Ad Hit in a Session Variable
<l---
Filename: AdServer2.cfm
Created by: Nate Weiss (NMW)
Date Created: 2/18/2001

>

<!--- Ad Images are in "Ads" subfolder, within current folder --->
<CFSET AdDir = GetDirectoryFromPath(GetCurrentTemplatePath()) & "Ads\">

<!--- Get a listing of GIF image files in the Ads folder --->
<!--- Result is a query object with a row for each image --->
<CFDIRECTORY

DIRECTORY="#AdDir#"
ACTION="LIST"
FILTER="*.gif"
NAME="GetAds">

<!--- Pick random number between one and number of images --->
<CFSET AdNum = RandRange(1, GetAds.RecordCount)>

<!--- Grab the filename in chosen row of the GetAds query --->
<CFSET AdFileName = GetAds.Name[AdNum]>

<!--- Prepend dir to get full filesystem path to ad image --->

<CFSET AdFilePath = AdDir & AdFileName>

<!--- Record fact that this ad is now placed on this page --->
<!--- You could record the ad-showing in database instead --->
<CFSET SESSION.AdsOnPages[CGI.HTTP_REFERER] = AdFileName>

<!--- Send the chosen image back to the client --->
<CFCONTENT TYPE="image/gif" FILE="#AdFilePath#">



SErRVING MEDIA FILES

The idea here is to exploit the fact that the browser will provide the referring page when it requests
the image from the AdServer.cfm page. That is, the URL of the page in which the image is to appear
will be available in the CGI.HTTP_REFERER variable. Therefore, the <CFSET> line shown previously
places a new name/value pair in the AdsOnPages structure, where the referring URL is used as the
name portion of the structure entry, and the filename of the ad being shown is the value portion.

Later, you easily can look up the ad’s filename using the page’s URL as the structure’s key. In other words,
the template is now tracking which users have seen which ads, on which pages. (See Chapter 8, “Using
ColdFusion,” for a discussion about ColdFusion structures.)

NOTE
For more information about HTTP_REFERER and the other variables in the CGl scope, see Appendix D, “Special ColdFusion
Variables and Result Codes.”

NOTE
Inaddition to (or instead of) maintaining the AdsOnPages structure, you could record each banner ad view in a database table—
for example, called AdViews. The table might have columns such as AdID, PageURL, and ViewDate. This would enable you to
easily create reports based on usage.

Now that each ad view is being recorded in the AdsOnPages structure, you can create a template to
respond when an ad is clicked. You can use the code in Listing 32.12, assuming that this is template
that will be called when a user clicks an ad. It again uses the CGI.HTTP_REFERER variable to determine
the URL of the referring document, which should be the URL that the ad is on. The idea is to use the
referrer URL to look up the last ad shown to this user on that page.

Listing 32.12 Adclick.cfm—Responding to a Banner Ad Click
<l---
Filename: AdClick.cfm
Created by: Nate Weiss (NMW)

Please Note: This template executes when a user clicks on an ad
--->

<!--- Assuming we have shown an ad on the referring page --->
<CFIF StructKeyExists(SESSION.AdsOnPages, CGI.HTTP_REFERER)>
<!--- What ad was last shown to this user on referring page? --->

<CFSET AdFileName = SESSION.AdsOnPages[CGI.HTTP_REFERER]>

<!---

At this point, you might record the "click" in database
and then redirect the user to the appropriate site via
the <CFLOCATION> tag. Here, we will simply output the
ad that the user clicked on, just to prove the concept.

-->

<CFOUTPUT>
You just came from: #CGI.HTTP_REFERER#<BR>
You got here by clicking on the <B>#AdFileName#</B> ad.

</CFOUTPUT>
<!--- If "KeyExists" fails, we don't know what ad was shown --->
<CFELSE>

We don't have any ad on record for you. Perhaps you didn't
come here after seeing an ad, or your session timed out.
</CFIF>

109



110

CHAPTER 32

GENERATING NoN-HTML CoNTENT

First, the structKeyExists() function is used to see whether a record exists for the URL. If so, the
<CFSET> line retrieves the value from the structure, assigning the ad’s filename to the AdFileName
variable. This code then outputs the original filename of the ad, without redirecting the user
somewhere else. As an exercise, you could take things further by using the filename to determine
where to send the user in response to the ad click, log the click-through in a database, and then use
<CFLOCATION> to redirect the user to the advertiser’s Web site.

The code in Listing 32.13 can be used to test the new ad server templates. The <IMG> tag displays
the banner ad served up by AdServer.cfm (Figure 32.8), and the <A> tag causes the AdClick.cfm page
to be called when the ad is clicked. This is an ordinary, static HTML file that doesn’t need to be
processed by ColdFusion.

Figure 32.8
ColdFusion

can serve images, such
as this banner ad,
instead of documents.

3 Ad Server Test - Microsoft Internet Explorer

=1

Fle Edt Wew Favories Tooks Help |ﬁ

templates

Back - =+ @ [£] Al | @oearch [lFavorites @veda (B | BN S

Address [ @] http:fiocalhost:0500/ons 3z AdServer Test, him

~| P

Ad Server Test

The randornly-chosen ad should appear below:

et on the Fast Track RCREETOILT R {8

&

[ [BE Cocal intranet 7

-

Listing 32.13 AdServerTest.htm—Displaying an Image Served by a ColdFusion Template

<l---

File

Created by:
Please Note:

-a >
<HTML>
<HEAD>
<BODY>
<H2>Ad
The ra
<l---

<A HRE
<IMG S

</BODY

AdServerTest.htm
Nate Weiss (NMW)

name:

<TITLE>Ad Server Test</TITLE></HEAD>

Server Test</H2>
ndomly-chosen ad should appear below:<BR>

Include banner ad supplied by "Ad Server"
F="AdClick.cfm">
RC="AdServer.cfm"

WIDTH="468" HEIGHT="60"

>

</HTML>

>

ALT=""

This is a static HTML file, not a CF template

BORDER="0"></A>



SErRVING MEDIA FILES

Other Uses

You could apply this same idea—using ColdFusion to serve up media files—to many other situations.
Here are just a few ideas.

Creating or Changing the Ads On-the-Fly

Using third-party extensions to ColdFusion, you can create or manipulate images on-the-fly. This
means you could adapt the ad server idea to create personalized images of some kind (such as
greeting cards). Take a look in the ColdFusion Developers Exchange at http://www.allaire.com/
developer/gallery to find out which CFX and other tags are available for creating dynamic images
with ColdFusion.

NOTE
Ifyou did start to create images on-the-fly for each user, you could use the DELETEFILE="Yes" attribute for the <CFCONTENT>
tag. This would cause each dynamically created image to be deleted from disk after it was delivered to the browser.

Other Types of Media Content

You also could adapt this ad server idea to serve up other types of multimedia content, such
as Macromedia Flash movies, or audio or video files. As long as you provide the correct MIME
content type to the TYPE attribute of the <CFCONTENT> tag, you can serve up just about any type
of content with ColdFusion.

Secure Downloads

If you look back at Listing 32.9, you will notice that <CFCONTENT>’s FILE attribute requires a full
filesystem path (including the c:\, for instance, if you’re using ColdFusion on a Windows machine).
This means the banner images could be stored anywhere on the server’s drives or local network.
That is, you are free to store the images in a folder that is not within the Web server’s document
root, and thus not accessible via the Internet using an ordinary URL (a URL ending with .gif).
The only way to get to the files would be via the AdServer.cfm template. In fact, if you think about
it, there isn’t even any way for the outside world to know what the name of each image file is.

This means you easily can set up a secure download system for documents or other important files
your company wants to be accessible to only certain people. Or, you could set up a software down-
load page that requires people to register (or pay) before they can obtain your software. Because
ColdFusion is in charge, you can use whatever queries or other special processing you need to
determine whether the user has the right to get a particular image or file.

NOTE
If you want to give the downloaded file a name, or if you find that you don't get the Save As behavior you want, try using a
Content-Disposition header, suchas the Word and Excel examples earlier in this chapter.

111



112

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Getting Started with Wireless Applications

Just as you can use ColdFusion to create interactive applications for Web browsers, you can use
ColdFusion to create interactive applications for cell phones and other wireless devices. This opens
up exciting ways to provide information and services to your users while they are on the move.

"This section explains what’s needed to create wireless applications with ColdFusion, using the WAP
standard. You also can adapt these basic concepts to produce wireless applications for PalmOS
handhelds, I-Mode—compliant devices, or any other wireless standard that uses text-based markup.

Basic Concepts

Before you get started, you need to understand the ways in which wireless development is different
from normal Web application development. You will see that the framework for building wireless
applications borrows very heavily from the Web development world. That’s good for you because
you will be able to apply your knowledge of ColdFusion to the wireless universe very quickly.

Here are some important terms to keep in mind as you follow along:

»  WAP—WAP stands for Wireless Application Protocol. It defines the way wireless devices
talk to Web servers. Although the analogy is not perfect, you can think of WAP as the
wireless equivalent to HTTP. It grew out of efforts led by a company called Phone.com
(now openwave.com) to create a standard for wireless application development. WAP’s home
on the Web is the Open Mobile Alliance site, at http://www.openmobilealliance.org.

s WML—WML stands for Wireless Markup Language. WML is the wireless equivalent
to HTML and is similar to HT'ML in many respects. WML grew out of an earlier
specification called HDML (Handheld Device Markup Language).

= WAP Device—Any cell phone or other device that understands WAP and WML. If you
don’t have such a phone yourself, you can use a phone simulator on your computer while
you develop your application; it looks and behaves similarly to a real cell phone.

= WAP Gateway—A server that sits between a wireless device and the Web. When a user
uses her cell phone to connect to your ColdFusion application, the communication passes
through a gateway computer, which is generally supplied by the user’s cell phone
company.

Installing the UP.SDK

The first thing to do is to install the UP.SDK on your workstation. The UP.SDK is a set of tools for
wireless application developers. Installing it gives you access to an onscreen simulation of a cell
phone, which you can use to develop and test your applications.

Before you can begin, you will need to download the UP.SDK from http://developer.openwave.com.



GGETTING STARTED WITH WIRELESS APPLICATIONS

To install the UP.SDK, follow these steps:

1 Download the setup program from http://developer.openwave.com. Depending on the
version, the filename will be similar to upsdkW41e.exe.

2 Double-click the setup program to start the installation process.

3 Follow the simple instructions to install the UP.SDK.

NOTE
The figures and examples in this book assume that you are using version 4.1 of the UP.SDK. If you are using a different version,
the figures may look slightly different from what you see on your screen.

A Crash Course in WML

Instead of writing your ColdFusion templates to generate HT' ML as you would normally, you write
them to generate WML.

You’ll find that many tags from HTML have been adopted by WML with hardly any changes. In
general, most of the differences between the languages have to do with preserving bandwidth because
cell phones and other devices have relatively slow connections. Also, cell phones obviously don’t
have all the processing power that an average computer does, so the language has been kept very
simple.

WML has a number of rules, which must be followed exactly:

= WML is case sensitive—In WML, tag names and attributes are case sensitive;
therefore, you can’t type WML tags using your choice of uppercase or lowercase as you
can with HTML. You must type them as shown.

= All tags must be nested properly—In WML, all tags must have opening and closing
tags. In HTML, you can use a <p> tag without ever providing the matching </p> tag—
not so in WML.

= Unpaired tags must use slash notation—You are familiar with the <br> tag in HIML.
The equivalent in WML is the <br/> tag. The slash indicates that no matching </br> tag
exists, so the device’s parser needn’t waste time looking for it. Actually, this slash notation
is a shortcut for writing <br></br>, which is also valid WML (but more tedious to type).
The same rule applies to other unpaired tags, so you will see the slash used at the end of
<img> and <a> tags in WML code.

NOTE
Most of these rules are the result of the fact that the WML language is actually a subset of XML. HTML is not directly related to XML
and doesn't adhere to many of XML's rules regarding syntax.

113



114 cHAPTER 32 GENERATING NoN-HTML CoNTENT

Explaining the entire WML language in one chapter isn’t possible. You will learn enough to get you
started, though. Table 32.3 shows the WML tags are used in this chapter’s code samples. The table
also attempts to explain what each tag’s equivalent is in HTML. Although the comparisons are not
always perfect, they should help you feel comfortable as you start looking at the examples.

Table 32.3 Common WML Tags and Their Rough Equivalents in HTML

WML TAG PURPOSE HTML COUNTERPART
<wml> Marks beginning and end of a WML <html>
document, more commonly called a deck
<card> Marks beginning and end of a card <body>
<p> Marks beginning and end of a paragraph <p>
<a> Defines a hyperlink to another card <a>
<br/> Starts a new line <br>
<do> Assigns actions to buttons on the WAP device  <button>
<go> Performs an action, such as submitting data <form>
or linking to another page
<input> Collects input from user <input>
<postfield>  Submits form-style input to the server hidden <input>

Your First WML Card

In WML, you deal with cards instead of pages. Just as a Web browser always shows one page at a
time (ignoring frames for the moment), a WAP device always shows one card at a time. The first
card to write is a home card for your wireless application. This gives the user some basic links to
the information you are going to provide.

Writing the Code

Listing 32.14 shows a ColdFusion template that displays a simple welcome message to the user. It
also presents the user with two links that he can use to navigate to get information about Orange
Whip Studio’s movies.

This chapter includes several version of this template. Save the code in this listing as a file called
WapIndex.cfm, not WapIndex1.cfm.

Listing 32.14 wapIndexi.cfm—Presenting Simple Text and Links to the User
<l---
Filename: WapIndex1.cfm
Created by: Nate Weiss (NMW)

Purpose: A home card for browsing and searching films via WAP
-->



GGETTING STARTED WITH WIRELESS APPLICATIONS

Listing 32.14  (coNTINUED)

<!--- Send back the proper WAP content type --->
<CFCONTENT TYPE="text/vnd.wap.wml">

<!--- Send back the proper WAP "prologue" --->

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"
"http://www.phone.com/dtd/wmli1.dtd" >

<wml>
<card>
<p>
<!--- Welcome message --->
<b>0rangeWAP Studios</b><br/>
<i>Celluloid by Cell</i><br/>

<!--- Links to other pages --->
<a href="#movies">Browse Movies</a><br/>
<a href="#search">Search Movies</a><br/>
</p>
</card>
</wml>

NOTE
Because the WML language is case sensitive, it is important that you use lowercase letters as shown for <wm1>, <card>, and
other tags in this example.

The first line uses the <CFCONTENT> tag to specify that ColdFusion should respond with a content
type of text/vnd.wap.xml when it sends back the code your template generates. Otherwise, the
user’s WAP device would receive the default content type of text/html, which it wouldn’t know
what to do with.

The next two lines (the ?xm1 line and the !DOCTYPE line) include the WML document prologue,
which must always appear before any actual WML content. It is very important that these lines
appear exactly as shown here.

Next, the opening and closing <wm1> tags indicate the beginning and end of the WML content itself.
This is equivalent to the opening and closing <html> tags you are used to. Within the opening and
closing <card> tags, a WML card is defined,; it is conceptually similar to the <body> section of an
HTML page.

Within the card, things start to look pretty familiar. The <p>, <b>, <i>, and <a> tags all do the same
things they do in HTML. Just be careful to open and close them correctly, and use the slash notation
for any unpaired tags, such as <br/>.

Trying It Out with UP.Simulator

When you installed the UP.SDK, you also installed the UP.Simulator, which enables you to visit
your WAP templates to see how they will look and behave with a cell phone. You can use the
simulator to view the WapIndex.cfm page you just created.

115



116

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

To view your new page with the simulator, follow these steps:

1. Start the UP.Simulator by clicking its icon in the Start menu, which is in a program folder
labeled uP.SDK 4.1 or something similar—depending on the version of the UP.SDK you
installed.

2. Select UP.Link Settings from the Settings menu.

3. Type the URL for the wapIndex.cfm template in the Home Url field (Figure 32.9). This
is the same localhost URL you would use to access the template if it were a normal Web
page. Leave the other settings as shown.

4. Click OK. The simulator should now connect to your Web server and display your welcome
card (Figure 32.10).

Figure 32.9 &
Set your simulator’s e
Home URL to your - & HTTPDiect

WapIndex template to Home Utk Ihtlp localhost 8500 ows /32 aplndex.cfm

make testing easier. & NaHTTP Praw [

sl F'ruxy.l Pait:
Request Timeout: [30_+] seconds

&n UP.Link can be referenced by a numeric |F addiess or by a domain name.
r~ Connect through LIP. Link

 UPLink 1: IdevgateZ.up\anEt.:um Delete Key

 UPLink 2 IdevgateZ uplanet com Delete Key

 UPLink 3 |devgate2.up\anet.:um Delete Key
Cocel

When you have a chance, you should explore the various menu options for the UP.Simulator to
become familiar with what it can do for you. In particular, note the following:

Open Configuration—You can select this from the File menu to simulate various makes
and models of real-world WAP phones.

Reload—You can select this from the Edit menu to reload the current card. This is similar
to using the Reload button on a Web browser.

Source—You can select this from the Info menu to view the source code for the current
deck. This is similar to Viewing Source in a Web browser.

Clear Cache—You can select this from the Edit menu to clear the simulator’s cache. It
also returns you to the Home URL you entered previously. It’s a good way to start over
after you change some code.



GETTING STARTED WITH WIRELESS APPLICATIONS 117

Figure 32.10 =0l x|
. File Info Edit Settings Location Help
Your WML is N =i

interpreted by the
simulated phone
and displayed on its
small LCD screen.

OrangeWAP Studios

Celluloid by Cell
P [Erowse Movies]
[Search Movies]

[Network Available [

Using <CFINCLUDE> for the Prologue

As explained previously, it is very important to get the <CFCONTENT> and prologue parts of Listing 32.14
exactly right in every WML template you build. For that reason, it would probably be helpful to put
those lines in a separate template, so you can just use <CFINGLUDE> to include the proper prologue
each time.

Listing 32.15 shows a template called WapIncludePrologue.cfm. Listing 32.16 is the WapIndex.cfm
file again, this time using <CFINCLUDE> to include the content type and prologue—much easier.

Listing 32.15 wapIncludePrologue.cfm—Sending the WAP Prologue in an Included Template

<l---
Filename: WAPIncludePrologue.cfm
Created by: Nate Weiss (NMW)
Please Note: Can be used via <CFINCLUDE>, or as a CFML
Custom Tag (<CF_WapIncludePrologue>)
-2
<!--- Send back the proper WAP content type --->

<CFCONTENT TYPE="text/vnd.wap.wml">

<!--- Send back the proper WAP "prologue" --->

<?xml version="1.0"7>

<!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"
"http://www.phone.com/dtd/wml11.dtd" >



118 CHAPTER 32 GENERATING NoN-HTML CoNTENT

Listing 32.16  wapIndex2.cfm—Using <CFINCLUDE> to Include WAP Content Type and Prologue

<l---

Filename: WapIndex2.cfm

Created by: Nate Weiss (NMW)

Purpose: A home card for browsing and searching films via WAP
[
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">
<wml>

<card>
<p>
<!--- Welcome message --->
<b>0rangeWAP Studios</b><br/>
<i>Celluloid by Cell</i><br/>

<!--- Links to other pages --->
<a href="#movies">Browse Movies</a><br/>
<a href="#search">Search Movies</a><br/>
</p>
</card>

</wml>

NOTE
Listing 32.15 can also be used as a CFML Custom tag. Just saveWapIncludePrologue.cfmin ColdFusion's CustomTags
folder. You can then replace the <CF INCLUDE> line in Listing 32.16 with <CF_WapIncludePrologue>. See Chapter 20,
“Building Reusable Components,” for details.

Multiple Cards in One Deck

One interesting feature of WML is that you can include more than one card within each document.
That is, each <wml> tag can include more than one <card> tag. The WML document, or collection
of cards, is therefore called a Deck. You can include links from one card to another, and the user can
move from card to card within the deck without recontacting the server.

NOTE
You certainly don't have to include multiple cards in each of your WML templates, but it is definitely encouraged. Because WAP
devices generally have slow connections, you should keep the number of requests to your server to a minimum. By including multiple
cards with each request, you potentially save a lot of time for your users.

The version of WapIndex.cfmin Listing 32.17 creates a simple deck of three cards. From the first
card, the user can navigate to the other two cards. Note that each card has been given an id attribute.
Links to other cards in the same deck are made by referring to the target card’s id, using the #
notation shown in the two href attributes.



GGETTING STARTED WITH WIRELESS APPLICATIONS

Listing 32.17  wapIndex3.cfm—Including Multiple Cards in the Same Deck

<l---

Filename: WapIndex3.cfm

Created by: Nate Weiss (NMW)

Purpose: A home card for browsing and searching films via WAP
[
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">

<wml>
<card id="home">
<p>
<!--- Welcome message --->

<b>0rangeWAP Studios</b><br/>
<i>Celluloid by Cell</i><br/>

<!--- Links to other pages --->
<a href="#movies">Browse Movies</a><br/>
<a href="#search">Search Movies</a><br/>
</p>
</card>

<card id="movies">
<p>
<b>Movie List</b>
</p>
</card>

<card id="search">
<p>
<b>Movie Search</b>
</p>
</card>
</wml>

NOTE
Much of the finesse of WAP development is sending a sensible set of cards in each request. Even if you don’t know that the user will
want to look at all the cards in a deck, you still should include them if you can. Of course, you don't want to include cards that no one
ever seems to use, either. As long as there is a reasonable chance the user will navigate to each card, it's worth putting the card in
there. The additional cost (in time) of including each additional card is generally much lower than the cost of additional connections
back to your server.

Creating Data-Driven Cards

So far, you have created static cards that always look the same. What about creating cards dynami-
cally—for instance to display information from a database? It’s really quite simple. Just use <CFQUERY>
and <CFOUTPUT> tags as you would normally, ensuring that the content your template generates is
valid WML.

119



120  CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Listing 32.18 demonstrates how easy generating data-driven WML is. This is essentially the same
as the last listing, except for the addition of a query to retrieve a list of current movies. Then, within
the movies card, a link in the form of the <a> tag is generated for each film (Figure 32.11).

Figure 32.11 x|

Fle Info Edt Settings Location Help

Creating data-driven
wireless applications is
easy with ColdFusion
and WML.

Gio [device:home =l

Orange Whip Movies
[Being Unbearsbly
Light]
[Charlie's Devils]
P[Closet Encounters
of the Odd Kind]

Link Home

[Network Available [

Listing 32.18 wapindex4.cfm—Generating WML Dynamically from Query Results

<l---

Filename: WapIndex4.cfm

Created by: Nate Weiss (NMW)

Purpose: A home card for browsing and searching films via WAP
.
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">

<!--- Get movies from database --->

<CFQUERY
DATASOURCE="0rangeWhipStudios"
NAME="GetMovies"
CACHEDWITHIN="#CreateTimeSpan(0,0,15,0)#">
SELECT FilmID, MovieTitle, Summary
FROM Films
ORDER BY MovieTitle

</CFQUERY>



GGETTING STARTED WITH WIRELESS APPLICATIONS

Listing 32.18  (conTiNUED)

<wml>

<card id="home">
<p>
<!--- Welcome message --->
<b>0rangeWAP Studios</b><br/>
<i>Celluloid by Cell</i><br/>

<!--- Links to other pages --->
<a href="#movies">Browse Movies</a><br/>
<a href="#search">Search Movies</a><br/>
</p>
</card>

<card id="movies">
<!--- Present a link for each movie --->
<p>
<b>0range Whip Movies</b>
<CFOUTPUT QUERY="GetMovies">
<CFSET MovieCardURL = "WapMov.cfm?FilmID=#FilmID#">
<a href="#MovieCardURL#">#MovieTitle#</a><br/>
</CFOUTPUT>
</p>
</card>

<card id="search">
<p>
<b>Movie Search</b>
</p>
</card>
</wml>

Browsing Through Records

When the user clicks any of the links in Listing 32.18, she will be linked to wapMov . cfm, with the
selected film’s ID passed as a URL parameter. Listing 32.19 shows one way that template can be
written.

Rather than responding with a single card, this code sends back a card for the requested movie,
plus one card each for the next four movies. Each card enables the user to click the Next button to
navigate to the next card in the deck (Figure 32.12). When the user clicks the Next button on the
fifth card, the template is revisited: As the user scrolls through the list of films, the server is contacted
only for every fifth film.

NOTE
Most WAP devices display an error message if your code contains more than 2,000 characters or so. You can adjust the number of
cards sent back per deck by adjusting the MaxRowsPerDeck variable. In general, the number should be as high as possible with-
out the whole deck exceeding the 2,000-character limit. See the UP.SDK documentation for more details regarding code-size limits.

121



122  CHAPTER 32 GEeNERATING NoNn-HTML CoNTENT

Figure 32.12 =T

File Info Edt Setings Location Help
The user can browse o [fmrmrae |
through cards using

the Next link.

Closet Encounters of
the 0dd Kind

Opens Now 7.

One man £inds out
more than he ever
wanted to know sbout

List Next

[Network Available [

Listing 32.19  wapMov.cfm—Enabling the User to Browse Through the List of Movies

<l---
Filename: WapMov.cfm
Created by: Nate Weiss (NMW)
Purpose: Displays film information for WAP users
“e>
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">

<!--- We need to limit how many cards we send --->
<CFSET MaxCardsPerDeck = 5>

<!--- Get movies from database --->
<CFQUERY
DATASOURCE="ows"
NAME="GetMovies"
CACHEDWITHIN="#CreateTimeSpan(0,0,15,0)#">
SELECT FilmID, MovieTitle, Summary, DateInTheaters

FROM Films
ORDER BY MovieTitle
</CFQUERY>
<!--- A FilmID must be passed in the URL --->
<CFPARAM NAME="URL.FilmID" TYPE="numeric">
<!--- Find the passed FilmID's row in query --->

<CFSET StartRow = ListFind(ValuelList(GetMovies.FilmID), URL.FilmID)>
<!--- We'll start at that row, and end 5 rows later --->



GGETTING STARTED WITH WIRELESS APPLICATIONS

Listing 32.19  (conTiNUED)

<CFSET EndRow = StartRow + MaxCardsPerDeck - 1>
<wml>
<!--- All cards need a way back to movie list --->
<template>

<do type="accept" label="List">
<go href="WapIndex.cfm#movies" />
</do>
</template>

<!--- Create a card for each movie --->

<CFOUTPUT QUERY="GetMovies"
STARTROW="#StartRow#"
MAXROWS="#MaxCardsPerDeck#">

<card id="Film#FilmID#">

<!--- Show "Next" navigation, unless at end --->
<CFIF CurrentRow LT RecordCount>
<!--- What is the next film? --->

<CFSET NextID = FilmID[CurrentRow + 11>

<do type="options" label="Next">
<!--- If next film is in this deck --->
<CFIF CurrentRow NEQ EndRow>
<go href="##Film#NextID#" />

<!--- If next film not in this deck --->
<CFELSE>
<go href="?FilmID=#NextID#" />
</CFIF>
</do>
</CFIF>
<!--- Display information about this movie--->

<p>
<b>#MovieTitle#</b><br/>
<i>Opens #DateFormat(DateInTheaters, "mmm d")#.</i><br/>
#Summary#<br/>

</p>

</card>
</CFOUTPUT>
</wml>

Responding to Form Input

Just like normal Web applications, your WAP applications can include forms for the user to fill in
and submit. For instance, you might want the user to be able to search for a movie by typing in a
word or two.

The last version of WapIndex.cfm included a movie search card, but it didn’t actually work. To enable
the user to specify his search criteria, the search card from Listing 32.18 needs to be completed, as
shown in Listing 32.20.

123



124  cHAPTER 32 GENERATING NoN-HTML CoNTENT

Listing 32.20 wapIndexs.cfm—Allowing the User to Run Searches

<l---

Filename: WapIndex5.cfm

Created by: Nate Weiss (NMW)

Purpose: A home card for browsing and searching films via WAP
-
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">

<!--- Get movies from database --->

<CFQUERY
DATASOURCE="ows"
NAME="GetMovies"
CACHEDWITHIN="#CreateTimeSpan(0,0,15,0)#">
SELECT FilmID, MovieTitle, Summary
FROM Films
ORDER BY MovieTitle

</CFQUERY>

<wml>

<card id="home">
<p>
<!--- Welcome message --->
<b>0rangeWAP Studios</b><br/>
<i>Celluloid by Cell</i><br/>

<!--- Links to other pages --->
<a href="#movies">Browse Movies</a><br/>
<a href="#search">Search Movies</a><br/>
</p>
</card>

<card id="movies">
<!--- Give user a way to get back home --->
<do type="options" label="Home">
<go href="#home" />
</do>

<!--- Present a link for each movie --->

<p>
<b>0Orange Whip Movies</b>
<CFOUTPUT QUERY="GetMovies">

<a href="WapMov.cfm?FilmID=#FilmID#">#MovieTitle#</a><br/>

</CFOUTPUT>

</p>

</card>

<card id="search">
<!--- Run search when "Accept" button pressed --->
<do type="accept" label="Submit">
<go method="post" href="WapSearch.cfm?">
<postfield name="criteria" value="$criteria"/>
</go>
</do>



GETTING STARTED WITH WIRELESS APPLICATIONS

Listing 32.20  (coNTINUED)

<!--- Allow user to type search criteria --->

<p>
<b>Movie Search</b><br/>
Keywords: <input name="criteria"/>

</p>

</card>
</wml>

This is roughly equivalent to a simple search form on an HTML page. The <input> field gives the
user a place to enter his search criteria, and the <do> tag gives the user a way to submit the search by
clicking the Accept button on the phone (see Figure 32.13).

Figure 32.13 o/

Fle Info Edt Settings Location Help

Gia [device:home =

The user can key in
films to search for
with the numeric
buttons on the phone.

Movie Search
Keywords:
Lnge1§

Network Available [

When the user clicks the Accept button, the <go> action fires, essentially acting like a <form> tag in
HTML. The method attribute can be set to get or post; the href attribute, on the other hand, indicates
the page to submit to, such as a Web form’s action attribute. And just as with Web forms, you
should use method="post". The <postfield> tag causes the value of the <input> to be submitted as a
form-like value.

NOTE
The value of <input> automatically becomes known to the phone as a variable called $criteria, which can be used in various
ways. Here, the variable is just passed to the <postfield> tagsoits value gets submitted to ColdFusion. But you can do a lot
more with these variables. Refer to the documentation that was installed with the UP.SDK to see what else you can do with WAP vari-
ables and the $ notation used here.

125



126

CHAPTER 32 GEeNERATING NoN-HTML CoNTENT

Now you can write a ColdFusion template called wapSearch.cfm. Listing 32.21 shows one way
to respond to the user’s search request. Note that you can refer to the user’s search criteria as
#Form.Criteria#, just as if the search request were coming from a normal Web form.

Listing 32.21 wapSearch.cfm—Responding to Form Input

<l---

Filename: WapSearch.cfm

Created by: Nate Weiss (NMW)

Purpose: Provides a simple film search interface for WAP users
--->
<!--- Include WAP Content-Type and Prologue --->

<CFINCLUDE TEMPLATE="WapIncludePrologue.cfm">

<!--- We must have search criteria --->
<CFPARAM NAME="Form.Criteria" TYPE="string">

<!--- Get movies from database --->
<CFQUERY
DATASOURCE="ows"
NAME="GetMovies"
CACHEDWITHIN="#CreateTimeSpan(0,0,15,0)#">
SELECT FilmID, MovieTitle, Summary
FROM Films
WHERE MovieTitle LIKE 'S#Form.Criteria#%'
OR PitchText LIKE 'S#Form.Criteria#%'
OR Summary LIKE 'S#Form.Criteria#%'
ORDER BY MovieTitle

</CFQUERY>
<wml>
<card id="search">
<!--- Give user way back to "Search" card --->

<do type="options" label="Again">
<go href="WapIndex.cfm#search"/>
</do>

<p>
<!--- Show "Results" message, with criteria --->
<b>Search Results For</b><br/>
<CFOUTPUT>&quot;<b>#Form.Criteria#</b>&quot;<br/></CFOUTPUT>

<!--- For each matching movie, provide link --->
<CFOUTPUT QUERY="GetMovies">
<a href="WapMov.cfm?FilmID=#FilmID#">#MovieTitle#</a><br/>
</CFOUTPUT>
</p>
</card>
</wml>

NOTE

It's not easy for users to type on the tiny keypads cell phones come with. Try to keep the amount of typing down to a bare minimum.
Elaborate data-entry screens with many fields probably will be too time-consuming for your users to actually use.



GGETTING STARTED WITH WIRELESS APPLICATIONS

Learning More

Even though these examples should give you enough to hit the ground running, this section has really
only scratched the surface with regard to what you can do with WML. You probably need to learn
more about the WML language before you can build the wireless application of your dreams. All
the following are great resources:

The WAP, WML, and WMLScript documentation that was installed when you installed
the UP.SDK

The WAP Forum Web site, at http://www.openmobilealliance.org
The Openwave Web site, at http://www.openwave.com

WAP Development with WML and WMLScript, by Ben Forta
Learning WML & WMLScript, by Martin Frost (O’Reilly)

127






