12 1690 CHO9 4/25/02 2:01 PM Page 209 $

PHP and Web Services

WEB SERVICES ARE ONE OF THE MOsST talked-about technologies of the day.
They are set to change how data is exchanged on the Internet as the Internet
itself evolves to deliver content not only to web browsers on PCs but also to
PDAs and other devices. Further still, the evolution of “Internet-ready” soft-
ware and hardware will see web services being used in applications such as
MP3 players, personal stereos, and game consoles. PHP is a great language for
developing web services, and this chapter shows you just what a web service is
and how it is made up. Then we will look at how you can use PHP to develop
web services.

What Makes Up a Web Service?

A web service is made up of four parts, as shown in Figure 9.1. The first part is
the component that wants to act as a web service. It can be any part of an
application: the executable,a COM component, a JavaBean, and so on.The
web service component exposes public methods and functions that other
applications can query.Your component could be one that you have created
for this purpose, but normally you can expose any component that has public
methods as a web service.

12 1690 CHO9 4/25/02 2:01 PM Page 210 $

210 Chapter 9 PHP and Web Services

uDDI

| component l— WSDL
| component I— WSDL

SOAP [
| component |

| component WSDL SOAP I component |

ﬁ

Figure 9.1 The makeup of web services.

You must allow your components to be accessed by other applications as a
web service. To do this, you must allow other applications to see what public
functions and methods your components have. You don’t allow applications to
do this directly. To accomplish this, you create a file based on an XML-based
metalanguage called Web Services Description Language (WSDL).

Next you must allow applications to query the WSDL file and exchange
data with the web service.

For this purpose, you use another XML-based metalanguage called Simple
Object Access Protocol (SOAP).

Using SOAP, you look up the web service component’s public methods and
functions using the WSDL file and then query those methods and functions.
However, you don’t always know where to find a web service’s WSDL file. In
that case, you can look at an XML-based database (also called a registry) of
WSDL addresses. This database is called a Uniform Description, Discovery, and
Integration (UDDI) registry.

The easiest way to remember the component parts of a web service is to
think in terms of these three concepts:

= Discovery: UDDI lets you discover web services.
» Query: WSDL lets you query web services.
» Transport: SOAP lets you transmit those queries back and forth from the

web service.

Don’t worry if some of these terms are new to you. They are covered in fur-
ther detail later in this chapter. Now that we have identified all the component
parts of a web service, let’s look at each in detail.

SOAP (Simple Object Access Protocol)

In Chapter 5, “PHP and Sessions,” SOAP was mentioned briefly when we
looked at how WDDX developed. SOAP, like WDDX, is an XML-based
language. Unlike WDDX, however, and like another XML-based language,

e

12 1690 CHO9 4/25/02 2:01 PM Page 211 $

What Makes Up a Web Service? 211

XML-RPC, it is used for RPC (Remote Procedure Call) via XML.
XML-RPC started life as an idea of Dave Winer of UserLand software. He
discussed his ideas with Microsoft, and from his ideas, SOAP was born.
(XML-RPC continues to develop as a protocol separate from SOAP)

Other companies (such as IBM) joined Microsoft in developing SOAP.
Soon after that, implementations of SOAP for languages such as Java (via IBM)
and Visual C++ and Visual Basic (via Microsoft) were released.

Using SOAP

So how 1s SOAP used? SOAP is an XML-based language, so in effect, all
SOAP implementations do is create XML files or strings that facilitate passing
data and calling methods between (normally remote) applications. SOAP does
not have to be strictly about web services; in other words, it does not require
WSDL or UDDI to work and can be used in a standard RPC manner. SOAP
is often described as passing objects between applications; this can be both
misleading and confusing. All SOAP does is allow a public function or method
to be queried via an XML interface. It does not pass physical objects in the
same way that Java serialization does, for example.

When an application queries a public function or another application’s
methods, it passes some data to that function or method and might get results
in return. A public function or method does not always do this, but it is good
practice that such functions or methods at least return some handshake data (a
simple code that allows the calling application to see that the public function
or method has received the data it sent).

When dealing with remote applications, you might face data type problems.
That is, different languages have difterent ways of representing data. You might
have some success on this front. For example, Java and PHP have very similar
data types, but when dealing with calling applications that might be made up
of languages such Perl, Python, and C++, you will face a nightmare.

If you imagine that your remote application is developed in Java and your
calling clients are made up of PHP and Visual Basic, you might face few
problems with the PHP application calling the remote Java application. But
you will face a lot of problems when you do the same with a Visual Basic
application.

Luckily, SOAP deals with this by presenting a standard way of representing
data. Imagine that your remote Java application function accepts a string.
Using SOAP, you translate the calling application data into the SOAP equiva-
lent and pass that to the remote Java application. The Java application then
translates the SOAP string data into the Java equivalent.

This can work in reverse too so that if your Java application returns a result,
it does so as SOAP data for your client applications to translate back into

e

12 1690 CHO9

4/25/02 2:01 PM Page 212 (E

212 Chapter 9 PHP and Web Services

native data types. So, in effect, SOAP does not really let you pass objects
between applications. Instead, it provides the means to interface between dif-
ferent objects in different languages.

I was once asked if SOAP, based on part of its definition (simple object), is
for simple objects only. Its meaning is not to be confused with objects in the
sense we use them in OOP languages such as C++. It does not need to know
what an object does, how it exists, or how it works. In fact, the very use of the
word object can be misleading. SOAP does not require objects to exist in a true
OOP sense. They can be nothing more than public functions and methods and
are not subject to OOP concepts such as encapsulation.

SOAP Transparency

Because SOAP is XML-based, it is nothing more than ASCII data that is being
transmitted (and therefore is as simple as standard text). This is one of key ben-
efits of SOAP. It uses simple character encoding (ASCII) as a file format. It can
be transmitted on any protocol that supports the transmission of ASCII data.
As it happens, most TCP/IP protocols do. This allows SOAP to be used across
HTTP (the most common protocol to be used with SOAP), FTP, SMTP, and
so on. This brings an added benefit in that such protocols don’t require special
ports and security measures such as firewalls. They run through commonly
used ports. (This advantage is also enjoyed by other XML-based RPC meth-
ods, such as XML-RPC.)

This property is also apparent when you compare SOAP to other RPC
methods. In PHP, you can also make use of DCOM (which is used with
COM), CORBA (which uses the IIOP protocol), and Java (which natively
supports the RMI protocol). Protocols that facilitate RPC are called wire proto-
cols because they are low-level and require special ports. SOAP, however, has
no such requirements.

SOAP’s Makeup

What exactly is SOAP made of? A SOAP message is called a SOAP envelope.
The following code exemplifies a SOAP envelope:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle=

= "http://schemas.xmlsoap.org/soap/encoding/"

= xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

</SOAP-ENV:Envelope>

An envelope contains a body, which can be either a SOAP body call or a
SOAP body response.

12 1690 CHO9 4/25/02 2:01 PM Page 213 $

What Makes Up a Web Service? 213

SOAP Body Call

When a call is made to a public function or method, this is done with a SOAP
body call. Such a body call looks something like this:

<SOAP-ENV:Body>

<SOAPSDK1:HelloFunc xmlns:SOAPSDK1="http://tempuri.org/message/">
<uname xmlns:SOAPSDK2="http://www.w3.0rg/2001/XMLSchema-instance"
= xmlns:SOAPSDK3="http://www.w3.0rg/2001/XMLSchema"

= SOAPSDK2:type="SOAPSDK3:string">Andrew</uname>
</SOAPSDK1:HelloFunc>

</SOAP -ENV:Body>

Here the HelloFunc method is passed a string of data called "Andrew". Note
that SOAP has added a mapping of what data we are passing to the public ser-
vice or method:

type="S0APSDK3:string"

A completed SOAP envelope calling a public service or method looks like the
following:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle=

= "http://schemas.xmlsoap.org/soap/encoding/"

= xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<SOAPSDK1:HelloFunc xmlns:SOAPSDK1="http://tempuri.org/message/">
<uname xmlns:SOAPSDK2="http://www.w3.0rg/2001/XMLSchema-instance"
= xmlns:SOAPSDK3="http://www.w3.0rg/2001/XMLSchema"

= SOAPSDK2:type="SOAPSDK3:string">Andrew</uname>
</SOAPSDK1:HelloFunc>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Body Response

In response to a call to a public function or method, SOAP can respond to
that call using the SOAP body response:

<SOAP -ENV:Body>

<SOAPSDK1:HelloFuncResponse xmlns:SOAPSDK1="http://tempuri.org/message/">
<Result xmlns:SOAPSDK2="http://www.w3.0rg/2001/XMLSchema-instance"

= xmlns:SOAPSDK3="http://www.w3.0rg/2001/XMLSchema"

= SOAPSDK2:type="SOAPSDK3:string">hello Andrew</Result>

<uname xmlns:SOAPSDK4="http://www.w3.0rg/2001/XMLSchema-instance"

= xmlns:SOAPSDK5="http://www.w3.0rg/2001/XMLSchema"

= SOAPSDK4:type="SOAPSDK5:string">Andrew</uname>
</SOAPSDK1:HelloFuncResponse>#

</SOAP -ENV:Body>

12 1690 CHO9 4/25/02 2:01 PM Page 214 $

214 Chapter 9 PHP and Web Services

The SOAP body result contains any data that the public function or method
returns:

<Result xmlns:SOAPSDK2="http://www.w3.0rg/2001/XMLSchema-instance"
= xmlns:SOAPSDK3="http://www.w3.0rg/2001/XMLSchema"
= SOAPSDK2:type="SOAPSDK3:string">hello Andrew</Result>

along with the original method call:

<uname xmlns:SOAPSDK4="http://www.w3.0rg/2001/XMLSchema-instance"
= xmlns:SOAPSDK5="http://www.w3.0rg/2001/XMLSchema"
= SOAPSDK4:type="SOAPSDK5:string">Andrew</uname>

Web Services Description Language (WSDL)

In the web services sense, although SOAP helps you exchange data between
the public functions or methods of a web service, it can’t help you explain
which public functions or methods are available and what they do. Without
this information, you can’t use SOAP to exchange data, because you have no
idea what is available to help you facilitate the exchange.

For this purpose, we have Web Services Description Language (WSDL).
Like SOAP, WSDL is an XML-based file format for describing what public
functions and methods are available in a web service. Other applications use
the WSDL file to find this information and then use SOAP against those
described public functions or methods.

WSDL File Makeup

<?xml version='1.0"' encoding='UTF-8' ?>
<!-- Generated 09/24/01 by Microsoft SOAP Toolkit WSDL File Generator,
= Version 1.02.813.0 -->
<definitions name ='PHP4WINSOAP'
= targetNamespace = 'http://tempuri.org/wsdl/'
xmlns:wsdlns="http://tempuri.org/wsdl/"
xmlns:typens="http://tempuri.org/type’
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
xmlns:stk="http://schemas.microsoft.com/soap-toolkit/wsdl-extension'
xmlns="'http://schemas.xmlsoap.org/wsdl/'>
<types>
<schema targetNamespace='http://tempuri.org/type'
xmlns="http://www.w3.0rg/2001/XMLSchema'
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/ "'
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="'qualified'>
</schema>
</types>
<message name='Examples.HelloFunc'>

e

12 1690 CHO9 4/25/02 2:01 PM Page 215 $

What Makes Up a Web Service? 215

<part name='uname' type='xsd:anyType'/>
</message>
<message name='Examples.HelloFuncResponse'>
<part name='Result' type='xsd:anyType'/>
<part name='uname' type='xsd:anyType'/>
</message>
<portType name='ExamplesSoapPort'>
<operation name='HelloFunc' parameterOrder='uname'>
<input message='wsdlns:Examples.HelloFunc' />
<output message='wsdlns:Examples.HelloFuncResponse' />
</operation>
</portType>
<binding name='ExamplesSoapBinding' type='wsdlns:ExamplesSoapPort' >
<stk:binding preferredEncoding='UTF-8'/>
<soap:binding style='rpc' transport=
w 'http://schemas.xmlsoap.org/soap/http' />
<operation name='HelloFunc' >
<soap:operation soapAction=
w 'http://tempuri.org/action/Examples.HelloFunc' />
<input>
<soap:body use='encoded' namespace='http://tempuri.org/message/"
encodingStyle="'http://schemas.xmlsoap.org/soap/encoding/"' />
</input>
<output>
<soap:body use='encoded' namespace='http://tempuri.org/message/"'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"' />
</output>
</operation>
</binding>
<service name='PHP4WINSOAP' >
<port name='ExamplesSoapPort' binding='wsdlns:ExamplesSoapBinding' >
<soap:address location='http://localhost/phpbook/Chapter9
= SOAP/SOAP/Server/PHP4WINSOAP.ASP' />
</port>
</service>
</definitions>

As you can see, the WSDL file format is quite a complicated one. The three
most important pieces are the port type, binding, and service name.

Port Type

The port type defines which public functions or methods are available. It uses
the full name, which in this case is the HelloFunc method of the Examples
class:

<portType name='ExamplesSoapPort'>
<operation name='HelloFunc' parameterOrder='uname'>
<input message='wsdlns:Examples.HelloFunc' />
<output message='wsdlns:Examples.HelloFuncResponse' />
</operation>
</portType>

12 1690 CHO9

4/25/02 2:01 PM Page 216 (E

216 Chapter 9 PHP and Web Services

Binding

Binding describes how calls are made to each public method or function of a
web service. In other words, it describes what encoding a client application
should use when querying that public method or function.

<binding name='ExamplesSoapBinding' type='wsdlns:ExamplesSoapPort' >
<stk:binding preferredEncoding="UTF-8'/>
<soap:binding style='rpc'
= transport='http://schemas.xmlsoap.org/soap/http' />
<operation name='HelloFunc' >
<soap:operation soapAction=
= 'http://tempuri.org/action/Examples.HelloFunc' />
<input>
<soap:body use='encoded' namespace='http://tempuri.org/message/"'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"' />
</input>
<output>
<soap:body use='encoded' namespace='http://tempuri.org/message/"'
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"' />
</output>
</operation>
</binding>

This line describes what encoding will use of the binding:

<stk:binding preferredEncoding="'UTF-8'/>

This must match the encoding for your XML file (the encoding specified in
the XML header). Next you specify what the binding is (RPC) and its trans-
port (HTTP):

<soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

Next you specify what function you will call as Hello Func:

<operation name='HelloFunc' >
<soap:operation soapAction='http://tempuri.org/action/Examples.HelloFunc' />

The WSDL file describes the encoding you use to query the web service and
obtain a result:

<input>

<soap:body use='encoded' namespace='http://tempuri.org/message/"

= encodingStyle='http://schemas.xmlsoap.org/soap/encoding/"' />

</input>

<output>

<soap:body use='encoded' namespace='http://tempuri.org/message/"'

= encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

</output>

Although it’s important to understand the structure of a WSDL file, you won’t
often need to write a WSDL file yourself. Most web service toolkits have tools
for creating WSDL files for you.

e

12 1690 CHO9 4/25/02 2:01 PM Page 217 $

What Makes Up a Web Service? 217

Service Name

The service name defines where the WSDL gateway will be. A WSDL gateway
is used to query the web service’s component. A WSDL file passes the gateway
information back to the client application. Such queries from the client appli-
cation go to the gateway and on to the web service component and back.

<service name='PHP4WINSOAP' >
<port name='ExamplesSoapPort' binding='wsdlns:ExamplesSoapBinding' >
<soap:address location='http://localhost/phpbook/Chapter9
= SO0AP/SOAP/Server/PHP4AWINSOAP.ASP' />
</port>
</service>

A gateway is language-independent. For instance, our example uses ASP, but
the gateway can be developed in any language you like, as long as it supports
XML.All it does is work in unison with the WSDL file to allow client appli-
cations to pass SOAP queries back and forth between the web service and the
client application.

Uniform Description, Discovery, and Integration (UDDI)

Although you can now look up and query a web service’s public methods and
functions, finding a web service presents a problem. It can’t be found using
normal means such as a web search engine. If your company wants to make
use of web services, it needs to make them generally available to all calling
applications, not simply provide URLs on web pages for people to connect to.

Web services need a source of information all their own that an application
can search and use to find WSDL files to query. UDDI was created for this
purpose (see http://www.uddi.org). UDDI is another emerging standard for
web services. It allows a company to register its company details, web page,
and so on with a business group (for example, a car dealership could register
with an automotive association). A person can then search the UDDI for com-
panies within a business group or type via an application or directly via a web
browser. More interestingly, UDDI allows companies to publish details of what
web services are available (using brief descriptions and keywords) as well as the
URLs of the WSDL files. An application can use this information to discover
which web services a company has available.

Several public UDDI registries have been set up to allow companies to test
and publish details of real-world web services. The Microsott UDDI registry
(http://uddi.microsoft.com), shown in Figure 9.2, serves such a purpose.

12 1650 CHO9S

2:01 PM Page 218

218 Chapter 9 PHP and Web Services

iew Help
$Back + = - (D [2] A} | DiSeach [ifFavoites iMedia B | By S = 2

Address [{€) hitp./uddimicrosof. com/defaul. aspx x| @60 | Links

Pazspot
iRt

Home | About | Contact | Policies |

Browse

by catagary

Help

Standard Industrial Classification
Geoweb Geographic Classification

North American Industry Classification System
Universal standard Products and Services Codes

150 2166 Geographic Taxanomy

The SDK includes both a NET class library
and & Visual Studio 6.0 library that optimize
interaction with UDDL. It also includes the

For Developers

Web Services
The video shows four different xml web
services: Scandinavian Airlines get flight
status call, Traffic Station, Hailstorm
rurtifinsbinn, 8 M anBnint Nk - all

i rnuarad

—_— Register
e Think of this fras UDDT ragistry a5 both a whita pagas business dirsctory and a technical spacifications
library.,
News With no-cost UDDI registeation, you cant
Look up the Web services interfaces of your business partners and potential partners,
TooLs Discover technical details on working with other Web services, and post details,
Register
Administer Learn more about UDDI
Search FEATURE SOLUTION
Microsoft UDDI SDK ChoicePoint offers value added
DEVELOPERS services and serves as a business

registrar
ChaicePoint is the leading provider of

Solutions UIDD1 Daveloper ediion, » ight-neight credential verification and identfication
UDDI registry built on the NET Framework. services for making smarter decisions in

L Now developers can build and test solutions today’s fast-paced world, The Company

E that interact with 2 UDDI registry hested serves the information needs of insurance, —
ocally business, government and...

Frequently Asked Questions

Policies

about UDDT FEATURE soLUTION

P View Video of Bill Gates demonstrating Search UDDI from your IE bromser!

Real N
Reallames and Microsoft have enabled

UDDI search directly from the address bar o
of

the Tnfernet Fvnlarer

v

Figure 9.2 Microsoft’s UDDI web site.

Microsoft also provides a test UDDI registry at http://test.uddi.microsoft.com
(see Figure 9.3). Other UDDI registries are available from IBM at http://www.

ibm.com/developerworks/webservices/.

osaft Internet Expl

Edit View Favoites Toos Help

GBack - = - (D[] A | DSearch GijFavoites FMeda B Eh- S = 2

Address [] hip: test uddimicrosolt com/dsfaul. asps

About | P

Home |

Contact |

Browse
by category
150 #166 Geographic Taxonomy

Narth American Industry Classification System
Universal Standard Products and Services Codes

Passport 09
SHRAR" 2L

Standard Industrial Classification
GeoWeb Geographic tlassification

The SOK includes both a NET class library
and a Visual Studio 6.0 library that aptimize

Web Services
The video shows four different xml web
services: Scandinavian Airlines get flight

status call, Traffic Station, Hailstorm
2 ManDnine ok - =il

Hiernuarad

e Register
Think of this frea UDDT registry as both a white pagas business diractory and a technical spacifications
Home aistry 25 both a white pages b directory and a tachnical specificat
library.
News With no-cost UDDI registration, you can:
Look up the Web services interfaces of your business partners and potential partners.
TooLs Discover technical details on working with other Web services, and past details
Reaister
Administer Learn more about UDDI
Search FEATURE SOLUTION
Microsoft UDDI SDK ChoicePoint offers value added
DEVELOPERS services and serves as a business

registrar

For Developers H ¥)
" interaction with UDDI. 1t also includes the ChoicePaint is the leading provider of

Salutions D01 Developer Edition, a ight-weight credential verification and identification
UDDI registry built on the .NET Framework services for making smarter s in

L ow developers can build and test solutions today’s fast-paced world. The Company

Help that interact with a UDDI registry hosted serves the information needs of insurance, —
locally business, government an

Frequently Asked Questions

Palicies

About UDDT FEATURE SOLUTION

Contact Us Yiew Yideo of Bill Gates demonstrating Search UDDI from your IE browser!

RealNames and Microsoft have enabled

UDD! search directly from the address bar [
of the rlnrer

Internat £

[[[irtemet

Z

Figure 9.3

Microsoft’s UDDI web site for testing.

12 1690 CHO9 4/25/02 2:01 PM Page 219 $

Using PHP to Create Web Services 219

The Future of Web Services

In May 2000, SOAP was submitted to the W3C for standardization. (That
group included Microsoft, UserLand, DeveloperMentor, and IBM. The submis-
sion can be found at http://www.w3.0rg/Submission/2000/05/.) In time, SOAP
will become part of a brand-new protocol that the W3C is calling XML
Protocol. (It’s called XP for short, but don’t confuse it with the Microsoft
operating system of the same name.) XP will serve exactly the same purpose
as SOAP but will be the first standardized XML-based RPC protocol. The
drafting of XP is under way, with the W3C XP working group releasing a
draft of the SOAP 1.2 specification. Further details on XP can be found at
http://www.w3.0rg/2000/xp/.

Using PHP to Create Web Services

Now that we have looked at what a web service is and what comprises it, let’s
now look at how you can create a web service in PHP.

Creating the Web Service

To create your web service, you will use the Microsoft SOAP SDK
(http://msdn.microsoft.com/webservices/). It gives you all you need to create
web services and web service clients (connecting to and querying web ser-
vices). The client portion of the SDK is included in the Windows XP operat-
ing system. The SDK is continually updated by Microsoft as the various
protocols (such as SOAP and WSDL) change. The SDK used in this chapter is
the Microsoft SOAP SDK 2.0 SP2 (see Figure 9.4).

& Microsoft SDAP Toolkit 2.0 5P2 Setup x|

welcome to the Microsoft SOAP Toolkit
2.0 SP2 Setup Wizard

The Zetup Wizard will install Microsoft S0AP Toolkit 2,0 SP2
on your computer. Click Mext bo continue or Cancel to exit
the Setup Wizard,

Cancel |

Figure 9.4 The Microsoft SOAP SDK installer dialog box.

e

12 1690 CHO9

4/25/02 2:01 PM Page 220 (E

220 Chapter 9 PHP and Web Services

Other SOAP SDKSs are also available, such as the IBM web service SDK,
which includes web service libraries and a WSDL file generator (http://
www-106 . ibm.com/developerworks/webservices/). Both IBM and Microsoft
provide SDKs for UDDI that are separate from their SOAP/WSDL SDKs.

Creating a Web Service Component

The base of your web service (the one that provides the public functions or
methods that you want to query against) is the simple COM component you
developed in Chapter 7, “PHP, COM, and .NET.” You developed this in Visual
Basic using the following code:

Option Explicit

Public Function HelloFunc(ByRef uname As Variant) As Variant
HelloFunc = "hello " & uname

End Function

All this COM component does is take a string as its argument (such as "every-
one") and return a string (such as "hello everyone").You can either compile a
new version of this COM component for use with your web service or simply
reuse the same COM component exactly as you left it in Chapter 7.

Creating a WSDL File

As soon as you have your COM component, you need to make a WSDL file
to turn it into a web service. Although you can write this by hand, as you have
seen, this is quite complicated. Luckily, the Microsoft SOAP SDK provides you
with a handy WSDL generation tool called wsdlgen.exe. (You can access it by
selecting Start, SOAP SDK.) When you start the WSDL generation tool, you
see a welcome screen, as shown in Figure 9.5.

SO0AP Toolkit 2.0 Wizai x|
ﬁ Welcome to the SOAP Toolkit 2.0 Wizard

This wizard helps you create files for use inWeb Services.
‘With this wizard pou can create a'\web Service Description
Language [WSDL] file from a COM object.

T I =

Figure 9.5 The Microsoft WSDL Wizard welcome dialog box.

e

12 1690 CHO9 4/25/02 2:01 PM Page 221 $

Using PHP to Create Web Services 221

If you click Next, you can select which COM component you want to create
the WSDL file for (its physical file location), as shown in Figure 9.6. Also select
a name for your WSDL.You can use any name, but it is best to choose some-
thing short and easy to use.

(% SOAP Toolkit 2.0 Wizard

Select the COM _dIl file to analyse.

‘what would pou like ta name pour service? (This will become pour WSDL and
WSHL file name|

[PHP&wANSDAP

Loealpath: [C:\Book\Code'\Chapter?_COM - Donety’

About | Cancel | < Back | Hest > | FEirarehr |

Figure 9.6 The Microsoft WSDL Wizard COM object selection dialog box.

When you click Next, the tool checks what public functions and methods
your COM component has available and allows you to select which ones you
want to expose in the WSDL file, as shown in Figure 9.7.You might not want
to expose them all, but you can do so if you want to.

Select the gervices pou would like to expose.

You can select which services you would like to expose in your WSDL file for pour
Web Service.

~Mote
9 Examples Only select the methods that
Elm HellaFunc you would like to expose. The

wizard will exclude any methods
you do nat select

If you select & method that uses
datatypes not supported by the

Soap Toolkit, the questionable

tupe will have the data type

Thig must be changed to a
supported type before the
WwSDL file is used.

About | Cancel | ¢ Back | Nest » | Eiriishr |

Figure 9.7 The Microsoft WSDL Wizard function selection dialog box.

e

12 1690 CHO9 4/25/02 2:01 PM Page 222 $

222 Chapter 9 PHP and Web Services

When you click Next, you reach the SOAP listener information dialog box,
shown in Figure 9.8.This is quite an important section, because this is where
you map the WSDL file to your COM component. This tool lets you create
either an ASP listener or an ISAPI listener (also called a gateway). The listener
can be stored in either the same place as your COM component or elsewhere.
Make sure, however, that the directory you choose is accessible by the web
server.

= SDAP Toolkit 2.0 Wizard

SOAP listener information

Flease specify your SOAP listener lacation and listener tppe belaw.

Please enter a valid URI folder where your listener will be located.

~ Listener LRI
URE: [btp: /localhost/phpbook/Chapterd SOAP/S04
[Example: http://zerveiname/soaplisten]
i~ Listener type
* ASP
 1SARI

—#50 Schema Mamespace (2007 prefered)

Je0m =l

About | Cancel | < Back | Mext > | Fitieky |

Figure 9.8 The Microsoft WSDL Wizard listener setup dialog box.

After you click Next, you select where you want to store the tool you will
create (see Figure 9.9). The WSDL file can be separate from the COM com-
ponent if you want.

12 1690 CHO9 4/25/02 2:01 PM Page 223

Using PHP to Create Web Services 223

Specify the location for the new 'W5DL and W5ML files.

The wizard will save the files in this folder. These files should be Web accessible in
arder ta be expased az 'Web Services.

Select WSDL file character set
i« |UTF-8

 UTF-16

‘where would you like to store the new files?

IC:\Book\Code\ChapterS_SDAP\SDAP\Sewer Select |

Abaut | Cancel | < Back | Eirish |

Figure 9.9 The Microsoft WSDL Wizard file storage dialog box.

Click Next. The WSDL file is created (see Figure 9.10).

SOAP Toolkit 2.0 Wizard x|
Finished!

Congratulations! Your WSDL and WSHML files have been
successully created for you

[Cance] | < Back | THERES | Einish |

Figure 9.10 The Microsoft WSDL Wizard completion dialog box.

12 1690 CHO9

4/25/02 2:01 PM Page 224 (E

224 Chapter 9 PHP and Web Services

Client Application

To make use of the services your web service provides, you must access the
WSDL file. Your client application does just this. You can use two methods in
PHP to create the client application. You can use the COM objects that the
Microsoft SOAP SDK provides, or you can use a native PHP implementation.

Using the Microsoft SOAP SDK COM Objects

When using the COM objects in the SDK, you can approach creating the
client application using two methods.You can use the COM objects directly
from PHP, or you can wrap them into a single COM object.

Using COM Objects Directly from PHP

The SOAP SDK provides you with a set of COM objects for querying a web
service, as follows:
<?php

//load COM SOAP client object
$soapob = new COM("MSSOAP.SoapClient");

//connect to web service
$soapob->mssoapinit("http://localhost/phpbook/Chapter9
= SOAP/SOAP/Server/PHP4WINSOAP.WSDL") ;

//obtain result from web service method
$soapmessage = $soapob->HelloFunc("Andrew");

//print result
print($soapmessage);

7>

First, you load the SOAP client COM object into memory:
$soapob = new COM("MSSOAP.SoapClient");

Next you connect to your web service. (Remember to use the full URL of
where you stored the WSDL file you created earlier in this chapter.)

$soapob->mssoapinit("http://localhost/phpbook/Chapter9
= SOAP/SOAP/Server/PHP4WINSOAP.WSDL") ;

Next you call the HelloFunc method of your web service, passing the string
"Andrew" and storing its return result:

$soapmessage = $soapob->HelloFunc("Andrew");

Finally, you display the result:

print($soapmessage);

12 1690 CHO9 4/25/02 2:01 PM Page 225 $

Using PHP to Create Web Services 225

If you run the PHP script, you should see the result from the HelloFunc
method of your web service, as shown in Figure 9.11.

/3 http:#flocalhost/phpbook /Chapterd_SOAP/S DAP/Client/PHP/soapphpclient_com.php - Microsoft Internet Explorer

File Edit “iew Favortes Tools Help

daBack + = - (D 7ot | (@) Search (G Favoites (EFMedia £4 | B S e

Address I@ http://locathost/phpbook/Chapterd_S0AP/S04F/Client/PHF /soapphpclient_com.php

helle Andrew

Figure 9.1 Your web service displaying data.

If you change the call to the web service method, the output changes. For
example, if you change the following line in your script:

$soapmessage = $soapob->HelloFunc("Elle and Jack");

the output changes, as shown in Figure 9.12.

Z} http://localhost/phpbook /Chapterd_S 0AP/SDAP/Client/PHP/soapphpclient. php - Microsoft Internet Explorer

File Edt ‘“iew Favoites Took Help
= Back + = - (D) f;ﬂ'| Qi 5earch [Favoites (FfMedia £ % | B S - 5

Addiess I@ http: / Aocalhost/phpbook /ChapterSS0AP/S04P/Client/PHP/ soapphpclient. php

helle Elle and Jack

Figure 9.12 Your web service displaying difterent data.

Your Web Service Wrapped into a Single COM Object
You might want to reuse the same SOAP client application code across differ-
ent scripts. In such a case, you can wrap the client application into a COM
object.

If you start Visual Basic and create an ActiveX DLL called php4winsoap
with a class called output, you can add the following code:

Public Function getdata()

Set sc = New SoapClient
On Error Resume Next

sc.mssoapinit "http://localhost/phpbook/Chapter9
= SOAP/SOAP/Server/PHP4WINSOAP.WSDL"

If Err <> 0 Then

12 1690 CHO9 4/25/02 2:01 PM Page 226 $

226 Chapter 9 PHPand Web Services

getdata = "initialization failed " + Err.Description
End If

getdata = sc.HelloFunc("Andrew")

End Function

If you try to compile this code, you will get an error. You must also reference
the SOAP COM objects in your visual basic project, as shown in Figure 9.13.

Microsoft SCL Distribution Control 8.0 ﬂ
Microsoft SCL Merge Control 8.0
Microsoft SCL Parser Object Library 1.0
Microsoft SCL Replication Conflict Resolver Library
‘\’Iicrosoft SOL Replication Errors 8.? _I;I
4 3

Available References:
[Micrasaft Scriptlet Library ;I Cancel |
[Micrasaft Sdpblb 1.0 Type Library
[Micrasoft Search CoClasses Type Library
[Micrasaft Search zatherer Multiple Plug-in Type Librai Browse. .. |
[Micrasaft Search Interface Type Library
[Micrasaft Shell Cantrals And Autamation ﬂ
(o] Messane Obiect Generator L
[Microsoft Soap Type Library Pricrity
[v| Microsoft Soap WSDL File Generator Type Library (Ve Help |

—Microsoft SOAP Message Object Generator

Location: Ci\Program Files\MSSOAPBinariesiMSSMOGen. dil
Language: Standard

Figure 9.13 The Microsoft SOAP SDK COM library reference in Visual Basic.

As soon as the COM object is compiled, you can use it from within PHP:
<?php

//1load SOAP client COM object
$soapob = new COM("php4winsoap.output");

//call getdata method to obtain result of SOAP exchange
$soapmessage = $soapob->getdata();

//output result
print($soapmessage);

7>

If you run this script, the web service output is displayed, as in the previous
example (see Figure 9.14).

12 1690 CHO9 4/25/02 2:01 PM Page 227 $

Using PHP to Create Web Services 227

3 http: //localhost/phpbook /Chapter3_S0AP/SDAP/Client/PHP/s0apphpclient_com php - Microsoft Intemnet Explorer

File Edit “iew Favoites Tooks Help

EBack + = - @) ﬁ | QiSeach [E]Favortes ZMedia (4 ‘ Eh- & B -

Address IE hitp: #/loc alhost/phpbook/Chapterd S0AP/S0AP/Client/PHP/s0apphpclient_com.php

hello Andrew

Figure 9.14 Running your web service using a wrapped COM object.

Native PHP Implementation

PHP also lets you not use COM objects at all and connect and query WSDL
files directly from PHP. This is made possible by the Simple Web Services API
(SWSAPI). It is an open-source API whose creation has been led by the
ActiveState Corporation in order to establish the same standard syntax for
connecting and querying WSDL files in several different languages. SWSAPI
currently is in beta and is available for Perl, Python, and PHP. It is expected to
be made available for Ruby.

Using a native implementation means that you use your PHP libraries. In
this case, the SWSAPI is a PHP library that builds on a native PHP implemen-
tation for SOAP called SOAP4X. To make use of the SWSAPI, you must
unzip the PHP files into a directory you can access. You then make use of the
SWSAPI via the following code:

<?php

require_once('webservice.php');

$soapob = WebService::ServiceProxy('http://localhost/phpbook/Chapter9
=_SOAP/SOAP/Server/PHP4WINSOAP.WSDL") ;

$soapmessage = $soapob->HelloFunc("Andrew");
print($soapmessage);
7>
Here you load up the SWSAPI functions from the SWSAPI PHP library:
require_once('webservice.php');

What remains is very much like what you have seen using the Microsoft
SOAP SDK COM objects. First, you call the WSDL file and store it in a
variable:

$soapob = WebService::ServiceProxy('http://localhost/phpbook/Chapter9
=_SOAP/SOAP/Server/PHP4WINSOAP.WSDL") ;

12 1690 CHO9 4/25/02 2:01 PM Page 228 $

228 Chapter 9 PHPand Web Services

You then call a function of the web service and store the result in a variable:

$soapmessage = $soapob->HelloFunc("Andrew");

Finally, you display the result:

print($soapmessage);

If you run the script, you can see the result of calling your web service using
the SWSAPI, as shown in Figure 9.15.

3 http://localhost/phpbook/Chapterd_50AP/S0AP/Client/SWSAFPI/swsapi_test. php - Microsoft Internet Explorer

Fle Edit ‘“iew Favoites Tools Help

daBack -+ = -) o | D Search [l Favoites (iMedia (4 ‘ By S B

Address Iﬁéj hitp: /flocalhost/phpbook /Chapterd_S04P/S0AR/Client/S'WSAF fswsapi_test php

helle Andrew

Figure 9.15 Running your web service using the SWSAPI.

Further information, downloads, and the SWSAPI specification can be found
at http://aspn.activestate.com/ASPN/WebServices/SWSAPI/.

Useful Tools

One of the most useful tools that the toolkit provides is the Trace utility
(MsSoapT.exe). You access it by selecting Start, SOAP SDK. Trace lets you
view SOAP message exchanges between client applications and the web ser-
vice at either the web service or the client application side.

If you monitor the web service side, you must modify the service name
portion of the WSDL file as follows:

<soap:address location='http://localhost:8080/phpbook/Chapter9
= SOAP/SOAP/Server/PHP4AWINSOAP.ASP' />

Here you add a port number (8080) to the web service gateway’s URL. If you
start the Trace utility and select formatted trace, you are asked for the local

port to listen on, as shown in Figure 9.16. In this case, because you are using
port 8080, specify port 8080.

12 1690 CHO9 4/25/02 2:01 PM Page 229 $

Using PHP to Create Web Services 229

Trace Setup %]

- Listen

Local port #: Im

— Forward to

Destination host: IIcu:thnst

Destination port: ISEI

] I Cancel

Figure 9.16 The Trace Setup dialog box.

If you click OK to start the trace, you see the Trace window, shown in
Figure 9.17.

~." M§50apT - Listening for localhost at port 8080, destination port 80
File View ‘window Help

i, Listening for localhost at port 080, destination port 80

Figure 9.17 The SOAP Trace window.

If you run the web service client PHP script again, the Trace window stores
the result of the SOAP message exchange. This exchange is stored under the
IP that the web service was delivered from (in this case, the local host address

e

12 1690 CHO9

4/25/02 2:01 PM Page 230 (E

230 Chapter 9 PHP and Web Services

of 127.0.0.1). The top pane of the Trace window contains the SOAP message
that calls the web service’s public function or method. The bottom pane con-
tains the resulting SOAP message that the public function or method returns
(see Figure 9.18). Note that if you change the WSDL file to support listening
with the Trace utility and the Trace utility is not running, your web service
reports an error.

MSSoapT - [Listening for localhost at port 8080, destination port 80] 8 [=] S

2 Fie View Window Help =18 x|
=127, =
. <7uml version="1.0" encoding="UTF-8" standalone="no" 7>
- <SOAP-ENV:Envelope SOAP-ENY:encadingStyle="http:// org/soap/
#mins: SOAP-ENv="http:/ /' org/soap., pe/'>
~ <50AP-ENV:Body>
- <SOAPSDKL:HelloFunc kmins: SOAPSDK1="http:/ /tempuri_org/message /">
<uname xmins: SOAPSDK2="http:/ /veveve.w3.0rg/2001/XMLSchema-instance’
wmins: SOAPSDK 3="http:/ /vvive.w3.0rg/2001/XMLSchema'
S0APSDKZ: type="SOAPSDK3:string">Andrew</uname>
</30APSDKL: HelloFunc=
</SOAP-ENY: Body>
</SOAP-ENY:Envelapes
|
H
<7aml version="1.0" encoding="UTF-8" standalone="no" 7>
- <S0AP-ENV:Envelope SOAP-ENY:encadingStyle="http:// org/soap/
#mins: SOAP-ENv="http:/ /' org/soap., pe/'>
~ <50AP-ENV:Body>
- <SOAPSDKL:HelloFuncResponse xmins: SOAPSDKL="http:/ /tempuri.org/message/ ">
<Result xmins: SOAPSDKZ="http:/ /vevevs.w3.0org/2001/XMLSchema-instance"
wmins: SOAPSDK 3="http:/ /vwiv.w3.0rg/2001/XMLSchema'
S0APSDKZ: type="SOAPSDK3:string">hello Andrew-/Result>
<uname xmins: SOAPSDK4="http:/ /vivive.m3.0rg/2001/XMLSchema-instance’
#mins: SOAPSDRS="http://www.w3.0rg/2001/XMLSchema’
SOAPSDK4: type="SOAPSDKS:string"> Andrew < /uname>
</S0APSDK1: HelloFuncResponse >
</SOAP-ENV: Body>
</SOAP-ENY: Envelopes
|

Figure 9.18 The SOAP Trace window displaying SOAP messages.

The Trace utility is very useful in helping you see what SOAP messages are
exchanged between the web service and client applications. It therefore helps
you debug any problems in your web services.

Summary

This chapter looked at what web services are, what comprises them (UDDI,
WSDL, and SOAP), and how you can use PHP to create, look up, and query
web services.

