
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134291253
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134291253
https://plusone.google.com/share?url=http://www.informit.com/title/9780134291253
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134291253
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134291253/Free-Sample-Chapter

Peachpit Press

V I S U A L Q U I C K S TA R T G U I D E

PHP for
the Web

 Fifth Edition

LARRY ULLMAN

Visual QuickStart Guide
PHP for the Web, Fifth Edition
Larry Ullman

Peachpit Press
1301 Sansome Street
San Francisco, CA 94111

Find us on the web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2016 by Larry Ullman

Senior Editor: Karyn Johnson
Development Editor: Robyn G. Thomas
Copyeditor: Liz Welch
Technical Reviewer: Paul Reinheimer
Proofreader: Scout Festa
Production Coordinator: David Van Ness
Compositor: WolfsonDesign
Indexer: Valerie Haynes Perry

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
Information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Macintosh
and Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered
trademarks of Microsoft Corp. Other product names used in this book may be trademarks of their own respective
owners. Images of websites in this book are copyrighted by the original holders and are used with their kind
permission. This book is not officially endorsed by nor affiliated with any of the above companies.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
Endorsement or other affiliation with this book.

ISBN-13: 978-0-134-29125-3
ISBN-10: 0-134-29125-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

Dedication
For Jessica, Gina, and Rich, with gratitude for all their love and support.

Special Thanks to:
Many, many thanks to everyone at Peachpit Press for their assistance
and hard work, especially:

Robyn Thomas, for managing the project adeptly, and for knowing when
to push and poke.

Liz Welch, for fine-tuning my prose with her copyediting skills.

Paul Reinheimer, for the superlative technical review, keeping me honest,
and finding things to improve even in a fifth edition.

Scout Festa, for the sharp proofreading eye.

David Van Ness, who takes a bunch of disparate stuff and turns it into
a book.

Thanks for doing what’s required to create, publish, distribute, market,
sell, and support these books.

My sincerest thanks to the readers of the other editions of this book and
my other books. Thanks for your feedback and support and for keeping
me in business.

Rasmus Lerdorf (who got the PHP ball rolling), the people at PHP.net
and Zend.com, those who frequent the various newsgroups and mailing
lists, and the greater PHP and open source communities for developing,
improving upon, and supporting such wonderfully useful technology.

Zoe and Sam, for continuing to be the kid epitome of awesomeness.

Jessica, for doing everything you do and everything you can.

Table of Contents v

Table of Contents

 Introduction. . ix

Chapter 1 Getting Started with PHP 1

Basic HTML Syntax . 2
Basic PHP Syntax . 7
Using SFTP . 10
Testing Your Script . 12
Sending Text to the Browser 15
Using the PHP Manual 18
Sending HTML to the Browser 21
Adding Comments to Scripts. 24
Basic Debugging Steps 27
Review and Pursue . 29

Chapter 2 Variables .31

What Are Variables?. . 32
Variable Syntax . 36
Types of Variables . 38
Variable Values .41
Understanding Quotation Marks 44
Review and Pursue . 48

Chapter 3 HTML Forms and PHP49

Creating a Simple Form. 50
Choosing a Form Method. 54
Receiving Form Data in PHP 58
Displaying Errors . 63
Error Reporting . 65
Manually Sending Data to a Page 68
Review and Pursue . 73

vi Table of Contents

Chapter 4 Using Numbers .75

Creating the Form . 76
Performing Arithmetic. 79
Formatting Numbers . 83
Understanding Precedence 86
Incrementing and Decrementing a Number 88
Review and Pursue . 92

Chapter 5 Using Strings .93

Creating the HTML Form 94
Concatenating Strings 97
Handling Newlines . 101
HTML and PHP. . 104
Encoding and Decoding Strings108
Finding Substrings . 113
Replacing Parts of a String 117
Review and Pursue . 120

Chapter 6 Control Structures. . 121

Creating the HTML Form 122
The if Conditional . 125
Validation Functions . 128
Using else . 132
More Operators . 135
Using elseif . 144
The Switch Conditional 148
The for Loop . 152
Review and Pursue . 157

Chapter 7 Using Arrays . 159

What Is an Array? .160
Creating an Array . 162
Adding Items to an Array 166
Accessing Array Elements 170
Creating Multidimensional Arrays 173
Sorting Arrays . 178
Transforming Between Strings and Arrays 182
Creating an Array from a Form 186
Review and Pursue . 191

Table of Contents vii

Chapter 8 Creating Web Applications 193

Creating Templates . 194
Using External Files . .201
Using Constants . 207
Working with the Date and Time. 211
Handling HTML Forms with PHP, Revisited. 214
Making Forms Sticky 220
Sending Email . 228
Output Buffering. 233
Manipulating HTTP Headers 237
Review and Pursue . 241

Chapter 9 Cookies and Sessions 243

What Are Cookies? . 244
Creating Cookies . 246
Reading from Cookies 251
Adding Parameters to a Cookie 254
Deleting a Cookie . 257
What Are Sessions? . 260
Creating a Session . 261
Accessing Session Variables. 264
Deleting a Session . 266
Review and Pursue . 268

Chapter 10 Creating Functions . 269

Creating and Using Simple Functions. 270
Creating and Calling Functions That Take Arguments 276
Setting Default Argument Values 282
Creating and Using Functions That Return a Value . . 285
Understanding Variable Scope 290
Review and Pursue . 296

Chapter 11 Files and Directories 297

File Permissions . 298
Writing to Files . 303
Locking Files . .310
Reading from Files. . 313
Handling File Uploads 316
Navigating Directories 325

viii Table of Contents

Creating Directories. 330
Reading Files Incrementally 338
Review and Pursue . 343

Chapter 12 Intro to Databases . 345

Introduction to SQL . 346
Connecting to MySQL. 348
MySQL Error Handling 352
Creating a Table . 355
Inserting Data into a Database. 360
Securing Query Data 366
Retrieving Data from a Database 371
Deleting Data in a Database 376
Updating Data in a Database. 382
Review and Pursue . 388

Chapter 13 Putting It All Together 389

Getting Started . 390
Connecting to the Database 392
Writing the User-Defined Function 393
Creating the Template 396
Logging In . 400
Logging Out . 404
Adding Quotes. 405
Listing Quotes . 409
Editing Quotes . 412
Deleting Quotes . 418
Creating the Home Page 422
Review and Pursue . 426

Appendix A Installation and Configuration 427

Appendix B Resources and Next Steps 449

 Index . 459

When I began the first edition of this book
in 2000, PHP was a little-known open
source project. It was adored by technical
people in the know but not yet recognized
as the popular choice for web development
that it is today. When I taught myself PHP,
very little documentation was available on
the language—and that was my motivation
for writing this book in the first place.

Today things are different. The Internet
has gone through a boom and a bust and
has righted itself. Furthermore, PHP is now
the reigning king of dynamic web design
tools and has expanded somewhat beyond
the realm of just web development. But
despite PHP’s popularity and the increase
in available documentation, sample code,
and examples, a good book discussing the
language is still relevant. Although PHP is
in the beginnings of its sixth major release,
a book such as this—which teaches the
language in simple but practical terms—
can still be your best guide in learning the
information you need to know.

Introduction
This book will teach you PHP, providing
both a solid understanding of the funda-
mentals and a sense of where to look for
more advanced information. Although it
isn’t a comprehensive programming refer-
ence, this book, through demonstrations
and real-world examples, provides the
knowledge you need to begin building
dynamic websites and web applications
using PHP.

What Is PHP?
PHP originally stood for Personal Home
Page. It was created in 1994 by Rasmus
Lerdorf to track the visitors to his online
résumé. As its usefulness and capabilities
grew (and as it began to be utilized in more
professional situations), PHP came to mean
PHP: Hypertext Preprocessor. The defini-
tion basically means that PHP handles data
before it becomes HTML—which stands for
Hypertext Markup Language.

x Chapter

According to the official PHP website,
found at www.php.net A, PHP is “a popu-
lar general-purpose scripting language
that is especially suited to web develop-
ment.” More specifically, PHP is a scripting
language commonly embedded within
HTML. Let’s examine what this means in
more detail.

To say that PHP can be embedded into
HTML means that PHP code can be written
within your HTML code—HTML being the
language with which all web pages are
built. Therefore, programming with PHP
starts off as only slightly more complicated
than hand-coding HTML.

Also, PHP is a scripting language, as
opposed to a compiled language. This
means that PHP is designed to do some-
thing only after an event occurs—for
example, when a user submits a form or
goes to a URL (Uniform Resource Locator—
the technical term for a web address).
Another popular example of a scripting
language is JavaScript, which commonly
handles events that occur within the
browser. Both PHP and JavaScript can also
be described as interpreted, because the
code must be run through an executable,
such as the PHP module or the browser’s
JavaScript component. Conversely, com-
piled languages such as C and C++ can be
used to write stand-alone applications that
can act independently of any event.

A As of this writing, this is the appearance of
the official PHP website, located at www.php.net.
Naturally, this should be the first place you look
to address most of your PHP questions and
curiosities.

PHP 6?
Yes, as of this writing, the current ver-
sions of PHP were 5 and 7, but not 6!
There’s a long and amusing story here,
but the short version is that PHP 6 was
actively developed for a while. After hit-
ting many snags, the development was
halted and the created work was rolled
into PHP 5.

When it became time to work on the
next major version, after much debate
it was decided that that version would
be named PHP 7. So although there was
once a beta version of PHP 6, no final
release ever saw the light of day.

http://www.php.net
http://www.php.net

Introduction xi

You should also understand that PHP is a
server-side technology. This refers to the
fact that everything PHP does occurs on
the server (as opposed to on the client,
which is the computer being used by the
person viewing the website). A server
is just a computer set up to provide the
pages you see when you go to a web
address with your browser. I’ll discuss this
process in more detail later in this introduc-
tion (see “How PHP Works”).

Finally, PHP is cross-platform, meaning
that it can be used on machines running
Unix, Windows, Macintosh, and other oper-
ating systems. Again, we’re talking about
the server’s operating system, not the cli-
ent’s. Not only can PHP run on almost any
operating system, but, unlike many other
programming languages, it enables you
to switch your work from one platform to
another with few or no modifications.

As of this writing, PHP is simultaneously in
versions 5.5.35, 5.6.21, and 7.0.6. (There
are slight differences between versions
5.5 and 5.6, so 5.5 continues to be sup-
ported for a while.) Although I wrote this
book using a stable version of PHP 7, all
of the code is backward compatible, at
least to PHP version 5.x. In a couple of
situations where a feature requires a more
current version of PHP, or where older
versions might have slight variations, a
note in a sidebar or a tip will indicate how
you can adjust the code accordingly.

More information can be found at PHP.net
and Zend (www.zend.com), a key company
involved with PHP development B.

B This Zend website contains useful software as
well as a code gallery and well-written tutorials.

What PHP Is Not
The thing about PHP that confuses
most new learners is what PHP can’t do.
Although you can use the language for
an amazing array of tasks, its main limita-
tion is that PHP cannot be used for client-
side features found in some websites.

Using a client-side technology like
JavaScript, you can create a new
browser window, make pop-up dialogs,
dynamically generate and alter forms,
and much more. None of these tasks can
be accomplished using PHP because
PHP is server-side, whereas those are
client-side issues. But you can use PHP
to create JavaScript, just as you can use
PHP to create HTML.

When it comes time to develop your own
PHP projects, remember that you can
use PHP only to send information (HTML
and such) to the browser. You can’t do
anything else within the browser until
another request from the server has
been made (a form has been submitted
or a link has been clicked).

http://www.zend.com

xii Chapter

Why Use PHP?
Put simply, PHP is better, faster, and easier
to learn than the alternatives. All websites
must begin with just HTML, and you can
create an entire site using a number of
static HTML pages. But basic HTML is a
limited approach that does not allow for
flexibility or dynamic behavior. Visitors
accessing HTML-only sites see simple pages
with no level of customization or dynamic
behavior. With PHP, you can create exciting
and original pages based on whatever
factors you want to consider. PHP can also
interact with databases and files, handle
email, and do many other things that HTML
alone cannot.

Web developers learned a long time ago
that HTML alone won’t produce enticing
and lasting websites. Toward this end,
server-side technologies such as PHP have
become the norm. These technologies
allow developers to create web applica-
tions that are dynamically generated,
taking into account whichever elements
the programmer desires. Often database-
driven, these advanced sites can be
updated and maintained more readily than
static HTML pages.

When it comes to choosing a server-side
technology, the primary alternatives A to
PHP are: ASP.NET (Active Server Pages),
JSP (JavaServer Pages), Ruby (through the
Rails or Sinatra frameworks), and some
newer server-side JavaScript options such
as Node.js.

A The Web Technology Surveys site says that
PHP is running on 82 percent of all websites
(http://w3techs.com/technologies/overview/
programming_language/all).

http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

Introduction xiii

n	 PHP is both free and cross-platform.
Therefore, you can learn and use PHP
on nearly any computer and at no cost.
Furthermore, its open source nature
means that PHP’s users are driving its
development, not some corporate entity.

n	 PHP is the most popular tool available
for developing dynamic websites. As
of this writing, PHP is in use on over 82
percent of all websites A and is the
sixth most popular programming lan-
guage overall B. Many of the biggest
websites—Yahoo, Wikipedia, and
Facebook, just to name three—and
content management tools, such as
WordPress, Drupal, Moodle, and Joomla,
use PHP. By learning this one language,
you’ll provide yourself with either a
usable hobby or a lucrative skill.

So the question is, why should a web
developer use PHP instead of ASP.NET,
Node.js, or whatever else to make a
dynamic website?

n	 PHP is much easier to learn and use.
People—perhaps like you—without
any formal programming training can
write PHP scripts with ease after read-
ing this one book. In comparison,
ASP.NET requires an understanding of
Visual Basic, C#, or another language;
Node.js requires JavaScript. These are
more complex languages and are much
more difficult to learn.

n	 PHP was written specifically for
dynamic web page creation. Perl,
VBScript, Java, and Ruby were not, and
this fact suggests that, by its very intent,
PHP can do certain tasks faster and
more easily than the alternatives. I’d like
to make it clear, however, that although
I’m suggesting that PHP is better for
certain things—specifically those it
was created to do, PHP isn’t a “better”
programming language than JavaScript
or C#—they can do things PHP can’t.

B The Tiobe Index (www.tiobe.com/tiobe_index) uses a combination of factors to rank the popularity of
programming languages.

http://www.tiobe.com/tiobe_index

xiv Chapter

browser, there may or may not be an obvi-
ous difference between what home.html
and home.php look like, but how you arrive
at that point is critically altered. The major
difference is that by using PHP, you can
have the server dynamically generate the
HTML code. For example, different infor-
mation could be presented if it’s Monday as
opposed to Tuesday or if the user has visited
the page before. Dynamic web page creation
sets apart the less appealing, static sites
from the more interesting, and therefore
more visited, interactive ones.

The central difference between using PHP
and using straight HTML is that PHP does
everything on the server and then sends
the appropriate information to the browser.
This book covers how to use PHP to send
the right data to the browser.

How PHP Works
PHP is a server-side language, which
means the code you write in PHP resides
on a host computer that serves web pages
to browsers. When you go to a website
(www.LarryUllman.com, for example), your
Internet service provider (ISP) directs
your request to the server that holds the
www.LarryUllman.com information. That
server reads the PHP code and processes
it according to its scripted directions. In
this example, the PHP code tells the server
to send the appropriate web page data to
your browser in the form of HTML A. In
short, PHP creates an HTML page on the
fly based on parameters of your choosing.

This differs from an HTML-generated
site in that when a request is made, the
server merely sends the HTML data to
the browser—no server-side interpreta-
tion occurs B. Hence, to the end user’s

URL Request

HTML

Client Server

PHP
HTML

Script
Request

A This graphic demonstrates (albeit in
very simplistic terms) how the process
works between a client, the server, and
a PHP module (an application added to
the server to increase its functionality)
to send HTML back to the browser.

URL Request

HTML

Client Server

B Compare this direct relationship of
how a server handles basic HTML to
A. This is also why HTML pages can
be viewed in your browser from your
own computer—they don’t need to be
“served,” but dynamically generated
pages need to be accessed through a
server that handles the processing.

http://www.LarryUllman.com
http://www.LarryUllman.com

Introduction xv

What You’ll Need
The most important requirement for work-
ing with PHP—because it’s a server-side
scripting language—is access to a PHP-
enabled server. Considering PHP’s popu-
larity, your web host most likely has this
option available to you on their servers.
You’ll need to contact them to see what
technology they support.

Your other option is to install PHP and a
web server application (like Apache) on
your own computer. Users of Windows,
Mac OS X, or Linux can easily install and
use PHP for no cost. Directions for install-
ing PHP are available in Appendix A,
“Installation and Configuration.” If you’re up
to the task of using your own PHP-installed
server, you can take some consolation in
knowing that PHP is available for free from
the PHP website (www.php.net) and comes
in easy-to-install packages. If you take this
approach, and I recommend that you do,
then your computer will act as both the
client and the server.

The second requirement is almost a
given: You must have a text editor on your
computer. Atom, Notepad++, UltraEdit,
and similar freeware applications are all
sufficient for your purposes, and TextMate,
SublimeText, and other commercial appli-
cations offer more features that you may
appreciate. If you’re accustomed to using
a graphical interface (also referred to as
WYSIWYG—What You See Is What You Get)
such as Adobe Dreamweaver A or Aptana
Studio, you can consult that application’s
manual to see how to program within it.

continues on next page

A The popular Dreamweaver application supports
PHP development, among other server-side
technologies.

http://www.php.net

xvi Chapter

Third, you need a method of getting the
scripts you write to the server. If you’ve
installed PHP on your own computer,
you can save the scripts to the appropri-
ate directory. However, if you’re using a
remote server with a web host, you’ll need
an SFTP (Secure File Transfer Protocol)
program to send the script to the server.
There are plenty of SFTP applications avail-
able; for example, in Chapter 1, “Getting
Started with PHP,” I use the free FileZilla
(http://filezilla-project.org B).

Finally, if you want to follow the examples in
Chapter 12, “Intro to Databases,” you need
access to MySQL (www.mysql.com C).
MySQL is available in a free version that
you can install on your own computer.

This book assumes only a basic knowledge
of HTML, although the more comfortable
you are handling raw HTML code without
the aid of a WYSIWYG application such
as Dreamweaver, the easier the transition
to using PHP will be. Every programmer
will eventually turn to an HTML reference
at some time or other, regardless of how
much you know, so I encourage you to
keep a good HTML book by your side.
One such introduction to HTML is Elizabeth
Castro and Bruce Hyslop’s HTML, XHTML,
and CSS: Visual QuickStart Guide
(Peachpit Press, 2014).

Previous programming experience is
certainly not required. However, it may
expedite your learning because you’ll
quickly see numerous similarities between,
for example, Perl and PHP or JavaScript
and PHP.

B The FileZilla application can be used on many
different operating systems to move PHP scripts
and other files to a remote server.

C MySQL’s website (as of this writing).

http://filezilla-project.org
http://www.mysql.com

Introduction xvii

About This Book
This book attempts to convey the funda-
mentals of programming with PHP while
hinting at some of the more advanced
features you may want to consider in the
future, without going into overwhelming
detail. It uses the following conventions to
do so.

The step-by-step instructions indicate what
coding you’re to add to your scripts and
where. The specific text you should type
is printed in a unique type style to separate
it from the main body text. For example:

<?php print "Hello, World!"; ?>

The PHP code is also written as its own
complete script and is numbered by line for
reference (Script i.1). You shouldn’t insert
these line numbers yourself, because
doing so will render your work inoperable.

I recommend using a text editor that
automatically displays the line numbers for
you—the numbers will help when you’re
debugging your work. In the scripts, you’ll
sometimes see particular lines highlighted
in bold, in order to draw attention to new or
relevant material.

Script i.1 A sample PHP script, with line numbers
and bold emphasis on a specific section of code.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 	<meta	charset="utf-8">
5	 	 	<title>Hello,	World!</title>
6	 </head>
7	 <body>
8	 <?php print "Hello, world!"; ?>
9	 </body>
10	 </html>

What’s New in This Book?
I would consider this fifth edition to be a
modest revision of an already solid book.
The biggest changes are

 . All examples now use HTML5.

 . The MySQL code uses the most
current version of PHP’s MySQL
extension.

 . We cover PHP 7, as applicable.

Finally, I tweaked some of the examples
mostly to satisfy my own drive for perfec-
tion. No content from the previous edi-
tion has been removed.

xviii Chapter

Because of the nature of how PHP works,
you need to understand that there are
essentially three views of every script: the
PHP code (e.g., Script i.1), the code that’s
sent to the browser (primarily HTML), and
what the browser displays to the end user.
Where appropriate, sections of, or all of,
the browser window are revealed, showing
the result of the exercise A. Occasionally,
you’ll also see an image displaying the
HTML source that the browser received B.
You can normally access this view by choos-
ing View Source or View Page Source
from the appropriate browser menu. To
summarize, B displays the HTML the
browser receives, and A demonstrates
how the browser interprets that HTML.
Using PHP, you’ll create the HTML that’s
sent to the browser.

A This is a sample view you’ll see of the browser
window. For the purposes of this book, it won’t
make any difference which browser or operating
system you use.

B By viewing the source code received by the
browser, you can see the HTML created by PHP
and sent by the server.

Introduction xix

Because the columns in this book are nar-
rower than the common text editor screen,
sometimes lines of PHP code printed in the
steps have to be broken where they would
not otherwise break in your editor. A small
gray arrow indicates when this kind of
break occurs. For example:

print "This is going to be a longer
➝ line of code.";

You should continue to use one line in
your scripts, or else you’ll encounter errors
when executing them. (The gray arrow isn’t
used in scripts that are numbered.)

While demonstrating new features and
techniques, I’ll do my best to explain the
why’s and how’s of them as I go. Between
reading about and using a function, you
should clearly comprehend it. Should
something remain confusing, though, this
book contains a number of references
where you can find answers to any ques-
tions (see Appendix B, “Resources and
Next Steps”). If you’re confused by a par-
ticular function or example, your best bet
will be to check the online PHP manual or
the book’s supporting website (and its user
support forum).

xx Chapter

Companion Website
While you’re reading this book, you may
also find it helpful to visit the PHP for the
Web: Visual QuickStart Guide, 5th Edition
website, found within www.LarryUllman.com.
There you’ll find every script in this book
available in a downloadable form. However,
I strongly encourage you to type the scripts
yourself in order to become more familiar
with the structure and syntax of PHP. The
site also provides an errata page listing any
mistakes made in this text.

What many users find most helpful, though,
is the book’s supporting forum, found
through the website or more directly at
www.LarryUllman.com/forums/. Using the
forum, you can

n	 Find answers to problems you’re having

n	 Receive advice on how to approach an
idea you have

n	 Get debugging help

n	 See how changes in the technologies
have affected the examples in the book

n	 Learn what other people are doing
with PHP

n	 Confirm the answers to review questions

n	 Receive a faster reply from me than if
you send me a direct email

Which Book Is Right for You?
This is the fifth edition of my first book
on PHP. Like the original, it’s written with
the beginner or nonprogrammer in mind.
If you have little or no programming
experience, prefer a gentler pace, or like
to learn things in bite-sized pieces, this is
the book for you. Make no mistake: This
book covers what you need to know to
begin developing dynamic websites and
uses practical examples, but it does so
without any in-depth theory or advanced
applications.

Conversely, if you pick up new tech-
nologies really quickly or already have
some experience developing websites,
you may find this to be too basic. In that
case, you should consider my PHP and
MySQL for Dynamic Web Sites: Visual
QuickPro Guide instead (Peachpit Press,
2012). It discusses SQL and MySQL in
much greater detail and goes through
several more complex examples, but it
does so at a quick jog.

http://www.LarryUllman.com
http://www.LarryUllman.com/forums/

Introduction xxi

Questions, comments,
or suggestions?
If you have a PHP-specific question, there
are newsgroups, mailing lists, and ques-
tion-and-answer sections available on PHP-
related websites for you to turn to. These
are discussed in more detail in Appendix B.
Browsing through these references or
searching the Internet will almost always
provide you with the fastest answer.

You can also direct your questions, com-
ments, and suggestions to me. You’ll get
the fastest reply using the book’s cor-
responding forum; I always answer those
questions first. If you’d rather email me,
you can do so through the contact page on
the website. I do try to answer every email
I receive, but it will probably take a week or
two (whereas you’ll likely get a reply in the
forum within a couple of days).

For more tips and an enlightening read,
see the sidebar on this page and Eric
Steven Raymond’s “How to Ask Questions
the Smart Way,” at www.catb.org/~esr/faqs/
smart-questions.html. The 10 minutes
you spend on it will save you hours in
the future. Those people who will answer
your questions, like myself, will be most
appreciative!

How to Ask Questions the
Smart Way
Whether you’re posting a message to the
book’s supporting forum, sending me an
email, or asking a question in a news-
group, knowing how to most effectively
ask a question improves the quality of
the response you’ll receive as well as the
speed with which you’ll get your answer.
To receive the best answer in the short-
est amount of time, follow these steps:

1. Search the Internet, read the manu-
als, and browse any applicable
documentation.

2. Ask your question in the most appro-
priate forum (newsgroup, mailing list,
and so on).

3. Use a clear and concise subject.

4. Describe your problem in detail, show
any relevant code, say what went
wrong, indicate what version of PHP
you’re using, and state what operat-
ing system you’re running.

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html

This page intentionally left blank

Chapter 2, “Variables,” briefly discussed
the various types of variables, how to
assign values to them, and how they’re
generally used. In this chapter, you’ll work
specifically with number variables—both
integers (whole numbers) and floating-
point numbers (aka floats or decimals).

You’ll begin by creating an HTML form that
will be used to generate number variables.
Then you’ll learn how to perform basic arith-
metic, how to format numbers, and how to
cope with operator precedence. The last
two sections of this chapter cover incre-
menting and decrementing numbers, plus
generating random numbers. Throughout
the chapter, you’ll also learn about other
useful number-related PHP functions.

4
Using

Numbers

In This Chapter
Creating the Form 76

Performing Arithmetic 79

Formatting Numbers 83

Understanding Precedence 86

Incrementing and Decrementing
a Number 88

Creating Random Numbers 90

Review and Pursue 92

76 Chapter 4

Creating the Form
Most of the PHP examples in this chapter
will perform various calculations based on
an e-commerce premise. A form will take
price, quantity, discount amount, tax rate,
and shipping cost A, and the PHP script
that handles the form will return a total
cost. That cost will also be broken down by
the number of payments the user wants to
make in order to generate a monthly cost
value B.

To start, let’s create an HTML page that
allows the user to enter the values.

To create the HTML form:
1. Begin a new HTML document in

your text editor or IDE, to be named
calculator.html (Script 4.1):

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Product Cost Calculator

➝ </title>
</head>
<body><!-- Script 4.1 -
➝ calculator.html -->
<div><p>Fill out this form to
➝ calculate the total cost:</p>

2. Create the initial form tag:

<form action="handle_calc.php"
method="post">

This form tag begins the HTML form. Its
action attribute indicates that the form
data will be submitted to a page named
handle_calc.php. The tag’s method
attribute tells the page to use POST to
send the data. See Chapter 3, “HTML
Forms and PHP,” for more details on
choosing a method.

A This form takes numbers from the user
and sends them to a PHP page.

B The PHP script performs a series of calculations
on the submitted data and outputs the results. The
results will look like this by the end of the chapter.

Using Numbers 77

3. Create the inputs for the price, quantity,
discount, and tax:

<p>Price: <input type="text"
➝ 	 name="price" size="5"></p>
<p>Quantity: <input type=
➝ "number" name="quantity"
size="5" min="1" value="1"></p>
<p>Discount: <input type="text"
➝ name="discount" size="5"></p>
<p>Tax: <input type="text"
➝ name="tax" size="5"> (%)</p>

Although HTML5 does have a number
input type, it’s not always the right solu-
tion because it’s more naturally suited
to taking integer values. For that reason,
the quantity input will be a number type,
whereas the others will be text.

To guide the user, a parenthetical indi-
cates that the tax should be entered as
a percent.

Remember that the names used for the
inputs should correspond to valid PHP
variable names: Use letters, numbers,
and the underscore only; don’t start with
a number; and so forth.

continues on next page

Script 4.1 This basic HTML form will provide the
numbers for various mathematical calculations
over multiple PHP scripts.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Product	Cost	Calculator</title>
6	 </head>
7	 <body><!--	Script	4.1	-	calculator.html	

-->
8	 <div><p>Fill	out	this	form	to	calculate	

the	total	cost:</p>
9	
10	 <form	action="handle_calc.php"	

method="post">
11	
12	 <p>Price:	<input	type="text"	

name="price"	size="5"></p>
13	
14	 <p>Quantity:	<input	type="number"	

name="quantity"	size="5"	min="1"	
value="1"></p>

15	
16	 <p>Discount:	<input	type="text"	

name="discount"	size="5"></p>
17	
18	 <p>Tax:	<input	type="text"	name="tax"	

size="5">	(%)</p>
19	
20	 <p>Shipping	method:	<select	

name="shipping">
21	 <option	value="5.00">Slow	and	steady</

option>
22	 <option	value="8.95">Put	a	move	on	it.</

option>
23	 <option	value="19.36">I	need	it	

yesterday!</option>
24	 </select></p>
25	
26	 <p>Number	of	payments	to	make:	<input	

type="number"	name="payments"	size="5"	
min="1"	value="1"></p>

27	
28	 <input	type="submit"	name="submit"	

value="Calculate!">
29	
30	 </form>
31	
32	 </div>
33	 </body>
34	 </html>

78 Chapter 4

4. Add a field in which the user can select
a shipping method:

<p>Shipping method: <select
➝ name="shipping">
<option value="5.00">Slow and
➝ steady</option>
<option value="8.95">Put a move
➝ on it.</option>
<option value="19.36">I need it
➝ yesterday!</option>
</select></p>

The shipping selection is made using
a drop-down menu. The value of the
selected option is the cost for that
option. If the user selects, for example,
the Put a move on it. option, the value
of $_POST['shipping'] in handle_
calc.php will be 8.95.

5. Complete the HTML form:

<p>Number of payments to make:
➝ <input type="number"
➝ 	 name="payments" size="5"
➝ 	 min="1" value="1"></p>
<input type="submit" name=
➝ "submit" value="Calculate!">
</form>

The final two input types take a number
for how many payments are required
and then create a submit button (labeled
Calculate!). The closing form tag marks
the end of the form section of the page.

6. Complete the HTML page:

</div>
</body>
</html>

7. Save the script as calculator.html,
and view it in your browser.

Because this is an HTML page, you can
view it directly in a browser.

Using Numbers 79

Performing Arithmetic
Just as you learned in grade school, basic
mathematics involves the principles of
addition, subtraction, multiplication, and
division. These are performed in PHP using
the most obvious operators:

n	 Addition (+)

n	 Subtraction (-)

n	 Multiplication (*)

n	 Division (/)

To use these operators, you’ll create a PHP
script that calculates the total cost for the
sale of some widgets. This handling script
could be the basis of a shopping cart appli-
cation—a very practical web page feature
(although in this case the relevant number
values will come from calculator.html).

When you’re writing this script, be sure to
note the comments (Script 4.2) used to
illuminate the different lines of code and
the reasoning behind them.

To create your sales cost calculator:
1. Create a new document in your

text editor or IDE, to be named
handle_calc.php (Script 4.2):

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Product Cost Calculator

➝ </title>
 <style type="text/css">
 .number {font-weight:bold;}
 </style>
</head>
<body>

continues on next page

Script 4.2 This PHP script performs all the
standard mathematical calculations using the
numbers submitted from the form.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Product	Cost	Calculator</

title>
6	 	 <style	type="text/css">
7	 	 	 .number	{	font-weight:	bold;	}
8	 	 </style>
9	 </head>
10	 <body>
11	 <?php	//	Script	4.2	-	handle_calc.php
12	 /*	This	script	takes	values	from	

calculator.html	and	performs	
13	 total	cost	and	monthly	payment	

calculations.	*/
14	
15	 //	Address	error	handling,	if	you	want.
16	
17	 //	Get	the	values	from	the	$_POST	array:
18	 $price = $_POST['price'];
19	 $quantity = $_POST['quantity'];
20	 $discount = $_POST['discount'];
21	 $tax = $_POST['tax'];
22	 $shipping = $_POST['shipping'];
23	 $payments = $_POST['payments'];
24	
25	 //	Calculate	the	total:
26	 $total = $price * $quantity;
27	 $total = $total + $shipping;
28	 $total = $total - $discount;
29	
30	 //	Determine	the	tax	rate:
31	 $taxrate = $tax / 100;
32	 $taxrate = $taxrate + 1;
33	
34	 //	Factor	in	the	tax	rate:
35	 $total = $total * $taxrate;
36	
37	 //	Calculate	the	monthly	payments:
38	 $monthly = $total / $payments;
39	 	

code continues on next page

80 Chapter 4

The head of the document defines
one CSS class, named number. Any
element within the page that has that
class value will be given extra font
weight. In other words, when the num-
bers from the form, and the results of
the various calculations, are printed
in the script’s output, they’ll be made
more obvious.

2. Insert the PHP tag and address error
handling, if desired:

<?php // Script 4.2 -
➝ handle_calc.php

Depending on your PHP configuration,
you may or may not want to add a couple
of lines that turn on display_errors
and adjust the level of error reporting.
See Chapter 3 for specifics.

(However, as also mentioned in that
chapter, it’s best to make these adjust-
ments in PHP’s primary configuration file.)

3. Assign the $_POST elements to local
variables:

$price = $_POST['price'];
$quantity = $_POST['quantity'];
$discount = $_POST['discount'];
$tax = $_POST['tax'];
$shipping = $_POST['shipping'];
$payments = $_POST['payments'];

The script will receive all the form data
in the predefined $_POST variable. To
access individual form values, refer to
$_POST['index'], replacing index with
the corresponding form element’s name
value. These values are assigned to
individual local variables here, to make
it easier to use them throughout the
rest of the script.

Note that each variable is given a
descriptive name and is written entirely
in lowercase letters.

Script 4.2 continued

40	 //	Print	out	the	results:
41	 print "<p>You have selected to

purchase:

42	 $quantity</

span> widget(s) at

43	 $$price

price each plus a

44	 $$shipping</

span> shipping cost and a

45	 $tax

percent tax rate.

46	 After your $<span

class=\"number\">$discount
discount, the total cost is

47	 $$total</
span>.

48	 Divided over <span
class=\"number\">$payments
monthly payments, that would be
$$monthly</
span> each.</p>";

49	
50	 ?>
51	 </body>
52	 </html>

Using Numbers 81

7. Print the results:

print "<p>You have selected to
➝ purchase:

$quantity
➝ widget(s) at

$$price
➝ price each plus a

$$shipping
➝ shipping cost and a

$tax
➝ percent tax rate.

After your $<span class=
➝ \"number\">$discount
➝ discount, the total cost is
$$total
➝ .

Divided over <span class=
➝ \"number\">$payments
➝ 	 monthly payments, that would be
➝ 	 $
➝ 	 $monthly each.</p>";

The print statement sends every value
to the browser along with some text.
To make it easier to read,
 tags are
added to format the browser result; in
addition, the print function operates
over multiple lines to make the PHP
code cleaner. Each variable’s value will
be highlighted in the browser by wrap-
ping it within span tags that have a class
attribute of number (see Step 1).

8. Close the PHP section, and complete
the HTML page:

?>
</body>
</html>

9. Save the script as handle_calc.php,
and place it in the proper directory for
your PHP-enabled server.

Make sure that calculator.html is in
the same directory.

continues on next page

4. Begin calculating the total cost:

$total = $price * $quantity;
$total = $total + $shipping;
$total = $total - $discount;

The asterisk (*) indicates multiplication in
PHP, so the total is first calculated as the
number of items purchased ($quantity)
multiplied by the price. Then the shipping
cost is added to the total value (remem-
ber that the shipping cost correlates
to the value attribute of each shipping
drop-down menu’s option tags), and
the discount is subtracted.

Note that it’s perfectly acceptable to
determine a variable’s value in part by
using that variable’s existing value (as
is done in the last two lines).

5. Calculate the tax rate and the new total:

$taxrate = $tax / 100;
$taxrate = $taxrate + 1;
$total = $total * $taxrate;

The tax rate should be entered as a
percent—for example, 8 or 5.75. This
number is then divided by 100 to get
the decimal equivalent of the percent
(.08 or .0575). Finally, you calculate how
much something costs with tax by adding
1 to the percent and then multiplying
that new rate by the total. This is the
mathematical equivalent of multiplying
the decimal tax rate times the total and
then adding this result to the total (for
example, a 5 percent tax on $100 is
$5, making the total $105, which is the
same as multiplying $100 times 1.05).

6. Calculate the monthly payment:

$monthly = $total / $payments;

As an example of division, assume that
the widgets can be paid for over the
course of many months. Hence, you
divide the total by the number of pay-
ments to find the monthly payment.

82 Chapter 4

10. Test the script in your browser by filling
out A and submitting B the form.

Not to belabor the point, but make sure
you start by loading the HTML form
through a URL (http://something) so
that when it’s submitted, the PHP script
is also run through a URL.

You can experiment with these values
to see how effectively your calculator
works. If you omit any values, the result-
ing message will just be a little odd but
the calculations should still work C.

 As you’ll certainly notice, the calculator
comes up with numbers that don’t correspond
well to real dollar values (see B and C). In
the next section, “Formatting Numbers,” you’ll
learn how to address this issue.

 If you want to print the value of the total
before tax or before the discount (or both),
you can do so in two ways. You can insert the
appropriate print statements immediately
after the proper value has been determined
but before the $total variable has been
changed again. Or you can use new variables
to represent the values of the subsequent
calculations (for example, $total_with_tax
and $total_less_discount).

 Attempting to print a dollar sign followed
by the value of a variable, such as $10 (where 10
comes from a variable), has to be handled care-
fully. You can’t use the syntax $$variable,
because the combination of two dollar signs
creates a type of variable that’s too complex
to discuss in this book. One solution is to put
something—a space or an HTML tag, as in this
example—between the dollar sign and the
variable name. Another option is to escape the
first dollar sign:

print "The total is \$$total";

A third option is to use concatenation, which is
introduced in the next chapter.

A The HTML form…

B …and the resulting calculations.

C You can omit or change any value and rerun
the calculator. Here the tax and discount values
have been omitted.

 This script performs differently, depend-
ing on whether the various fields are submitted.
The only truly problematic field is the number
of monthly payments: If this is omitted, you’ll
see a division-by-zero warning. Chapter 6,
“Control Structures,” will cover validating form
data before it’s used.

Using Numbers 83

Formatting Numbers
Although the calculator is on its way to
being practical, it still has one legitimate
problem: You can’t ask someone to make
a monthly payment of $10.13183333! To
create more usable numbers, you need to
format them.

Two functions are appropriate for this
purpose. The first, round(), rounds a value
to a specified number of decimal places.
The function’s first argument is the number
to be rounded. This can be either a number
or a variable that has a numeric value. The
second argument is optional; it represents
the number of decimal places to which
to round. If omitted, the number will be
rounded to the nearest integer. For example:

round(4.30); // 4
round(4.289, 2); // 4.29
$num = 236.26985;
round($num); // 236

The other function you can use in this
situation is number_format(). It works like
round() in that it takes a number (or a vari-
able with a numeric value) and an optional
decimal specifier. This function has the
added benefit of formatting the number
with commas, the way it would commonly
be written:

number_format(428.4959, 2); // 428.50
number_format(428, 2); // 428.00
number_format(1234567); // 1,234,567

Let’s rewrite the PHP script to format the
numbers appropriately.

84 Chapter 4

To format numbers:
1. Open handle_calc.php in your text

editor or IDE, if it is not already open
(Script 4.2).

2. After all the calculations but before the
print statement, add the following
(Script 4.3):

$total = number_format($total, 2);
$monthly = number_format
➝ ($monthly, 2);

To format these two numbers, apply
this function after every calculation has
been made but before they’re sent to
the browser. The second argument (the
2) indicates that the resulting number
should have exactly two decimal places;
this setting rounds the numbers and
adds zeros at the end, as necessary.

Script 4.3 The number_format() function is
applied to the values of two number variables, so
they are more appropriate to the example.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Product	Cost	Calculator</

title>
6	 	 <style	type="text/css">
7	 	 	 .number	{	font-weight:	bold;}
8	 	 </style>
9	 </head>
10	 <body>
11	 <?php	//	Script	4.3	-	handle_calc.php	#2
12	 /*	This	script	takes	values	from	

calculator.html	and	performs	
13	 total	cost	and	monthly	payment	

calculations.	*/
14	
15	 //	Address	error	handling,	if	you	want.
16	
17	 //	Get	the	values	from	the	$_POST	array:
18	 $price	=	$_POST['price'];
19	 $quantity	=	$_POST['quantity'];
20	 $discount	=	$_POST['discount'];
21	 $tax	=	$_POST['tax'];
22	 $shipping	=	$_POST['shipping'];
23	 $payments	=	$_POST['payments'];
24	
25	 //	Calculate	the	total:
26	 $total	=	$price	*	$quantity;
27	 $total	=	$total	+	$shipping;
28	 $total	=	$total	-	$discount;
29	
30	 //	Determine	the	tax	rate:
31	 $taxrate	=	$tax/100;
32	 $taxrate	=	$taxrate	+	1;
33	
34	 //	Factor	in	the	tax	rate:
35	 $total	=	$total	*	$taxrate;
36	
37	 //	Calculate	the	monthly	payments:
38	 $monthly	=	$total	/	$payments;
39	
40	 //	Apply	the	proper	formatting:
41	 $total = number_format($total, 2);
42	 $monthly = number_format($monthly, 2);
43	 	

code continues on next page

Using Numbers 85

3. Save the file, place it in the same direc-
tory as calculator.html, and test it in
your browser A and B.

 Another, much more complex way to
format numbers is to use the printf() and
sprintf() functions. Because of their tricky
syntax, they’re not discussed in this book; see
the PHP manual for more information.

 Non-Windows versions of PHP also have
a money_format() function, which can be
used in lieu of number_format().

 The round() function rounds exact
halves (.5, .05, .005, and so on) up, although
this behavior can be configured. See the PHP
manual for details.

 In PHP, function calls can have spaces
between the function name and its parentheses
or not. Both of these are fine:

round ($num);
round($num);

 The number_format() function takes two
other optional arguments that let you specify
what characters to use to indicate a decimal
point and break up thousands. This is useful,
for example, for cultures that write 1,000.89 as
1.000,89. See the PHP manual for the correct
syntax, if you want to use this option.

Script 4.3 continued

44	 //	Print	out	the	results:
45	 print	"<p>You	have	selected	to	

purchase:

46	 $quantity	

widget(s)	at	

47	 $$price	

price	each	plus	a	

48	 $$shipping	

shipping	cost	and	a	

49	 $tax	

percent	tax	rate.

50	 After	your	$<span	

class=\"number\">$discount	
discount,	the	total	cost	is	

51	 $$total</
span>.

52	 Divided	over	<span	
class=\"number\">$payments	
monthly	payments,	that	would	be	$<span	
class=\"number\">$monthly	each.</
p>";

53	
54	 ?>
55	 </body>
56	 </html>

A Another form entry. B The updated version of the script returns more
appropriate number values thanks to the number_
format() function.

86 Chapter 4

Understanding
Precedence
Inevitably, after a discussion of the various
sorts of mathematical operators comes the
discussion of precedence. Precedence
refers to the order in which a series of cal-
culations are executed. For example, what
is the value of the following variable?

$number = 10 – 4 / 2;

Is $number worth 3 (10 minus 4 equals 6,
divided by 2 equals 3) or 8 (4 divided by
2 equals 2, subtracted from 10 equals 8)?
The answer here is 8, because division
takes precedence over subtraction.

Appendix B, “Resources and Next Steps,”
shows the complete list of operator
precedence for PHP (including operators
that haven’t been covered yet). However,
instead of attempting to memorize a large
table of peculiar characters, you forgo
any deliberation by using parentheses.
Parentheses always take precedence over
any other operator. Thus:

$number = (10 – 4) / 2; // 3
$number = 10 – (4 / 2); // 8

Using parentheses in your calculations
ensures that you never see peculiar results
due to precedence issues. Parentheses
can also be used to rewrite complex calcu-
lations in fewer lines of code. Let’s rewrite
the handle_calc.php script, combining
multiple lines into one by using parentheses,
while maintaining accuracy.

To manage precedence:
1. Open handle_calc.php in your text

editor or IDE, if it is not already open
(Script 4.3).

Script 4.4 By using parentheses, calculations
made over multiple lines (compare with Script 4.3)
can be condensed without affecting the script’s
mathematical accuracy.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Product	Cost	Calculator</

title>
6	 	 <style	type="text/css">
7	 	 	 .number	{	font-weight:	bold;}
8	 	 </style>
9	 </head>
10	 <body>
11	 <?php	//	Script	4.4	-	handle_calc.php	#3
12	 /*	This	script	takes	values	from	

calculator.html	and	performs	
13	 total	cost	and	monthly	payment	

calculations.	*/
14	
15	 //	Address	error	handling,	if	you	want.
16	
17	 //	Get	the	values	from	the	$_POST	array:
18	 $price	=	$_POST['price'];
19	 $quantity	=	$_POST['quantity'];
20	 $discount	=	$_POST['discount'];
21	 $tax	=	$_POST['tax'];
22	 $shipping	=	$_POST['shipping'];
23	 $payments	=	$_POST['payments'];
24	
25	 //	Calculate	the	total:
26	 $total = (($price * $quantity) +

$shipping) - $discount;
27	
28	 //	Determine	the	tax	rate:
29	 $taxrate = ($tax / 100) + 1;
30	
31	 //	Factor	in	the	tax	rate:
32	 $total	=	$total	*	$taxrate;
33	
34	 //	Calculate	the	monthly	payments:
35	 $monthly	=	$total	/	$payments;
36	
37	 //	Apply	the	proper	formatting:
38	 $total	=	number_format	($total,	2);
39	 $monthly	=	number_format	($monthly,	2);
40	 	

code continues on next page

Using Numbers 87

2. Replace the three lines that initially cal-
culate the order total with the following
(Script 4.4):

$total = (($price * $quantity) +
➝ $shipping) - $discount;

In this script, it’s fine to make all the
calculations in one step, as long as you
use parentheses to ensure that the
math works properly. The other option
is to memorize PHP’s rules of prece-
dence for multiple operators, but using
parentheses is a lot easier.

3. Change the two lines that calculate and
add in the tax to this:

$taxrate = ($tax / 100) + 1;

Again, the tax calculations can be made
in one line instead of two separate ones.

4. Save the script, place it in the same
directory as calculator.html, and test
it in your browser A B.

 Be sure that you match your parentheses
consistently as you create your formulas (every
opening parenthesis requires a closing paren-
thesis). Failure to do so will cause parse errors.

 Granted, using the methods applied here,
you could combine all the total calculations
into just one line of code (instead of three)—
but there is such a thing as oversimplifying.

A Testing the form one more time. B Even though the calculations have been
condensed, the math works out the same. If you
see different results or get an error message,
double-check your parentheses for balance (an
equal number of opening and closing parentheses).

Script 4.4 continued

41	 //	Print	out	the	results:
42	 print	"<p>You	have	selected	to	

purchase:

43	 $quantity	

widget(s)	at	

44	 $$price	

price	each	plus	a	

45	 $$shipping	

shipping	cost	and	a	

46	 $tax	

percent	tax	rate.

47	 After	your	$<span	

class=\"number\">$discount	
discount,	the	total	cost	is	

48	 $$total</
span>.

49	 Divided	over	<span	
class=\"number\">$payments	
monthly	payments,	that	would	be	$<span	
class=\"number\">$monthly	each.</
p>";

50	
51	 ?>
52	 </body>
53	 </html>

88 Chapter 4

Incrementing and
Decrementing
a Number
PHP, like most programming languages,
includes shortcuts that let you avoid ugly
constructs such as

$tax = $tax + 1;

When you need to increase the value of
a variable by 1 (known as an incremental
adjustment) or decrease the value of a
variable by 1 (a decremental adjustment),
you can use ++ and --, respectively:

$var = 20; // 20
$var++; // 21
$var++; // 22
$var--; // 21

Solely for the sake of testing this concept,
you’ll rewrite the handle_calc.php script
one last time.

To increment the value of a variable:
1. Open handle_calc.php in your text

editor or IDE, if it is not already open
(Script 4.4).

2. Change the tax rate calculation from
Script 4.3 to read as follows (Script 4.5):

$taxrate = $tax / 100;
$taxrate++;

The first line calculates the tax rate
as the $tax value divided by 100. The
second line increments this value by 1
so that it can be multiplied by the total
to determine the total with tax.

3. Save the script, place it in the same
directory as calculator.html, and test
it in your browser A B.

Script 4.5 Incrementing or decrementing a
number is a common operation using ++ or ––,
respectively.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Product	Cost	Calculator</

title>
6	 	 <style	type="text/css">
7	 	 	 .number	{	font-weight:	bold;}
8	 	 </style>
9	 </head>
10	 <body>
11	 <?php	//	Script	4.3	-	handle_calc.php	#4
12	 /*	This	script	takes	values	from	

calculator.html	and	performs	
13	 total	cost	and	monthly	payment	

calculations.	*/
14	
15	 //	Address	error	handling,	if	you	want.
16	
17	 //	Get	the	values	from	the	$_POST	array:
18	 $price	=	$_POST['price'];
19	 $quantity	=	$_POST['quantity'];
20	 $discount	=	$_POST['discount'];
21	 $tax	=	$_POST['tax'];
22	 $shipping	=	$_POST['shipping'];
23	 $payments	=	$_POST['payments'];
24	
25	 //	Calculate	the	total:
26	 $total	=	(($price	*	$quantity)	+	

$shipping)	-	$discount;
27	
28	 //	Determine	the	tax	rate:
29	 $taxrate = $tax / 100;
30	 $taxrate++;
31	
32	 //	Factor	in	the	tax	rate:
33	 $total	=	$total	*	$taxrate;
34	
35	 //	Calculate	the	monthly	payments:
36	 $monthly	=	$total	/	$payments;
37	
38	 //	Apply	the	proper	formatting:
39	 $total	=	number_format	($total,	2);
40	 $monthly	=	number_format	($monthly,	2);
41	 	

code continues on next page

Using Numbers 89

 Although functionally it doesn’t matter
whether you code $taxrate = $taxrate +
1; or the abbreviated $taxrate++, the latter
method (using the increment operator) is more
professional and common.

 In Chapter 6, you’ll see how the increment
operator is commonly used in conjunction
with loops.

A The last execution of the form.

B It won’t affect your calculations if you use the
long or short version of incrementing a variable
(compare Scripts 4.4 and 4.5).

Script 4.5 continued

42	 //	Print	out	the	results:
43	 print	"<p>You	have	selected	to	

purchase:

44	 $quantity	

widget(s)	at	

45	 $$price	

price	each	plus	a	

46	 $$shipping	

shipping	cost	and	a	

47	 $tax	

percent	tax	rate.

48	 After	your	$<span	

class=\"number\">$discount	
discount,	the	total	cost	is	

49	 $$total</
span>.

50	 Divided	over	<span	
class=\"number\">$payments	
monthly	payments,	that	would	be	$<span	
class=\"number\">$monthly	each.</
p>";

51	
52	 ?>
53	 </body>
54	 </html>

Arithmetic Assignment
Operators
PHP also supports a combination of
mathematical and assignment operators.
These are +=, -=, *=, and /=. Each will
assign a value to a variable by perform-
ing a calculation on it. For example, these
next two lines both add 5 to a variable:

$num = $num + 5;
$num += 5;

This means the handle_calc.php script
could determine the tax rate using this:

$tax = $_POST['tax']; // Say, 5
$tax /= 100; // Now $tax is .05
$tax += 1; // 1.05

You’ll frequently see these shorthand
ways of performing arithmetic.

90 Chapter 4

Creating Random
Numbers
The last function you’ll learn about in this
chapter is mt_rand(), a random-number
generator. All it does is output a random
number:

$n = mt_rand(); // 31
$n = mt_rand(); // 87

The mt_rand() function can also take
minimum and maximum parameters, if you
prefer to limit the generated number to a
specific range:

$n = mt_rand(0, 10);

These values are inclusive, so in this case
0 and 10 are feasible returned values.

As an example of generating random
numbers, let’s create a simple “Lucky
Numbers” script.

To generate random numbers:
1. Begin a new document in your text

editor or IDE, to be named random.php
(Script 4.6):

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Lucky Numbers</title>
</head>
<body>

2. Include the PHP tag and address error
management, if you need to:

<?php // Script 4.6 - random.php

Script 4.6 The rand() function generates a
random number.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Lucky	Numbers</title>
6	 </head>
7	 <body>
8	 <?php	//	Script	4.6	-	random.php
9	 /*	This	script	generates	3	random	

numbers.	*/
10	
11	 //	Address	error	handling,	if	you	want.
12	
13	 //	Create	three	random	numbers:
14	 $n1 = mt_and(1, 99);
15	 $n2 = mt_rand(1, 99);
16	 $n3 = mt_rand(1, 99);
17	
18	 //	Print	out	the	numbers:
19	 print	"<p>Your	lucky	numbers	are:

20	 $n1

21	 $n2

22	 $n3</p>";
23	
24	 ?>
25	 </body>
26	 </html>

Using Numbers 91

3. Create three random numbers:

$n1 = mt_rand(1, 99);
$n2 = mt_rand(1, 99);
$n3 = mt_rand(1, 99);

This script prints out a person’s lucky
numbers, like those found on the back
of a fortune cookie. These numbers are
generated by calling the mt_rand()
function three separate times and assign-
ing each result to a different variable.

4. Print out the numbers:

print "<p>Your lucky numbers
are:

$n1

$n2

$n3</p>";

The print statement is fairly simple.
The numbers are printed, each on its
own line, by using the HTML break tag.

5. Close the PHP code and the HTML
page:

?>
</body>
</html>

6. Save the file as random.php, place it
in the proper directory for your PHP-
enabled server, and test it in your
browser A. Refresh the page to see
different numbers B.

 The getrandmax() function returns the
largest possible random number that can be
created using mt_rand(). This value differs
by operating system.

 PHP has other functions for generating
random numbers, such as random_int().
Unlike mt_rand(), random_init() creates
cryptographically secure random numbers.

A The three random numbers
created by invoking the
mt_rand() function.

B Running the script again
produces different results.

92 Chapter 4

Review and Pursue
If you have any problems with the
review questions or the pursue prompts,
turn to the book’s supporting forum
(www.LarryUllman.com/forums/).

Review
n	 What are the four primary arithmetic

operators?

n	 Why will the following code not work:

print "The total is $$total";

What must be done instead?

n	 Why must an HTML page that contains
a form that’s being submitted to a PHP
script be loaded through a URL?

n	 What functions can be used to
format numerical values? How do you
format numbers to a specific number
of decimals?

n	 What is the importance of operator
precedence?

n	 What are the incremental and decre-
mental operators?

n	 What are the arithmetic assignment
operators?

Pursue
n	 Look up the PHP manual page for one

of the new functions mentioned in this
chapter. Use the links on that page to
investigate a couple of other number-
related functions that PHP has.

n	 Create another HTML form for taking
numeric values. Then create the PHP
script that receives the form data,
performs some calculations, formats
the values, and prints the results.

Other Mathematical Functions
PHP has a number of built-in functions
for manipulating mathematical data.
This chapter introduced round(),
number_format(), and mt_rand().

PHP has broken round() into two other
functions. The first, ceil(), rounds
every number to the next highest integer.
The second, floor(), rounds every
number to the next lowest integer.

Another function the calculator page
could make good use of is abs(), which
returns the absolute value of a number.
In case you don’t remember your abso-
lute values, the function works like this:

$number = abs(-23); // 23
$number = abs(23); // 23

In layman’s terms, the absolute value of
a number is always a positive number.

Beyond these functions, PHP supports
all the trigonometry, exponent, base
conversion, and logarithm functions
you’ll ever need. See the PHP manual for
more information.

http://www.LarryUllman.com/forums/

Index 459

Index

Numbers
0666, explained, 302
0777 permissions, 330

Symbols
//, using with comments, 24
/* and */, using with comments, 24, 26
/= assignment operator, 89
+= assignment operator, 89, 457
-= assignment operator, 89, 457
*= assignment operator, 89
#, using with comments, 24
?> tag, 9
<? and ?> short tags, 9
<!-- and -->, using with comments, 25
+ (addition) operator, 79, 135, 457
& (ampersand), using with forms, 68
&& (and) logical operator, 135, 139, 457
* (assignment) operator, 89, 135
\ (backslash), using with strings, 39
& (bitwise) operator, 310
[] (brackets), using with keys in arrays, 161
{} (braces)

versus parentheses (()), 172
using with conditionals, 143
using with if conditional, 125

. (concatenation) operator, 97, 135, 457
-- (decrement) operator, 88–89, 135, 457
/ (division) operator, 79, 135, 457
$ (dollar sign)

preceding variables with, 36, 58
printing, 82

\\ (double backslashes), using with absolute
paths, 329

" (double quotation marks)
effect of, 44–47
parse error generated by, 170
versus single quotation marks ('), 169
using with constants, 207
using with print, 17, 21
using with strings, 39

' ' (empty string), using with functions, 284
/ (equality) operator, 135
== (equality) operator, 135, 457
= (equals sign), using with variables, 41
> (greater than) operator, 135, 457
>= (greater than or equal to) operator,

135, 457
++ (increment) operator, 88–89, 135, 457
!= (inequality) operator, 457
% (inequality) operator, 135
< (less than) operator, 135, 457
<= (less than or equal to) operator, 135, 457
% (modulus) operator, 135, 457
* (multiplication) operator, 79, 135, 457
! (negation) logical operator, 135, 457
?? (null coalescing) logical operator,

135, 143
<=> (null coalescing) logical operator,

135, 143
| | (or) logical operator, 135, 139, 457
.. (parent folder), 303
() (parentheses)

versus braces ({}), 172
using in calculations, 86–87
using with conditionals, 143

| (pipe), explained, 67
; (semicolon)

error related to, 65
using in MySQL client, 438
using with print command, 15

460 Index

' (single quotation marks)
using, 44
versus double quotation marks ("), 169

<=> (spaceship) operator, 135, 138, 457
- (subtraction) operator, 79, 135, 457
_ (underscore)

using with forms, 51
using with functions, 270
using with variables, 37

A
absolute paths, 203, 303, 329
access to pages, denying and

troubleshooting, 405, 453
action attribute, including in forms, 50,

53, 57
add_entry.php document

creating, 361–365
opening, 368

add_quote.php document
creating, 306–309, 405–408
opening, 311–312

addition (+) operator, 79, 135, 457
addslashes() function, 370
administrator. See is_administrator()

function
Adobe Dreamweaver, 4
alphabetical sort, performing on

arrays, 184
ALTER privileges, 446
ALTER SQL command, 346
AM or PM, formatting with date() function,

211, 458
am or pm, formatting with date() function,

211, 458
ampersand (&), using with forms, 68
AMPPS website, 428, 433
And (&&) logical operator, 135, 139, 457
AND logical operator, 135, 139, 457
Apache, 10
Aptana Studio, 4
arguments

passing, 277
setting default values, 282–284
using with functions, 276–281

arithmetic, performing, 79–82

arithmetic operators, 89, 135, 457
array elements

accessing, 161, 163, 170–172, 177
adding, 167–168
deleting, 166
entering, 165
pointing to, 173

array() function, 162–163
array values, printing, 171–172
arrays. See also multidimensional arrays

adding items to, 166–169
creating, 162–165
creating from HTML forms, 186–190
deleting, 166
explained, 160
indexes and keys in, 161
merging, 169
parse errors, 170
printing, 164
versus scalar variable types, 160
sorting, 178–181
syntactical rules, 161
transforming between strings, 182–185
using, 40

asort() functions, using with arrays,
178–180

.aspx extension, 9
assignment operator, 89, 135
associative arrays, 40
Atom, 4

B
backslash (\), using with strings, 39
basename() function, 329
binary digits, 310
birth year, creating input for, 123
Bitnami website, 428, 433
bitwise (&), 310
blank pages, troubleshooting, 452
<body> section, creating, 5
$books multidimensional array, 174–176
books.php document, creating, 174–176,

208–209
bool type, 281
Boolean TRUE and FALSE, 121, 125, 131, 139,

395. See also false value

Index 461

control structures
comparison operators, 135–138
default action, 132
die language construct, 150
else statement, 132–134
elseif statement, 144–147
HTML form for, 122–124
if conditional, 125–127
logical operators, 138–143
for loop, 152–156
switch conditional, 148–151
validation functions, 128–131
while loop, 156

$_COOKIE array, 251
cookie data, retrieving with PHP, 251–253
cookies

adding parameters to, 254–256
checking for presence of, 395
comparing to sessions, 260–261
creating, 246–250
data limitation, 250
debugging, 244
deleting, 257–259
encoding values of, 253
expiration value, 254–255
explained, 244–245
httponly argument, 255
path and domain arguments, 254–256
reading from, 251–253
security issues, 245, 252, 255
sending, 247–250
setting expiration date, 255–256
testing safety of, 250
transmitting and receiving, 245
using tabs and newlines with, 252
using to identify administrators, 393

copying files on servers, 324
count() function, using with arrays, 167
CREATE DATABASE command, 445, 447
CREATE privileges, 446
CREATE SQL command, 346
CREATE TABLE SQL command, 356–357
create_table.php document, creating,

357–359
creating documents, 4
CSS (Cascading Style Sheets)

basics, 3
font size and color, 251

braces ({})
versus parentheses (()), 172
using with conditionals, 143
using with if conditional, 125

brackets ([]), using with keys in arrays, 161
break language construct, 148
buffer size, setting, 236

C
calculations, performing, 76–78
calculator1.php document

creating, 286–289
opening, 293

calculator.html script, creating, 76–78
camel-hump and camel-case

conventions, 37
case-sensitive searches, performing, 117
character set, setting for database, 392
characters, escaping, 62
checkboxes

confirming, 142
creating for HTML form, 124
presetting status of, 227

closing tag, adding, 5
combined operators, 457
comments, adding to scripts, 24–26
comparison operators, 135–138, 457
concatenating strings, 97–100
concatenation (,) operator, 97, 135, 457
conditionals. See also nesting conditionals

best practices, 143
explained, 121
nesting, 139
troubleshooting, 454
using functions in, 131

configuration changes, confirming, 437
configuring PHP, 436–437
constants. See also predefined constants

benefits, 210
header.html file, 209
naming, 210
printing, 209–210
and superglobal arrays, 294
using, 207–210

control panel
creating for directory, 326–329
viewing file permissions in, 301

462 Index

DELETE privileges, 446
DELETE query, running on databases,

376–381
DELETE SQL command, 346
delete_entry.php script, writing, 376–381
delete_quote.php document, creating,

418–421
deleting

arrays and array elements, 166
cookies, 257–259
data in databases, 376–381
files, 324
quotes, 418–421
sessions, 266–267

delineated format, explained, 338
denying access to pages, 405
deprecated function, explained, 20
die() and exit() functions, 354
directories. See also web root directory

creating, 330–337
displaying contents of, 326–327
navigating, 325–329
permissions, 302

directory control panel, creating,
326–329

dirname() function, 329
display_errors setting

using, 63–64
using with cost calculator, 80
using in debugging, 28

division (/) operator, 79, 135, 457
documents, creating, 4
dollar sign ($)

preceding variables with, 36, 58
printing, 82

double backslashes (\\), using with absolute
paths, 329

double quotation marks (")
effect of, 44–47
parse error generated by, 170
versus single quotation marks ('), 169
using with print, 17, 21
using with strings, 39

double-precision floating-point numbers, 38
doubles, 38
DROP SQL command, 346, 446
drop-down menu, creating for HTML

form, 124

css folder, creating, 204
CSS templates, 200. See also templates
CSV (comma-separated values) format, 338
customize.php document

creating, 247–250
opening, 255

Cut and Paste, using with templates, 199

D
database connections, making, 348–351
database information, best practices, 351
databases. See also MySQL databases;

query data
connection code, 359, 392
defined, 346
deleting data in, 376–381
inserting data into, 360–365
permissions, 352
resources, 450
retrieving data from, 371–375
updating data in, 382–387

date and time functions
table, 458
working with, 211–213

date() and time() functions
table, 458
using, 211–213, 254
using with sessions, 265

DateTime class, 213
day pull-down menu, creating, 272
daylight savings, formatting with date()

function, 211, 458
days, formatting with date() function,

211, 458
$dbc conditional, 348, 359
DBMS (database management system),

345, 347
debugging

PHP scripts, 440
steps, 27–28

decrement (--) operator, 88–89, 135, 457
decrementing numbers, 88–89
decrypting data, 112
default argument values, 282–284
default case, using with switch

conditional, 151
DELETE FROM tablename query, 381

Index 463

related to header() call, 233
require() function, 201
setcookie() function, 246
trusting, 28, 451
unassigned value, 72
undefined function call, 275
Undefined variable, 43

error reporting, 65–67
error suppression operator, 354
error_reporting levels and constants,

65–67
event.html document, creating, 186–187
event.php document, creating, 188–190
everyone permission, 298, 301
exclusive or (XOR) logical operator, 139
execute permission, 298
exit() and die() functions, 237, 354
explode() function

and fgets(), 338
using with arrays, 182, 184

external files. See also file extensions
benefits, 206
closing PHP tag, 206
using, 201–206
writing to, 306–309

F
FALSE and TRUE, 121
false value, 19. See also Boolean TRUE

and FALSE
fclose() function, 305
feedback.html document

creating, 51
opening, 56

feof() function, 338
fgetcsv() function, 338, 342
fgets() function, 338, 348
file error codes, 317
file extensions. See also external files

being aware of, 9
and included files, 206

file() function, 313, 338
file navigation, 203
file paths, 303
file permissions, 298–302, 352
FILE privileges, 446
file uploads, handling, 316–324

E
Edit menu, accessing for templates, 199
edit_entry.php document, creating,

383–387
edit_quote.php document, creating,

412–417
else statement, 132–134
elseif statement, 144–147
email, sending, 228–232
email address

creating inputs for, 123
validating, 129

empty() function, 128, 131
empty string (' '), using with functions, 284.

See also strings
encoding

explained, 5
external files, 206

encrypting
data, 112
passwords, 337

ENTRIES table, columns in, 356
equality (/ and ==) operator, 135, 457
equals sign (=), using with variables, 41
error codes for files, 317
Error level, 65
error messages. See also parse errors;

troubleshooting
Add a Blog Entry, 364
arguments, 277
connection attempt refused, 10
Could not connect to the database, 350
Could not create the table, 358
Delete an Entry, 381
displaying in scripts, 63–64
double quotation marks ("), 21
email address and password, 402
foreach loop, 176
functions, 275
header() call, 233
include() function, 201
nonexisting variables, 61
Not Found, 14
output buffering, 233
permission denied, 299
for registration results, 142
related to color selection, 147
related to external files, 201, 206

464 Index

sending to pages manually, 68–72
validating, 128–131

form methods, choosing, 54–57
form submission, determining, 214–215
form tags, 50

creating, 122
using with functions, 274

formatting numbers, 83–85
forms. See HTML forms
forums, 96
frameworks, 455–456
function keyword, 271
function_exists() function, 275
functions. See also PHP functions;

undefined functions; user-defined
functions

accessing, 281
arguments, 276–281
with arguments and value, 287
best practice, 275
calling without arguments, 282
creating and calling, 272–275
default argument values, 282–285
defining with parameters, 276–277
design theory, 295
error related to, 65
invoking, 271
looking up definitions of, 18–20
naming conventions, 270
return statement, 285
returning values, 285–289
syntax, 275–276
user-defined syntax, 270–271, 275
using spaces with, 85
using within conditionals, 131

functions.php script
code, 397
creating, 394–395

fwrite() function, 305, 348

G
garbage collection, 267
A Gentle Introduction to SQL website, 450
$_GET and $_POST, 55–62, 68
$_GET array, 161
GET method, using with HTTP headers, 240
getrandmax() function, explained, 91

FILE_APPEND constant, 303–304
file_exists() function, 300
file_get_contents() function, 313
fileatime() function, 329
filemtime() function, 328
filename() function, 325
fileperms() function, 329
files. See also saving documents and scripts

copying on servers, 324
deleting, 324
locking, 310–312
organizing, 204
reading from, 313–315
reading incrementally, 338–342
writing to, 303–309

$_FILES array, elements of, 317
filesize() function, 328
filter() function, 131
finfo_file() function, 329
firewalls, 429
first name, checking entry of, 223
flag variable, creating for sticky form, 222
float type, 281
floating-point numbers, 38
flock() lock types, 310
folders and files, organizing, 204
font size and color, setting in CSS, 251
footer, adding to template, 197
footer file, creating for template, 200
footer.html document

creating, 398–399
opening, 212

fopen() function, 305, 348
for loop, 152–156

using with functions, 272
using with numerically indexed arrays, 172

foreach loop
error generated by, 176, 189
using with array elements, 170–172
using with directory control panel, 328
using with functions, 272
using with multidimensional arrays, 177

form data. See also HTML forms; sticky
forms

accessing, 62
displaying, 62
processing, 217
receiving in PHP, 58–62

Index 465

hidden input, checking for, 219
home page, creating, 422–425
hours, formatting with date() function,

211, 458
HTML (Hypertext Markup Language)

current version, 2
resources, 6
sending to browsers, 21–23
syntax, 2

HTML comments, accessing, 26
.html extension, 9
HTML forms. See also form data; sticky

forms
control structures, 122–124
for cookies, 249
creating, 50–53
creating arrays from, 186–190
displaying and handling, 214, 216–219
event.php page, 187–190
handling, 59–61
handling with PHP, 214–219
hidden type of input in, 62
making sticky, 220–227
for numbers, 76–78
radio-button value, 62
re-displaying, 219
for strings, 94–96
for strings and arrays, 183–185

HTML pages
creating, 4–6
example, 6
versus PHP scripts, 7
viewing source, 23

HTML source code, checking, 28
HTML tags

addressing in PHP, 106–107
using PHP functions with, 104–107

</html> tag, adding, 5
HTML5, 2
htmlentities() function, 384–385
htmlspecialchars() function, 328
HTTP (Hypertext Transfer Protocol), 237
HTTP headers, manipulating, 237–240

I
id primary key, 387, 391
if conditional, 121, 125–127, 140

Git version control software, 11
glob() function, 329
global statement, 290–294
GMT difference, formatting with date()

function, 211–212, 458
GRANT privileges, 446–448
greater than (>) operator, 135, 457
greater than or equal to (>=) operator,

135, 457
$greeting variable, 97
grocery list array, 160

H
handle_form.php document

creating, 59
opening, 66

handle_post.php document
creating, 79–82, 98–99
opening, 84, 86, 88, 101, 106, 109, 115, 118

handle_reg.php document
creating, 126–127
opening, 129, 132, 136, 140, 145, 149

hash, 40
<head> tag, creating, 5
header file, creating for template, 198–199,

203
header() function

and HTTP headers, 237–240
and output buffering, 233
using exit with, 150

header lines, creating, 4
header.html document

creating, 396–397
opening, 209, 234

headers already sent error, troubleshooting,
453

headers_sent() function, 240
Hello, World! greeting, sending to browser,

2, 16–17
hello1.php document

creating, 16–17
opening, 21

hello2.php document
creating, 21-22
opening, 25

hello.html script, creating, 69–70
hidden extensions, being aware of, 9

466 Index

K
keyboard shortcuts

Cut and Paste, 199
Edit menu, 199

ksort() functions, using with arrays,
178–180

L
language constructs, 150
languages. See multilingual

web pages
Laravel PHP framework, 455
leap year, formatting, 458
legacy file writing, 305
less than (<) operator, 135, 457
less than or equal to (<=) operator,

135, 457
linking strings, 100
links

using to pass values, 68–69
using with multiple values, 72

list() function
using with array elements, 189
using with functions, 288

list_dir.php document, creating,
326–329

list_dir.php script, 325
list.html document, creating, 183
list.php document, creating,

184–185
local variables, 97, 290
locking files, 310–312
$loggedin variable, 339, 341
logical operators, 135, 138–143, 457
login form, displaying, 218–219
login page

HTTP headers added to, 240
purpose of, 216–217

login.php document
creating, 216–219, 266–267,

338–342, 400–404
opening, 238, 262

loops
nesting, 156
troubleshooting, 454

ltrim() function, 119

if-else conditional, 132–134, 143
if-elseif conditionals, simplifying,

148–150
if-elseif-else conditional, 144–147
IIS (Internet Information Server), 10
implode() function, using with arrays,

182, 184
include() function

failure of, 201
and parentheses (()), 206
using with constants, 207
using with external files, 202

increment (++) operator, 88–89,
135, 457

index errors, troubleshooting, 452
INDEX privileges, 446
indexed arrays, 40, 165
index.php document, creating,

202–205, 423–425
inequality (%) operator, 135
inequality (!=) operator, 457
ini_set() function, 263
INSERT INTO tablename SQL command,

360, 363
INSERT privileges, 446
INSERT SQL command, 346
installation

on Mac OS X, 433–435
on Windows, 428–432

int type, 281
integers, 38
invalid MySQL argument error,

troubleshooting, 453
is_administrator() function,

394, 406
is_array conditional, 189
is_dir() function, 325
is_file() function, 325
is_numeric() function, 128, 131
is_readable() function, 315
isset() function, 128, 131

J
JavaScript, 105, 456
join() function, 185
JQuery website, 456

Index 467

MySQL databases. See also databases;
tables

apostrophes (') in form data, 370
connecting to, 348–351
creating, 445, 447
creating tables, 355–359
error handling, 352–354
inserting records into, 365
localhost value, 351
myblog, 349
queries and query results, 347
sending SQL statements to, 346
support in PHP, 346
username and password values, 349

MySQL users
creating, 445–448
privileges, 445–448
root user password, 443–445

mysqli_affected_rows() function, 380, 387
mysqli_connect.php document

creating, 348–350, 392
opening, 353

mysqli_error() function, 352–354
mysqli_fetch_array() function, 371–372,

375
mysqli_num_rows() function, 375, 387
mysqli_query() function, 346, 357, 371, 379
mysqli_real_escape_string() function,

367–370, 383, 385, 387

N
name value, using to print greetings, 70–72
$name variable, creating via concatenation, 99
names, concatenating, 100
natsort() functions, using with strings, 181
navigating

directories, 325–329
files, 203

negation (!) logical operator, 135, 457
nesting conditionals, 139, 217–218. See also

conditionals
nesting loops, 156
newlines (\n)

converting to breaks, 101–103, 107
using, 22
using with cookies, 22, 252

Nginx, 10

M
Mac OS X

Get Info panel, 302
installation on, 433–435
installing XAMPP on, 434–435

Magic Quotes, 62
mail() function, 228–230, 232, 437
make_date_menus() function, 274
make_text_input() function, 279, 295
MAMP website, 433
MariaDB, installation by XAMPP, 429
math. See arithmetic
memory allocation, error related to, 65
menus.php document, creating, 272–274
merging arrays, 169
messages, printing, 16
meta tags, using for encoding, 5
method attribute, using with forms, 54–57
microseconds, formatting with date()

function, 211
microseconds parameters, formatting with

date() function, 458
minutes, formatting with date() function, 211
modulus (%) operator, 135, 457
money_format() function, using with

numbers, 85
month pull-down menu, creating, 272
month values, formatting, 458
monthly payment, calculating, 81
months, formatting with date() function, 211
move_uploaded_file() function, 317,

319–320
Mozilla Developer Network website, 456
mtrand() function, using, 90–91
multidimensional arrays, creating, 40,

173–177. See also arrays
multilingual forums, 96
multilingual web pages, creating, 5
multiplication (*) operator, 79, 135, 457
myblog database, 349
myquotes database, 390
MySQL client

debugging PHP scripts, 440
using, 438–440
using semicolon (;) in, 438
on Windows, 440

MySQL database management system
(DBMS), 345

468 Index

P
pages. See HTML pages
parameters, defining functions with,

276–277
parent folder (..), 303
parentheses (())

versus braces ({}), 172
using in calculations, 86–87
using with conditionals, 143

Parse error level, 65
parse errors. See also error messages;

troubleshooting
avoiding, 170
double quotation marks ("), 58
receiving, 43
troubleshooting, 454

password values, validating, 136–137
password_hash() function, 112, 337
password_verify() function, 337
passwords

encrypting, 337
entering in HTML form, 123
managing, 124
validating, 130, 224

permissions, 298–302, 309, 352
PHP

configuring, 436–437
configuring for file uploads, 318–319

PHP code, storing, 236
.php extension, 9
PHP functions, using with HTML tags,

104–107. See also functions
PHP manual, using, 18–20, 449
PHP scripts

accessing, 14
adding comments to, 24–26
creating, 8, 70–71
debugging, 28, 440
executing, 9
versus HTML pages, 7
requesting, 215
running through URLs, 451
testing, 12–14
testing in browsers, 12–14

<?php tag, 8
PHP version, verifying, 451
phpinfo() function, 8–9, 436

nl2br() function
looking up, 19
using concatenation with, 100
using with newlines, 102

nobody permission, 302
Not Found response, receiving, 14
Notice error level, 65
NULL, using with functions, 284
null coalescing (??) logical operator, 135, 143
null coalescing (<=>) logical operator, 457
number_format() function, using, 83–85
numbers. See also random numbers

creating HTML form for, 76–78
formatting, 83–85
incrementing and decrementing, 88–89
types of, 38
valid and invalid, 38

numeric indexes
setting, 165
using for loop with, 172

O
ob_clean() function, 234, 236
ob_end_flush() function, 234–237
ob_flush() function, 236
ob_get_contents() function, 236
ob_get_length() function, 236
ob_start() function, invoking, 233–234
octal format, 302
$okay variable, using with control structures,

126–127, 129–130
OOP (object-oriented programming), 455
The Open Web Application Security Project

website, 455
operator precedence table, 457
operators

for arithmetic, 79
table, 457

or (| |) logical operator, 135, 139, 457
OR logical operator, 135, 139, 457
ORDER BY RAND() clause, 424
ordinal suffix, 458
organizing files and folders, 204
others permission, 301
output buffering, 233–236, 250
owner of file, explained, 298

Index 469

printing messages, 16
$problem variable

creating, 222
using, 224
using with databases, 362, 364

PROCESS privileges, 446
Project Euler, 455
pull-down menus

creating, 272–274
preselecting, 227

Q
query data, securing, 366–770. See also

databases
quotation marks ("). See double quotation

marks ("); single quotation marks (')
using with constants, 207

quotes
adding, 304, 405–408
deleting, 418–421
editing, 412–417
listing, 409–411
storing in text file, 306–307

quotes.php script, creating, 45
quotes.txt file

creating, 300
opening, 300

R
radio buttons, presetting status of, 227
RAND() function, 424
rand() function, using, 90–91
random numbers, 90–91. See also numbers
random.php document, creating, 90–91
read permission, 298, 301–302
readfile() function, 315
reading

from files, 313–315
files incrementally, 338–342

register.html directory, 122, 130
register.html document

creating, 122–124
opening, 153

register.php script, 331–337
creating, 331–337
opening, 229

phpinfo.php document, creating, 8–9
php.ini file

editing, 437
saving, 436
session settings, 263

phpMyAdmin, using, 347, 441–442
PhpStorm, 4
pipe (|), explained, 67
$_POST and $_GET, 58–62, 68
POST and GET, using with method attribute,

54–57
$_POST array, 161
$_POST elements, using with cost

calculator, 80
postfix mail server, 437
posting.html document, creating, 94–96
precedence

managing, 86–87
table, 457

predefined constants, 210. See also
constants

predefined variables, printing, 33–35. See
also variables

predefined.php document, creating, 33
preset HTML form values cut off error,

troubleshooting, 454
primary keys, 365, 387
print language construct, using, 15–16, 21,

32–33
print statement

control variables, 129–130
forms, 61
HTML form tags, 274
str_ireplace() and trim(), 118–119
substrings, 115–116
urlencode() function, 109–111
variables, 41

printf() function, using with numbers, 85
printing

$ (dollar sign), 82
arrays, 164
constants, 209–210
greetings, 70–71
multidimensional arrays, 176
predefined variables, 33–35
results from cost calculator, 81–82
values of arrays, 171–172
values of constants, 207

470 Index

handle_post.php, 99
handle_reg.php, 127, 130
header.html, 199, 209, 397
hello1.php, 17
hello2.php, 22
hello3.php, 26
hello.html, 70
hello.php, 71
index.php, 204
list_dir.php, 329
list.html, 183
list.php, 185
login.php, 262, 342, 403
logout.php, 267, 404
menus.php, 274
mysqli_connect.php, 350, 392
phpinfo.php, 9
php.ini, 436
posting.html, 96, 103, 107
predefined.php, 34
quotes.php, 47
random.php, 91
register.html, 138
register.php, 155, 337
reset.php, 259
soups1.php, 164
soups2.php, 168
sticky2.php, 284
template.html, 197
upload_file.php, 324
users.txt, 330
variables.php, 43
view_entries.php, 375
view_quote.php, 314–315
view_quotes.php, 417
welcome.html file, 6
welcome.php, 240, 265

scalar variable types
versus arrays, 160
using print with, 41

scripts. See PHP scripts
seconds, formatting, 211, 458
securing query data, 366–370
security, resources, 455
security issues, related to cookies, 245
SELECT privileges, 446
SELECT query, 371, 373–374
SELECT SQL command, 346

registration form
error message in, 231
making sticky, 220–227

registration page, creating, 122–124
registration script, creating for directory,

331–332
relative paths, 203, 303
RELOAD privileges, 446
require() function

failure of, 201
and parentheses (()), 206
using with constants, 207

required attribute, using with forms, 50, 52
reset.php script, creating, 258–259
resources, books, 456
$result reference, using with databases,

371–372
return statement

using with functions, 285
and variable scope, 290

REVOKE privileges, 446, 448
rmdir() function, 337
round() function, using with numbers,

83, 85
rsort() functions, using with arrays, 178, 180
rtrim() function, 119

S
safe mode, running PHP in, 309
sales cost calculator, creating, 79–82
Save As feature, 6
saving documents and scripts, 6, 132, 417.

See also files
add_entry.php, 365
add_quote.php, 309, 408
books.php, 176
calculator1.php, 289, 294
calculator.html, 78, 85, 87–88
create_table.php, 359
delete_entry.php, 381
edit_entry.php, 386
event.php, 190
feedback.html, 53
footer.html, 213, 399
functions.php, 395
handle_calc.php, 81
handle_form.php, 61, 64, 67

Index 471

sort.php document, creating, 179–181
$soups array, 163
soups1.php document

creating, 163–164
opening, 167

soups2.php document, creating, 167
soups3.php document, creating, 171–172
spaceship (<=>) operator, 135, 138, 457
spacing of HTML code, displaying, 22
sprintf() function, using with numbers, 85
SQL (Structured Query Language), features

of, 346–347
SQL commands, 346
SQL Course website, 450
SQL statements, sending to MySQL, 346
SQL.org website, 450
square brackets ([]), using with keys in

arrays, 161
sticky forms, 220–221. See also form data;

HTML forms
sticky text inputs, creating, 278–281
sticky1.php document

creating, 278–281
opening, 283

str_ireplace(), using with trim(), 118–119
string case, adjusting, 117
string type, 281
strings. See also empty string (' ');

substrings
checking formats of, 116
comparing, 113
concatenating, 97–100
counting backward in, 114
creating HTML form for, 94–96
encoding and decoding, 108–112
encrypting and decrypting, 112
indexed position of characters in, 114
linking, 100
performing case-sensitive searches, 117
replacing parts of, 117–119
transforming between arrays, 182–185
using, 39

strip_tags() function, 104, 107
stripslashes() function, using with Magic

Quotes, 62
strtok() function, 113
strtolower() function, 218
A Study in Scarlett website, 455

semicolon (;)
error related to, 65
using in MySQL client, 438
using with print command, 15

sending email, 228–232
sendmail server, 437
$_SERVER variable, 32–35, 58
servers. See also web server applications

configuring to send email, 232
setting time zones for, 213
using SFTP with, 10–11

$_SESSION array, 261, 264
session data

destroying, 267
storing, 265

Session ID (SID) constant, 263
session variables, accessing, 264–265
session_name() function, 263
session_set_cookie_params() function,

263
session_start() function, 233, 264, 266
sessions

comparing to cookies, 260–261
creating, 261–263
deleting, 266–267
explained, 260
security issues, 265
storing values in, 263
verifying variables, 265

setcookie() function, 233, 246–250,
257–259

SFTP (Secure File Transfer Protocol), using,
10–11

sha1() function, 335, 337
short array syntax, using, 162
short tags, 9
shuffle() function, using with arrays, 178
SHUTDOWN privileges, 446
single quotation marks (')

versus double quotation marks ("), 169
using, 44

site structure, 203. See also website project
$size variable, using with default values,

283
sizeof() function, using with arrays, 169
Slim microframework website, 456
SMTP servers, 437
sorting arrays, 178–181

472 Index

trim() function
using in comparisons, 138
using with strings, 117–119

troubleshooting. See also error messages;
parse errors

access denied, 453
advice, 451
blank pages, 452
calls to undefined functions, 452
conditionals and loops, 454
headers already sent, 453
invalid MySQL argument, 453
parse errors, 454
preset HTML form values cut off, 454
undefined variable and index

errors, 452
variables without values, 452

TRUE and FALSE, 121, 395
true value, 19. See also Boolean TRUE and

FALSE
TRUNCATE TABLE tablename query, 381
types, declaring, 289

U
uasort() functions, using with arrays, 181
undefined functions, troubleshooting calls

to, 452. See also functions
Undefined index notice, 170
Undefined offset notice, 170
Undefined variable error, 43
underscore (_)

forms, 51
functions, 270
variables, 37

unlink() function, 324
UPDATE privileges, 446
UPDATE SQL command, 346, 382–387
upload_file.php document, creating,

319–324
uploaded files, renaming, 324
uploads folder, creating, 318
urlencode() function, 108–112
“user,” defining, 299
user-defined functions, 270–271, 275, 278,

288, 393–395. See also functions
username, using on registration

pages, 124

Sublime Text, 4
submit button, creating for HTML

form, 124
substrings, finding, 113–116. See also strings
subtraction (-) operator, 79, 135, 457
superglobals and constants, 161, 294
switch conditional, 121, 148–151

T
tab (\t), using with cookies, 252
tables. See also MySQL databases

creating, 355–360
primary keys, 355
using primary keys in, 387

tags. See HTML tags
tax rate, calculating, 81
$tax variable, 293
template.html document

creating, 195–197
opening, 198, 200

templates. See also CSS templates
creating, 194
footer file, 200
header file, 198–199
layout model, 195–197
website project, 396–399

testing
PHP scripts, 12–14
safety of sending cookies, 250

text, sending to browsers, 15–17
text area, presetting value of, 227
text file, creating for file permissions,

299–300
text input type, checking, 138
textarea form element

adding to forms, 53
using with newlines, 101–102

time() and date() functions
table, 458
using, 211–213, 254
using with sessions, 265

time zones
formatting with date() function,

211–212, 458
setting for servers, 213

tokens, substrings as, 113
Transmit FTP application, 301

Index 473

W
W3Schools

JavaScript pages, 456
SQL Tutorial website, 450

WAMP website, 428
Warning error level
web pages. See HTML pages
web root directory, 298. See also directories
web server applications, 10. See also servers
website project. See also site structure

adding quotes, 405–408
administrator, 390
creating home page, 422–425
database connection, 392
deleting quotes, 418–421
denying access, 405
editing quotes, 412–417
file organization and structure, 391
footer.html document, 398
identifying goals of, 390
listing quotes, 409–411
logging in, 400–403
logging out, 404
myquotes database, 390
security, 390
template, 396–399
user-defined function, 393–395

websites
Adobe Dreamweaver, 4
AMPPS, 428, 433
Apache, 10
Aptana Studio, 4
Atom, 4
Bitnami, 428, 433
Git version control software, 11
IIS (Internet Information Server), 10
JavaScript resources, 456
MAMP, 433
Nginx, 10
PHP frameworks, 455–456
PHP manual, 18
PhpStorm, 4
Project Euler, 455
security resources, 455
SQL resources, 450
Sublime Text, 4
WAMP, 428
Windows installers, 428
XAMPP, 428, 433

users folder, creating, 330
users.txt script, 339–340
UTF-8 encoding, 5–6

V
validating, passwords, 224
validation functions, 128–131
value types, declaring, 289
values, assigning to variables, 135
$var variable, 291
var_dump() function, using with

arrays, 165
variable errors, troubleshooting, 452
variable names, case sensitivity of, 36
variable scope

explained, 290–292
global statement, 293–294

variables. See also predefined variables
accessing, 42–43
arrays, 40
assigning values to, 135
avoiding referring to, 131
documenting purpose of, 37
error related to, 65
explained, 32
incrementing values of, 88–89
minimizing bugs, 37
naming conventions, 37
numbers, 38
referring to, 37
scalar and nonscalar, 41
strings, 39
syntax, 36–37
types of, 38–40
valid and invalid, 37
validating, 147
values, 41–43
warnings related to, 37

variables.php document, creating, 42–43
version control software, 11
view_blog.php document, 386–387
view_entries.php document, creating,

372–375
view_quotes.php document, creating,

314–315, 409–411
view_settings.php document, creating,

251–253

474 Index

welcome.html file, saving, 6
welcome.php document, creating, 238–240,

264–265
while loop, 152, 156, 338
white space, using, 22
whole numbers, 38
Windows

installation on, 428–432
installing XAMPP on, 430–432

wordwrap() function, 107
write permission, 298, 301–302
writeable directory, creating, 318–319
writing to files, 303–309

X
XAMPP

command prompt, 439
files installed by, 429, 433
and firewalls, 429
installing on Mac OS X, 434–435
installing on Windows, 430–432
MariaDB, 429
website, 428, 433

XOR (exclusive or) logical operator, 135, 139,
457

XSS (cross-site scripting) attacks, 105

Y
year pull-down menu, creating, 272
year values

formatting, 211, 458
validating, 136–137, 141

Yii PHP framework, 455

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Chapter 4 Using Numbers
	Creating the Form
	Performing Arithmetic
	Formatting Numbers
	Understanding Precedence
	Incrementing and Decrementing a Number
	Review and Pursue

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

