 JAMES D. BETHUNE

Engineering Design Graphics with
 Autodesk ${ }^{\circledR}$ Inventor ${ }^{\oplus}$ 2020

This page intentionally left blank

Engineering Design Graphics with Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR}$ 2020

James D. Bethune

Engineering Design Graphics with Autodesk ${ }^{\circledR}$ Inventor $^{\circledR} 2020$

Copyright © 2020 by Pearson Education, Inc. All rights reserved. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions Department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text. Unless otherwise stated, all artwork has been provided by the author.

Autodesk screen shots reprinted courtesy of Autodesk, Inc. © 2019. All rights reserved. Autodesk, AutoCAD, Autodesk Inventor, and Inventor are registered trademarks or trademarks of Autodesk, Inc., in the U.S.A. and certain other countries.

Notice of Liability:

The publication is designed to provide tutorial information about Inventor ${ }^{\circledR}$ and/or other Autodesk computer programs. Every effort has been made to make this publication complete and as accurate as possible. The reader is expressly cautioned to use any and all precautions necessary, and to take appropriate steps to avoid hazards, when engaging in the activities described herein.

Neither the author nor the publisher makes any representations or warranties of any kind, with respect to the materials set forth in this publication, express or implied, including without limitation any warranties of fitness for a particular purpose or merchantability. Nor shall the author or the publisher be liable for any special, consequential, or exemplary damages resulting, in whole or in part, directly or indirectly, from the reader's use of, or reliance upon, this material or subsequent revisions of this material.

Acquisitions Editor: Chhavi Vig
Managing Editor: Sandra Schroeder
Senior Production Editor: Lori Lyons
Cover Designer: Chuti Prasertsith

Full-Service Project Management:
Gayathri Umashankaran/codeMantra
Composition: codeMantra
Proofreader: Abigail Manheim

Library of Congress Control Number is on file
ISBN 10: 0-13-556309-0
ISBN 13: 978-0-13-556309-7
ScoutAutomatedPrintCode

This book introduces Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR} 2020$ and shows how to use Autodesk Inventor to create and document drawings and designs. The book puts heavy emphasis on engineering drawings and on drawing components used in engineering drawings such as springs, bearings, cams, and gears. It shows how to create drawings using many different formats such as .ipt, .iam, ipn, and .idw for both English and metric units. It explains how to create drawings using the tools located under the Design tab and how to extract parts from the Content Center.

All topics are presented using a step-by-step format so that the reader can work directly from the text to the screen. There are many easy-to-understand labeled illustrations. The book contains many sample problems that demonstrate the subjects being discussed. Each chapter contains a variety of projects that serve to reinforce the material just presented and allow the reader to practice the techniques described.

Chapters 1 and 2 present 2D sketching tools and the Extrude tool. These chapters serve as an introduction to the program. There are 38 Chapter Projects to help students apply the material presented.

Chapter 3 demonstrates the tools needed to create 3D models, including Shell, Hole, Rib, Split, Loft, Sweep, and Coil. Work points, work axes, and work planes are explained and demonstrated.

Chapter 4 shows how to create orthographic views from 3D models. The creation of isometric views, section views, and auxiliary views is covered. In addition, a comparison between first- and third-angle projection is presented using both ANSI and ISO conventions.

Chapter 5 shows how to create assembly drawings using both the bottom-up and the top-down processes. The chapter includes presentation drawings and exploded isometric drawings with title blocks, parts lists, revision blocks, and tolerance blocks. There is an extensive step-by-step example that shows how to create an animated assembly-that is, a drawing that moves on the screen.

Chapter 6 covers threads and fasteners. Drawing conventions and callouts are defined for both inch and metric threads. The chapter shows how to calculate thread lengths and how to choose the appropriate fastener from Inventor's Content Center. The Content Center also includes an extensive listing of nuts, setscrews, washers, and rivets.

Chapter 7 shows how to apply dimensions to drawings. Both ANSI and ISO standards are demonstrated, but the emphasis is on ANSI standards. Different styles of dimensioning, including ordinate and baseline, and using Inventor's Hole Table are presented. Applying dimensions to a drawing is considered an important skill, so many examples and sample problems are included.

Chapter 8 is an extensive discussion of tolerancing, including geometric tolerances. The chapter first shows how to use Inventor to apply tolerances to a drawing. The chapter then shows how to calculate tolerances in various design situations. Positional tolerances for both linear and geometric applications are included. The chapter introduces the Limits/Fits Calculator located on the Power Transmission panel under the Design tab.

Chapter 9 shows how to draw springs using the Standard.ipt format and the Coil tool. It also shows how to draw springs using the tools on the

Spring panel under the Design tab. Compression, extension, torsion, and Belleville springs are included.

Chapter 10 shows how to draw shafts using the Shaft tool under the Design tab. Chamfers, retaining rings, retaining ring grooves, keys and keyways, splines, pins, O-rings, and O-ring grooves are covered. The chapter contains many exercise problems.

Chapter 11 shows how to match bearings to specific shafts using the Content Center. Plain, ball, and thrust bearings are presented. An explanation of tolerances between a shaft and bearing bore and between the bearing's outside diameter and the assembly housing is given. Both ANSI and ISO standards are presented.

Chapter 12 emphasizes how to draw gears and how to mount them into assembly drawings. Spur, bevel, and worm gears are introduced. The chapter shows how to create gear hubs with setscrews, and keyways with keys, and how to draw assembly drawings that include gears. There are two new extensive assembly exercise problems.

Chapter 13 shows how to draw basic sheet metal parts, including features such as tabs, reliefs, flanges, cuts, holes, and hole patterns.

Chapter 14 shows how to create and draw weldments. Only fillet and groove welds are covered.

Chapter 15 shows how to design and draw cams. Displacement diagrams and different types of followers are discussed.

Chapter 16 is available online and includes two large project-type problems. They can be used as team projects to help students learn to work together to share and compile files, or they can be used as end-of-the-semester individual projects. This chapter can be found on the web as a supplement to the Instructor's Manual at http://pearsonhighered.com/ irc. Instructors may distribute to students.

Acknowledgments

I would like to thank the following reviewers for their invaluable input: Rebecca Rosenbauer, Lafayette College; Antigone Sharris, Triton College; Nancy E. Study, Virginia State University; and Marsha Walton, Finger Lakes Community College.

Thanks to my family: David, Maria, Randy, Sandra, Hannah, Wil, Madison, Jack, Luke, Sam, and Ben.

A special thanks to Cheryl.
James D. Bethune

Style Conventions in Engineering Design Graphics with Autodesk ${ }^{\circledR}$ Inventor ${ }^{\circledR} 2020$

Text Element	Example
Key terms—Bold and italic on first mention in the body of the text. Brief glossary definition in margin following first mention.	Create a work axis by clicking on the edge of the block.
Inventor tools-Bold and follow Inventor capitali- zation convention.	Click on the Line tool.
Toolbar names, menu items, and dialog box names—Bold and follow capitalization convention in Inventor tab, panel, or pull-down menu (generally first letter capitalized).	The Design tab The Modify panel The 2D Chamfer dialog box The File pull-down menu
Dialog box controls/buttons/input items-Bold and follow capitalization convention of the name of the item or the name shown in the Inventor tooltip.	Choose the Metric tab in the New File dialog box. Click on the Flush button on the Place Constraint dialog box.
On the Assembly tab, set the Offset to	
0.000 mm.	
ONG 300/320 sat 76	

This page intentionally left blank

Brief Contents

CHAPTER 1 Get Started 1
CHAPTER 2 Two-Dimensional Sketching 27
CHAPTER 3 3D Models 85
CHAPTER 4 Orthographic Views 167
CHAPTER 5 Assembly Drawings 221
CHAPTER 6 Threads and Fasteners 311
CHAPTER 7 Dimensioning a Drawing 389
CHAPTER 8 Tolerancing 455
CHAPTER 9 Springs 563
CHAPTER 10 Shafts 605
CHAPTER 11 Bearings 671
CHAPTER 12 Gears 697
CHAPTER 13 Sheet Metal Drawings 747
CHAPTER 14 Weldment Drawings 779
CHAPTER 15 Cams 799
Index 823

This page intentionally left blank

Contents

CHAPTER 1 Get Started 1
Chapter Objectives 1
Introduction 1
Creating a First Sketch 4
The Undo Tool 9
Creating a Solid Model 9
Sample Problem SP1-1 12
Sample Problem SP1-2 Angular Shapes19
Chapter Summary 22
Chapter Test Questions 22
Chapter Project 24
CHAPTER 2 Two-Dimensional Sketching 27
Chapter Objectives 27
Introduction 27
The Sketch Panel 27
Circle33
Arc 36
Spline 39
Ellipse 40
Point 43
Rectangle 43
Fillet 44
Chamfer 46
Polygon 48
Text 49
Geometry Text 51
Dimension 52
Constraints 52
Pattern-Rectangular 55
Pattern-Circular 57
Pattern-Mirror 59
Move 60
Copy 62
Rotate 64
Trim 65Extend
66Offset
Editing a Sketch
Sample Problem SP2-16768
Chapter Summary 75
Chapter Test Questions 75
Chapter Project77
CHAPTER 3 3D Models 85
Chapter Objectives 85
Introduction 85
Extrude 85
Taper 87
ViewCube 90
Revolve 94
Holes 96
Fillet 99
Full Round Fillet 100
Face Fillet 101
Creating a Variable Fillet 103
Chamfer 104
Face Draft 105
Shell 107
Split 109
Mirror 111
Rectangular Pattern 112
Circular Pattern 113
Sketch Planes 114
Editing a 3D Model 120
Default Planes and Axes 123
Work Planes 125
Sample Problem SP3-1 127
Angled Work Planes 129
Offset Work Planes 132
Work Points 135
Ribs (WEBs) 139
Loft 141
Sweep 144
Coil 146
Model Material 148
Chapter Summary 150
Chapter Test Questions 150
Chapter Project 153
CHAPTER 4 Orthographic Views 167
Chapter Objectives 167
Introduction 167
Fundamentals of Orthographic Views 168
Orthographic Views with Inventor 173
Isometric Views 180
Section Views 181
Offset Section Views 184
Aligned Section Views 185
Detail Views 185
Break Views 186
Auxiliary Views 187
ASME Y14.3-2003 190
Chapter Summary 194
Chapter Test Questions 194
Chapter Project 198
CHAPTER 5 Assembly Drawings 221
Chapter Objectives 221
Introduction 221
Bottom-Up and Top-Down Assemblies 221
Starting an Assembly Drawing 222
Degrees of FreedomFree Move and Free Rotate Tools224226
Constrain 227
Presentation Drawings 235
Animation 238Isometric Drawings
Assembly Numbers238
Parts List241
Title Block 246
Subassemblies
Drawing Sheets
Other Types of Drawing Blocks
Top-Down Assemblies
Editing a Part within an Assembly Drawing243249253255260280
Patterning Components284
Mirroring Components 285
Copying Components 286
Chapter Summary 288
Chapter Test Questions 288
Chapter Project 291
CHAPTER 6 Threads and Fasteners 311
Chapter Objectives 311
Introduction 311
Thread Terminology 312
Thread Callouts—Metric Units
Thread Callouts—ANSI Unified Screw Threads 313312
Thread Representations 314
Internal Threads 315
Threaded Blind Holes 317
Creating Threaded Holes Using the Hole Tool 319
Standard Fasteners
322
Sizing a Threaded Hole to Accept a Screw 324
Screws and Nuts 328
Types of Threaded Fasteners 332
Flat Head Screws-Countersunk Holes 333
Counterbores 336
Drawing Fasteners Not Included in the Content Center 340
Sample Problem SP6-1 342
Washers 345
Setscrews 348
Rivets 351
Sample Problem SP6-2 352
Chapter Summary 364
Chapter Test Questions 364
Chapter Project
CHAPTER 7 Dimensioning a Drawing389
Chapter Objectives 389
Introduction 389
Terminology and Conventions-ANSI 390
Creating Drawing Dimensions 392
Drawing Scale 399
Units 400
Aligned Dimensions 403
Radius and Diameter Dimensions 404
Dimensioning Holes 406
Sample Problem SP7-1 407
Dimensioning Counterbored,
Countersunk Holes 411
Angular Dimensions 413
Ordinate Dimensions 415
Baseline Dimensions 418
Hole Tables 419
Locating Dimensions 421
Fillets and Rounds 422
Rounded Shapes-Internal 422
Rounded Shapes-External 423
Irregular Surfaces 423
Polar Dimensions 424
Chamfers 425
Knurling 426
Keys and Keyseats 426
Symbols and Abbreviations 427
Symmetrical and Centerline Symbols 427
Dimensioning to a Point 428
Dimensioning Section Views 429
Dimensioning Orthographic Views 429
3D Dimensions 430
Sample Problem SP7-2 431
Sample Problem SP7-3 433
Chapter Summary 436
Chapter Test Questions 436
Chapter Projects 439
CHAPTER 8 Tolerancing 455
Chapter Objectives 455
Introduction 455
Direct Tolerance Methods 455
Tolerance Expressions 457
Understanding Plus and Minus Tolerances 457
Creating Plus and Minus Tolerances 458
Limit Tolerances 462
Angular Tolerances 463
Standard Tolerances 465
Double Dimensioning 466
Chain Dimensions and Baseline
Dimensions 467
Tolerance Studies 469
Rectangular Dimensions 470
Hole Locations 470
Choosing a Shaft for a Toleranced Hole 471
Sample Problem SP8-1 473
Sample Problem SP8-2 473
Nominal Sizes 474
Standard Fits (Metric Values) 474
Hole and Shaft Basis 476
Visual Presentations of the Hole and Shaft Tolerances 478
Standard Fits (Inch Values) 479
Preferred and Standard Sizes 479
Surface Finishes 480
Surface Control Symbols 482
Geometric Tolerances 491
Tolerances of Form 491
Straightness 492
Straightness (RFS and MMC) 492
Circularity 495
Cylindricity 495
Geometric Tolerances
Using Inventor 496
Tolerances of Orientation 504
Datums 504
Perpendicularity 505
Parallelism 508
Angularity 509
Profiles 509
Runouts 510
Positional Tolerances 512
Virtual Condition 514
Floating Fasteners 514
Sample Problem SP8-3 515
Sample Problem SP8-4 516
Fixed Fasteners 517
Sample Problem SP8-5 518
Design Problems 519
Chapter Summary 522
Chapter Test Questions 522
Chapter Project 525
CHAPTER 9 Springs 563
Chapter Objectives 563
Introduction 563
Compression Springs 563
Extension Springs 570
Torsion Springs 577
Belleville Springs 580
Springs in Assembly Drawings 582
Chapter Summary 588
Chapter Test Questions 588
Chapter Project 590
CHAPTER 10 Shafts 605
Chapter Objectives 605
Introduction 605
Uniform Shafts and Chamfers 606
Shafts and Retaining Rings 611
Shafts and Keys 616
Square Keys 617
Pratt and Whitney Keys 622
Woodruff Keys 629
Shafts with Splines 632
Collars 638
O-Rings 643
Drawing Shafts and Pins Using the Tools Under the Design Tab 648
Chapter Summary 652
Chapter Test Questions 652
Chapter Project 655
CHAPTER 11 Bearings 671
Chapter Objectives 671
Introduction 671
Plain Bearings 672
Ball Bearings 677
Thrust Bearings 681
Chapter Summary 686
Chapter Test Questions 686
Chapter Project 688
CHAPTER 12 Gears 697
Chapter Objectives 697
Introduction 697
Gear Terminology 697
Gear Formulas 699
Drawing Gears Using the Gear Tool 699
Gear Hubs 701
Gear Ratios 706
Gear Trains 707
Gears with Keyways 709
Gear Assemblies 712
Supports for Bevel Gears 724
Worm Gears 726
Supports for Worm Gears 728
Chapter Summary 730
Chapter Test Questions 730
Chapter Projects 732
CHAPTER 13 Sheet Metal Drawings 747
Chapter Objectives 747
Introduction 747
Sheet Metal Drawings 747
Flat Patterns 761
Punch Tool 762
Chapter Summary769
Chapter Test Questions
Chapter Projects769
CHAPTER 14 Weldment Drawings770
Chapter Objectives 779779
Introduction 779
Fillet Welds 779
Weldments—Groove Welds 791
Sample Problem SP14-1 792
Chapter Summary 794
Chapter Test Questions 794
Chapter Project 795
CHAPTER 15 Cams 799
Chapter Objectives 799
Introduction 799
Displacement Diagrams 800
Drawing a Cam Using Inventor 801
Sample Problem SP15-1 806
Cams and Followers 809
Chapter Summary 815
Chapter Test Questions 815
Chapter Projects 816
Index 823

CHAPTER OBJECTIVES

- Learn how to draw orthographic views
- Learn ANSI standards and conventions

> - Learn about third-angle projection
> - Learn how to draw section and auxiliary views
orthographic views: Twodimensional views used to define a three-dimensional model. (Usually more than one view is needed to define a 3D model.)

Introduction

Orthographic views may be created directly from 3D Inventor models. Orthographic views are two-dimensional views used to define a threedimensional model. Unless the model is of uniform thickness, more than one orthographic view is necessary to define the model's shape. Standard practice calls for three orthographic views: a front, a top, and a right-side view, although more or fewer views may be used as needed.

Modern machines can work directly from the information generated when a solid 3D model is created, so the need for orthographic views-blueprints-is not as critical as it once was; however, there are still many drawings in existence that are used for production and reference. The ability to create and read orthographic views remains an important engineering skill.

This chapter presents orthographic views using third-angle projection in accordance with American National Standards Institute (ANSI) standards. International Organization for Standardization (ISO) first-angle projections are also presented.

Fundamentals of Orthographic Views

Figure 4-1 shows an object with its front, top, and right-side orthographic views projected from the object. The views are two-dimensional, so they show no depth. Note that in the projected right plane, there are three rectangles. There is no way to determine which of the three is closest and which is farthest away if only the right-side view is considered. All views must be studied to analyze the shape of the object.

Figure 4-2 shows three orthographic views of a book. After the views are projected they are positioned as shown. The positioning of views relative to one another is critical. The views must be aligned and positioned as shown.

Figure 4-1

Figure 4-2

Normal Surfaces

normal surfaces: Surfaces that are 90° to each other.

Normal surfaces are surfaces that are at 90° to each other. Figures 4-3, $4-4$, and 4-5 show objects that include only normal surfaces and their orthographic views.

Figure 4-3

Figure 4-5

Hidden Lines

Hidden lines are used to show surfaces that are not directly visible. All surfaces must be shown in all views. If an edge or surface is blocked from view by another feature, it is drawn using a hidden line. Figures 4-6 and 4-7 show objects that require hidden lines in their orthographic views.

Figure 4-6

Figure 4-7
Figure $4-8$ shows an object that contains an edge line, $A-B$. In the top view, line $A-B$ is partially hidden and partially visible. The hidden portion of the line is drawn using a hidden-line pattern, and the visible portion of the line is drawn using a solid line.
Figure 4-8

Figures 4-9 and 4-10 show objects that require hidden lines in their orthographic views.

Precedence of Lines

It is not unusual for one type of line to be drawn over another type of line. Figure 4-11 shows two examples of overlap by different types of lines. Lines are shown on the views in a prescribed order of precedence. A solid

Figure 4-11
slanted surfaces: Surfaces that are at an angle to each other.
line (object or continuous) takes precedence over a hidden line, and a hidden line takes precedence over a centerline.

Slanted Surfaces

Slanted surfaces are surfaces drawn at an angle to each other. Figure 4-12 shows an object that contains two slanted surfaces. Surface $A B C D$ appears as a rectangle in both the top and front views. Neither rectangle represents the true shape of the surface. Each is smaller than the actual surface.
Also, none of the views shows enough of the object to enable the viewer to accurately define the shape of the object. The views must be used together for a correct understanding of the object's shape.

Figure 4-12

Figure 4-13

Figures 4-13 and 4-14 show objects that include slanted surfaces. Projection lines have been included to emphasize the importance of correct view location. Information is projected between the front and top views using vertical lines and between the front and side views using horizontal lines.

Compound Lines

A compound line is formed when two slanted surfaces intersect. Figure 4-15 shows an object that includes a compound line.

Oblique Surfaces

oblique surface: A surface that is slanted in two different directions.

An oblique surface is a surface that is slanted in two different directions. Figures 4-16 and 4-17 show objects that include oblique surfaces.

Figure 4-16

Figure 4-17

Rounded Surfaces

Figure 4-18 shows an object with two rounded surfaces. Note that as with slanted surfaces, an individual view is insufficient to define the shape of a surface. More than one view is needed to define the surface's shape accurately.

Figure 4-18

Convention calls for a smooth transition between rounded and flat surfaces; that is, no lines are drawn to indicate the tangency. Inventor includes a line to indicate tangencies between surfaces in the isometric drawings created using the multiview options but does not include them in the orthographic views. Tangency lines are also not included when models are rendered.

Figure 4-19 shows the drawing conventions for including lines for rounded surfaces. If a surface includes no vertical portions or no tangency, no line is included.

Figure 4-19

\square
Figure $4-20$ shows an object that includes two tangencies. Each is represented by a line. Note in Figure 4-20 that Inventor will add tangent lines to the 3D model. These lines will not appear in the orthographic views.

Figure 4-21 shows two objects with similar configurations; however, the boxlike portion of the lower object blends into the rounded portion exactly on its widest point, so no line is required.

Orthographic Views with Inventor

Inventor will create orthographic views directly from models. Figure 4-22 shows a completed three-dimensional model. See Figure P4-7 for the model's dimensions. It was created using an existing file, BLOCK, 3HOLE. It will be used throughout this chapter to demonstrate orthographic presentation views.

Figure 4-22

Figure 4-21

1 Start a new drawing, click the Metric tab, and select the ANSI (mm). idw option.

See Figure 4-23. ANSI stands for American National Standards Institute.

Figure 4-23

Click Create.

The drawing management screen will appear. See Figure 4-24.

Figure 4-24

B. Click the Base tool located on the Create panel under the Place Views tab.

The Drawing View dialog box will appear. See Figure 4-25.

Figure 4-25

4 Click the Open an existing file button.
The Open dialog box will appear. See Figure 4-26.

Figure 4-26

5 Select the desired model. In this example, the model's file name is BLOCK, 3HOLE.
6 Click the Open box.
The Drawing View dialog box will appear. See Figure 4-27.

Figure 4-27

Figure 4-28

Ensure that the Hidden line option is active, and click OK.
Figure $4-28$ shows the resulting orthographic view. The selection of orientation will vary with the model's original orientation.

The screen will include a border and a title block. The lettering in the title block may appear illegible. This is normal. The text will be legible when printed. The section on title blocks will explain how to work with title blocks.

EXERCISE 4-2 Creating Other Orthographic Views

1 The view shown in Figure 4-28 will be defined as a top view. Click and drag the border around the view and move it upward on the drawing screen. Click the Projected View tool on the Create panel under the Place Views tab.
E Click the view already on the drawing screen.
3 Move the cursor downward from the view.
A second view will appear.
4. Select a location, click the left mouse button to place the view, then click the right mouse button and select the Create option.

Figure 4-29 shows the resulting two orthographic views. The initial view is defined as the Top view. This is a relative term based on the way the model was drawn. The initial view can be defined as the Top view, and the second view created from that front view.

EXERCISE 4-3 Adding Centerlines

Convention calls for all holes to be defined using centerlines. The views in Figure 4-29 do not include centerlines.

Figure 4-29

Click the Annotate tab.
See Figure 4-30.

Figure 4-30

Click the Center Mark tool located on the Symbols panel under the Annotate tab.

B Move the cursor into the drawing screen and click the edges of the holes in the top view. Right-click the mouse and select the $\mathbf{O K}$ option.

4 Click and drag the individual center lines for each hole in the Top view to create a single center line through all three holes as shown. When the cursor is moved onto a center mark, green-filled circles will appear. Click and drag these circles to form a single center line.

See Figure 4-31.
5. Click the Centerline Bisector tool located on the Symbols panel under the Annotate tab.

E Click each side of the holes' projections in the front view.
Vertical centerlines will appear. See Figure 4-32.

Figure 4-31

Figure 4-32

If the centerline patterns are too small or too big for the given feature, they may be edited to create a more pleasing visual picture.
1 Click the Styles Editor tool located on the Styles and Standards panel under the Manage tab.

Click the + sign to the left of the Center Mark heading, and select the Center Mark (ANSI) option. See Figure 4-33.
\geq Change the center mark values as needed.

Figure 4-33

EXERCISE 4-5 Changing the Background Color of the Drawing Screen

1 Click the Tools tab at the top of the screen.
Select the Application Options option.
The Application Options dialog box will appear. See Figure 4-34.
Click the Colors tab.
[3) Click the desired color, then OK.
The background color will be changed. In this example the Presentation Color scheme and 1 Color Background were selected. This format is used throughout the book for visual clarity.

4 Click Apply and OK.

Isometric Views

An isometric view may be created from any view on the screen. The resulting orientation will vary according to the view selected. In this example, the front view is selected.

1 Access the Create panel under the Place Views tab and click the Projected View tool.
z Click the Front orthographic view.
E Move the cursor to the right of the front view and select a location for the isometric view by clicking the mouse.

4 Move the cursor slightly and click the right mouse button.
5 Select the Create option.
Figure $4-35$ shows the resulting isometric view. Isometric views help visualize the orthographic views.

Figure 4-35
section view: A view used to expose an internal surface of a model.
cutting plane: A plane used to define the location of a section view.

Views with centerlines added

Resulting isometric view

Section Views

Some objects have internal surfaces that are not directly visible in normal orthographic views. Section views are used to expose these surfaces. Section views do not include hidden lines.

Any material cut when a section view is defined is hatched using section lines. There are many different styles of hatching, but the general style is evenly spaced 45° lines. This style is defined as ANSI 31 and will be applied automatically by Inventor.

Figure 4-36 shows a three-dimensional view of an object. The object is cut by a cutting plane. Cutting planes are used to define the location of the section view. Material to one side of the cutting plane is removed, exposing the section view.

Figure $4-37$ shows the same object presented using two dimensions. The cutting plane is represented by a cutting plane line. The cutting plane line is defined as $A-A$, and the section view is defined as view $A-A$.

All surfaces directly visible must be shown in a section view. In Figure 4-38, the back portion of the object is not affected by the section view and is directly visible from the cutting plane. The section view must include these surfaces. Note how the rectangular section blocks out part of the large hole. No hidden lines are used to show the hidden portion of the large hole.

Figure 4-37

Figure 4-38

SECTION A-A

EXERCISE 4-6 Drawing a Section View Using Inventor

Figure 4-39 shows the front and top views of the object defined in Figure P3-10. A section view will be created by first defining the cutting plane line in the top view, then projecting the section view below the front view.
1 Click the Section View tool on the Create panel under the Place Views tab, then click the top view.

The cursor will change to a +-like shape.
Figure 4-39

E Define the cutting plane by defining two points on the top view.
See Figure 4-39. Note that if you touch the cursor to the endpoint of one of the hole's centerlines, a dotted line will follow the cursor, assuring that the cutting plane line is aligned with the holes' centerlines.

๔ Right-click the mouse and select the Continue option.
The Section View dialog box will appear. See Figure 4-40.
Figure 4-40

Figure 4-41

Offset Section Views

Cutting plane lines need not pass directly across an object, but may be offset to include several features. Figure $4-42$ shows an object that has been cut using an offset cutting plane line.

EXERCISE 4-7 Creating an Offset Cutting Plane

Figure 4-43 shows the front and top views of an object. The views were created using the Create View, Projected View, and Centerline tools.

1 Click the Section View tool, and click the top view.
E Draw a cutting plane across the top view through the centers of each of the three holes.

When drawing an offset cutting plane line, show the line in either horizontal or vertical line segments.

3 Locate the section view below the front view and add the appropriate centerlines.
Figure 4-43

Aligned Section Views

Figure 4-44 shows an example of an aligned section view. Aligned section views are most often used on circular objects and use an angled cutting plane line to include more features in the section view, like an offset cutting plane line.

Figure 4-44

An aligned section view is drawn as if the cutting plane line ran straight across the object. The cutting plane line is rotated into a straight position, and the section view is projected.

Figure 4-45 shows an aligned section view created using Inventor.

Figure 4-45

Detail Views

detail view: An enlarged view of a portion of a model.

Detail views are used to enlarge portions of an existing drawing. The enlargements are usually made of areas that could be confusing because of many crossing or hidden lines.

1 Click the Detail View tool on the Create panel under the Place Views tab, then click the view to be enlarged.

In this example, the top view was selected.
The Detail View dialog box will appear. See Figure 4-46.

Figure 4-46
E Set the Label letter to \mathbf{D} and the Scale to 2:1, then pick a point on the view.
๘ Move the cursor, creating a circle.
The circle will be used to define the area of the detail view.
4 When the circle is of an appropriate diameter, click the left mouse button and move the cursor away from the view.

Locate the detail view and click the location.Use the Center Mark tool to add a center mark to the circle in the Detail drawing.

Break Views

It is often convenient to break long, continuous shapes so that they take up less drawing space. Figure 4-47 shows a long L-bracket that has a continuous shape; that is, its shape is constant throughout its length. Figure $4-48$ shows an orthographic view of the same L-bracket.

Figure 4-47

Figure 4-48

1 Click the Break tool located on the Create panel under the Place Views tab, then click the orthographic view.

The Broken View dialog box will appear.
\geq Select the orientation of the break and the gap distance between the two portions of the L-bracket.

In this example, the gap distance is 1.00 . Do not click the OK box. Define the break with the Broken View dialog box on the drawing screen.

B Click a point near the left end of the L-bracket, then move the cursor to the right and click a second point near the right end of the L-bracket.

Figure $4-48$ shows the resulting broken view.

Multiple Section Views

It is acceptable to take more than one section view of the same object to present a more complete picture of the object. Figures 4-49 and 4-50 show objects that use more than one section view.

Figure 4-49

SECTIDN A-A
Figure 4-50
auxiliary view: An orthographic view drawn perpendicular to a slanted or oblique surface.

Auxiliary Views

Auxiliary views are orthographic views used to present true-shape views of slanted surfaces. Figure 4-51 shows an object with a slanted surface that includes a hole drilled perpendicular to the slanted surface. Note how the right-side view shows the hole as an ellipse and that the surface $A-B$ -$C-D$ is foreshortened; that is, it is not shown at its true size. Surface $A-B-$ $C-D$ does appear at its true shape and size in the auxiliary view. The auxiliary view was projected at 90° from the slanted surface so as to generate a true-shape view.

Figure 4-52 shows an object that includes a slanted surface and hole.

Figure 4-51

An object with hole perpendicular
to the slanted surface
Figure 4-52

EXERCISE 4-10 Drawing an Auxiliary View

1 Create a drawing using the ANSI (mm).ipt format. Click the Base View and Projected View tools on the Create panel under the Place Views tab, and create a front and a right-side view as shown in Figure 4-53.

Click the Auxiliary View tool, then the front view.
E The Auxiliary View dialog box will appear.
[3 Enter the appropriate settings, then click the slanted edge line in the front view.

In this example, a scale of $1: 1$ was used.
4. Move the cursor away from the front view and select a location for the auxiliary view.
5 Click the left mouse button and create the auxiliary view.

Figure 4-53

A front and a right side orthographic view of the object shown in Figure 4-52.

ASME Y14.3-2003

Drawing Standards

Figure 4-54
There are two sets of standards used to define the projection and placement of orthographic views: the ANSI and the ISO. The ANSI calls for orthographic views to be created using third-angle projection and is the accepted method for use in the United States. See the American Society of Mechanical Engineers (ASME) publication ASME Y14-3-2003. Some countries other than the United States use first-angle projection. See ISO publication 128-30.

This chapter has presented orthographic views using third-angle projections as defined by ANSI. However, there is so much international commerce happening today that you should be able to work in both conventions, just as you should be able to work in both inches and millimeters.

Figure 4-54 shows a three-dimensional model and three orthographic views created using third-angle projection and three orthographic views created using first-angle projection. Note the differences and similarities. The front view in both projections is the same. The top views are the same, but are in different locations. The third-angle projection presents a right side view, whereas the first-angle projection presents a left side view.

Figure 4-54
(Continued)

Symbol for third-angle projection

Symbol for first-angle projection

Figure 4-55

Figure 4-55 shows the drawing symbols for first- and third-angle projections. These symbols can be added to a drawing to help the reader understand which type of projection is being used. These symbols were included in the projections presented in Figure 4-54.

Third- and First-Angle Projections

Figure 4-56 shows an object with a front orthographic view and two side orthographic views: one created using third-angle projection, and the other created using first-angle projection. For third-angle projections, the orthographic view is projected on a plane located between the viewer's position and the object. For first-angle projections, the orthographic view

Right side view Third-angle projection

[^0]Figure 4-56

Figure 4-57

Figure 4-58
is projected on a plane located beyond the object. The front and top views for third- and first-angle projections appear the same, but they are located in different positions relative to the front view.

The side orthographic views are different for third- and first-angle projections. Third-angle projection uses a right side view located to the right of the object. First-angle projections use a left side view located to the right of the object. Figures $4-57$ and $4-58$ show the two different side view projections for the same object. For third-angle projection, the viewer is located on the right side of the object and creates the side orthographic view on a plane located between the view position and the object. The viewer looks directly at the object. For first-angle projection, the viewer is located on the left side of the object and creates the side orthographic view on a plane located beyond the object. The viewer looks through the object.

To help understand the difference between side view orientations for third- and first-angle projections, locate your right hand with the heel facing down and the thumb facing up. Rotate your hand so that the palm is facing up-this is the third-angle projection orientation. Return to the thumb up position. Rotate your hand so that the palm is down-this is the first-angle view orientation.

To create first-angle projections using Inventor:
1 Start a New drawing using the ISO.idw template.
This template will automatically create first-angle projection drawings.
E Click the Base tool.
(3) Select the appropriate file.
[4) Select the orientation.
5 Use the Projected View tool to select and position the views (Figure 4-59).

Figure 4-59

Chapter Summary

This chapter introduced orthographic drawings using third-angle projection in accordance with ANSI standards. Conventions were demonstrated for objects with normal surfaces, hidden lines, slanted surfaces, compound lines, oblique surfaces, and rounded surfaces.

Inventor creates orthographic views directly from models. The tools on the Create panel and the Annotate panel were introduced for managing orthographic presentation views. Isometric views can also be created from models.

Section views are used to expose internal surfaces that are not directly visible in normal orthographic views. Cutting planes were used to define the location of section views. Offset and aligned section views also were created.

Techniques for creating detail views, broken views, and auxiliary views were demonstrated as well.

Chapter Test Questions

Multiple Choice

Circle the correct answer.

1. Which of the following is not one of the three views generally taken of an object?
a. Front
b. Top
c. Left
d. Right
2. In the precedence of lines, a hidden line covers $a(n)$ \qquad line.
a. continuous
b. center
c. compound
d. oblique
3. Which of the following is used to define a section view?
a. A cutting plane
b. A section line
c. A centerline
4. Section lines are used to define which of the following on a section view?
a. The outside edges of the section cut
b. The location of the section view
c. The areas where the section view passes through solid material

(b)

(c)

Figure MC4-1
5. Given the model shown in Figure MC4-1, which is the correct top view? a. b. c.
6. Given the model shown in Figure MC4-1, which is the correct front view?
a.
b.
c.
7. Given the model shown in Figure MC4-2, which is the correct top view?
a.
b
c.
8. Given the model shown in Figure MC4-2, which is the correct right-side view?
a. b. c.

(a)

(b)

(c)

Figure MC4-2
9. Given the model shown in Figure MC4-2, which is the correct top view? a. b. c.
10. Given the model shown in Figure MC4-2, which is the correct front view?
a.
b.
c.

Matching

Given the drawing shown in Figure MC4-3, identify the types of lines used to create the drawing.

Column A

a. \qquad
b. \qquad
c. \qquad
d. \qquad
e. \qquad

Column B

1. Centerlines
2. Cutting plane line
3. Continuous line
4. Section line
5. Hidden line

Figure MC4-3

True or False

Circle the correct answer.

1. True or False: Orthographic views are two-dimensional views used to define three-dimensional models.
2. True or False: Normal surfaces are surfaces located 90° to each other.
3. True or False: Hidden lines are not used in orthographic views.
4. True or False: A compound line is formed when two slanted surfaces intersect.
5. True or False: An oblique surface is a surface that is slanted in two different directions.
6. True or False: Center points cannot be edited; they can be used only as they appear on the drawing screen.
7. True or False: A section view can be taken only across an object's centerline.
8. True or False: Aligned section views are most often used on circular objects.
9. True or False: A detail view is used to enlarge portions of an existing drawing.
10. True or False: Break views are used to shorten long continuous shapes so they can fit within the drawing screen.

Chapter Project

Project 4-1

Draw a front, a top, and a right-side orthographic view of each of the objects in Figures P4-1 through P4-24. Make all objects from mild steel.

Figure P4-1
MILLIMETERS

Figure P4-3
MILLIMETERS

Figure P4-2
MILLIMETERS

Figure P4-4
MILLIMETERS

Figure P4-5
INCHES

Figure P4-7
MILLIMETERS

Figure P4-9
MILLIMETERS

Figure P4-6 INCHES
CYLINDRICAL

Figure P4-8
MILLIMETERS

Figure P4-10
MILLIMETERS

Figure P4-11
MILLIMETERS

NOTE: ALL FILLETS AND ROUNDS: 33
Figure P4-13
MILLIMETERS

MATL 5 THK
ALL INSIDE BEND RAD 5
Figure P4-15
MILLIMETERS

Figure P4-12
MILLIMETERS

Figure P4-14
MILLIMETERS

Figure P4-16
INCHES

Chapter 4 | Orthographic Views

Figure P4-17 MILLIMETERS

Figure P4-19
MILLIMETERS

Figure P4-18
MILLIMETERS

Figure P4-20
MILLIMETERS

Figure P4-21
MILLIMETERS

Figure P4-22
MILLIMETERS

Figure P4-23
MILLIMETERS

Figure P4-24
MILLIMETERS

Project 4-2

Draw at least two orthographic views and one auxiliary view of each of the objects shown in Figures P4-25 through P4-36.

Figure P4-25 MILLIMETERS

Figure P4-27
INCHES

Figure P4-26
MILLIMETERS

Figure P4-28
MILLIMETERS

Figure P4-29 MILLIMETERS

Figure P4-31 MILLIMETERS

Figure P4-30
MILLIMETERS

Figure P4-32
MILLIMETERS

Figure P4-33
MILLIMETERS

Figure P4-34 MILLIMETERS

Figure P4-36 MILLIMETERS

Project 4-3

Define the true shape of the oblique surfaces in each of the objects shown in Figures P4-37 through P4-40.

ALL FILLETS AND ROUNDS $=$ R3
Figure P4-37
INCHES

Figure P4-39
INCHES

Figure P4-38
MILLIMETERS

Figure P4-40
MILLIMETERS

Project 4-4

Draw each of the objects shown in Figures P4-41 through P4-44 as a model, then draw a front view and an appropriate section view of each.

Figure P4-41
MILLIMETERS

Figure P4-43
MILLIMETERS

Figure P4-42 MILLIMETERS

Figure P4-44
INCHES

Chapter 4 | Orthographic Views

Project 4-5

Draw at least one orthographic view and the indicated section view for each object shown in Figures P4-45 through P4-50.

Figure P4-45
MILLIMETERS

Figure P4-47
INCHES

Figure P4-46
MILLIMETERS

Figure P4-48
INCHES

Figure P4-49 MILLIMETERS

Figure P4-50
MILLIMETERS

Project 4-6

Given the orthographic views in Figures P4-51 and P4-52, draw a model of each, then draw the given orthographic views and the appropriate section views.

Figure P4-51
INCHES

Figure P4-52
MILLIMETERS

Project 4-7

Draw a 3D model and a set of multiviews for each object shown in Figures P4-53 through P4-60.

Figure P4-53
INCHES

Figure P4-55 MILLIMETERS

Figure P4-54
MILLIMETERS

Figure P4-56
MILLIMETERS

Figure P4-57 MILLIMETERS

Figure P4-59
MILLIMETERS

Figure P4-58
MILLIMETERS

Figure P4-60 INCHES

Project 4-8

Figures P4-61 through P4-66 are orthographic views. Draw 3D models from the given views. The hole pattern defined in Figure P4-61 also applies to Figure P4-62.

NOTE: HOLE PATTERN IS THE SAME FOR THE GASKET, GEAR HOUSING, AND GEAR COVER.

Figure P4-61 MILLIMETERS

Figure P4-62
MILLIMETERS

Figure P4-63 INCHES

Figure P4-64 INCHES

Figure P4-65
MILLIMETERS

Figure P4-66
INCHES

Project 4-9

Figures P4-67 through P4-71 are presented using first-angle projection and ISO conventions.
A. Create a solid model from the given orthographic views.
B. Draw front, top, and right-side orthographic views of the objects using third-angle projection and ANSI conventions.

Figure P4-67 MILLIMETERS

Figure P4-68
MILLIMETERS

Figure P4-69 MILLIMETERS

Figure P4-70 MILLIMETERS

Figure P4-71 MILLIMETERS

$0^{\mathbf{0}}$, defined, 31

A

Abbreviations, in dimensioning, 427
Addendum, in gears, 698, 699
Aligned dimensions, 52, 403-404
Aligned section views, 185
All-around fillet welds, 789-790
American National Standards Institute (ANSI), 167
on dimensions, 389, 390, 395
on orthographic views, 190-191
on threads, 312, 313, 319
American Society of Mechanical Engineers (ASME), 190
American Standard
clearance locational fits, 824
interference locational fits, 827
running and sliding fits (hole basis), 825
transition locational fits, 826
Angled work planes, 129-132
Angle option, in Constrain tool, 231-232
Angular dimensions, 391, 413
Angularity tolerances, 509
Angular shapes, drawing, 19-20
Angular tolerances, 463-465
Animate tool, 238
Animating the LINKS, 272
Annotate panel, 177-178, 393
ANSI. See American National Standards Institute (ANSI)
Applications Option dialog box, 3, 4, 179
Arcs, sketching, 36-38
ASME (American Society of Mechanical Engineers), 190
Assemble panel bar, 223
Assembly drawings, 221-287
aligning, 278-279
Animate tool for, 238
Balloon tool for, 241-243
bottom-up assemblies, 221
Constrain tool for, 227-233
copying components in, 266-267, 286-287
creating and assembling parts, 261-263, 269-271
CROSSLINK, 268-269, 278
Degrees of Freedom option and, 224-226
drawing sheets for, 253-255
editing, 280-284
Free Move tool, 226
isometric, 238-241
LINKs, 264-267, 270-272, 275-277
mirroring components in, 285-286
numbers in, 241-243
Parts List tool for, 243-245
patterning components in, 284-285
plate, 272-275
presentation drawings, 235-237, 279-280
Rotate Component tool for, 227
saving, 234
sketch plane changes in, 261
springs in, 582-587
starting, 222-224, 260-261
subassemblies, 249-252
title blocks for, 246-248, 255-258
top-down assemblies, 221, 260-280
weldments, 3
work points and axes in, 263-264
Auxiliary views, 187-189

B

Backgrounds

gradient backgrounds, 29
grid backgrounds, 29
screen, changing color of, 3, 179-180
Backlash, defined, 698
Ball bearings, 671, 677-681
Balloon tool, 241-243
Baseline dimensions, 418-419, 468-469
Bearings, 671-685
ball, 671, 677-681
interface, 675
plain, 671, 672-676
thrust, 671, 681-685
Belleville springs, 580-582
Bend radii, 751-753
Bevel gears, 698, 718-725
Bilateral tolerances, 455-456
Bisector tool, for centerlines, 178, 183
Blind holes, 98, 317-319, 321-322, 324-325
Bolt circles, 57
Bolts, 322, 323, 325-332
Bottom-up assemblies, 221
Break views, 186-187
Bubble numbers, 242
Bushings. See Plain bearings

C

Callouts, in threads, 312-314
Cams, 799-814
defined, 799
displacement diagrams and, 799, 800
drawing, 801-803, 806-809
followers and, 809-814
hole additions to, 803-805
Center distance, of gears, 698
Centerline Bisector tool, 178, 183

Centerlines

adding, 176-178
dimensioning, 430
editing, 179
for holes, 394-395
symbols, 427-428
Center Point Arc tool, 38, 51
Chain dimensions, 467-468
Chamfers
defined, 46, 425
dimensioning, 425
on shafts, 606-610
sketching, 46-48
Chamfer tool, 104-105
Change orders (COs), 258
Circle Center Point tool, 33-34
Circles
location and size changes, 68-70
patterns of, 57-58, 113-114
sketching, 33-35, 142
Circle Tangent tool, 35
Circle tool, 12, 17, 34-35
Circularity tolerances, 495
Circular Pattern dialog box, 57
Circular Pattern tool, 113-114
Circular pitch, 698
Circular thickness, 698
Clearance, of gears, 699
Clearance fits, 474-475
Clearance locational fits, 824
Closed splines, 39
Coil tool, 146-148, 563-565, 568, 572, 579
Collars, 638-643
Columns, for parts lists, 245-246
Compound lines, 171-172
Compression springs, 563-570
coil ends, 565-570
drawing, with coil tool, 563-565
Constrain tool, 227-233
Angle option, 231-232
Flush option, 227-228
Insert option, 233
Mate option, 227-228
Offset option, 229
overview, 227
positioning objects with, 229-230
Tangent option, 232
Constraints, 52-55
Content Center, 311, 333, 339-340, 342, 345, 611, 643, 646
Copy Component tool, 286-287
Copy tool, 62-63, 266
Corners, in sheet metal drawings, 756-757
COs (change orders), 258
Counterbores, 336-339, 411-412
Countersunk holes, 333-337, 413

Create In-Place Component dialog box, 261, 262, 264
Create New File dialog box, 2, 27-28, 235
Crest, of threads, 312
CROSSLINK, 268-269, 278
Cuts, in sheet metal drawings, 757-759
Cutting planes, 181, 184
Cylinders, 128, 139
drawing a work axis at center of, 139
Cylindrical fits
hole basis, 828
shaft basis, 830
Cylindricity tolerances, 495-496

D

Datums, 498, 504-505
Datum surfaces, 480
Dedendum, defined, 698
Default planes and axes, 123-125
Degrees of Freedom option, 224-226
Design tab, 648-651
Detail views, 185-186
Deviation tolerances, 455
Dialog boxes. See specific dialog boxes
Diameter dimensions, 404-406
Diametral pitch, 697, 699
Dimension lines, 390
Dimensions and dimensioning, 389-435
aligned, 52, 403-404
angular, 391, 413
baseline, 418-419, 468-469
centerlines, 430
chain, 467-468
chamfers, 425
drawing, 389, 392-393
drawing scales and, 399-400
editing, 8-9
errors to avoid, 391-392
fillets and rounds, 422-423
holes and hole tables, 397-399, 406-407, 411-412, 419-420
horizontal, 394-395
irregular surfaces, 423-424
keys and keyseats, 426-427
knurls, 426
linear, 391, 472-473
locating, 421-422
model, 389, 393
ordinate, 415-417
orthographic views, 393, 429-430
overall, 395
to points, 428-429
polar, 424-425
radius and diameter, 404-406
rectangular, 470
reference, 408
section views, 429
symbols and abbreviations, 409-411, 427-428
terminology and conventions for, 390-392
text, 396-397, 406
3D, 430-431
types of, 389
units, 400-402
vertical, 395-396
Dimension tool, 34, 37, 49, 52, 389, 407
Disc Cam tool, 799, 801
Displacement diagrams, 800
Double dimensioning, 413, 466-467
Drawing dimensions, 389, 392-393
Drawing layout files, 3
Drawing notes, 259
Drawing revisions, 258
Drawings. See also Sketches
assembly drawings, 221-287 (See also Assembly drawings)
sheet metal, 747-768 (See also Sheet metal drawings) starting, 1-3
weldment (See Weldment drawings)
Drawing scales, 399-400
Drawing sheets, 253-255
Drawing View dialog box, 175, 239, 240
Drill sizes, 479
Drive Constraint dialog box, 273

E

ECOs (engineering change orders), 258-259
Edit Dimension dialog box, 8, 68, 69, 458, 459
Edit Feature tool, 120

Editing

arcs, 37
assembly drawings, 280-284
balloons, 242
centerlines, 179
dimensions, 8-9
features, 89-90, 280-282
hole dimensions, 399
parts lists, 244-245
splines, 39-40
3D modeling, 88-90, 120-123
2D sketching, 68-69
Edit Sheet dialog box, 253
Edit Sketch tool, 120
Ellipses, sketching, 40-42
Ellipse tool, 42
Engineering change orders (ECOs), 258-259
Equilateral polygon, 48
Esc key, 31
Exploded assembly drawings, 235-237
Extend tool, 66-67
Extension lines, 390
Extension springs, 570-577
External rounded shapes, 423

Extrude dialog box, 10, 12, 85, 88, 90
Extrude tool, 10, 12, 15-16, 85-87, 621

F

Face Draft tool, 105-106
Face fillets, 101-103
Face width, 698
Fasteners, 322-352
accessing, 311
bolts, 325-332
counterbores and, 336-339
fixed, 517
floating, 514-515
hole designs based on size of, 490
length and depth determinations, 324-328
nuts, 328-332, 343-345
rivets, 351-352
screws, 328-329, 332-336, 339
setscrews, 348-351, 638-641
standard specifications for, 322-323
tolerances and, 490
washers, 345-348
Feature Control Frame dialog box, 498, 500, 502
Feature editing, 89-90, 280-282
Features, defined, 90
File extensions, 3
Fillets
adding, 123
defined, 44
dimensioning, 422
face fillets, 101-103
full round fillets, 100-101
sketching, 45-46
variable fillets, 103
Fillet tool, 99-103
Fillet welds, 779-786, 789-790
First-angle projections, 191-193
Fits, and tolerances, 474-476, 478-479
Fixed condition, 488-489
Fixed fasteners, 517
Flanges, 91-93, 753-754
Flat head screws, 333-337
Flatness tolerances, 491
Flat Pattern tool, 761
Flip tool, 57
Floating condition, 487-488
Floating fasteners, 514-515
Floating objects, 473
Flush option, in Constrain tool, 227-228
Followers, 809-814
Fonts, changing, 51
Format Text dialog box, 398
Free Move tool, 226
Free Orbit tool, 20
Full round fillets, 100-101

Gauges, wire and sheet metal, 823
Gear ratios, 706-707
Gears, 697-731
assemblies, 712
bevel, 698, 718-725
combinations of, 707-708
direction of, 708
drawing, 699-701
formulas for, 699
hub additions to, 701-706, 719-721
with keyways, 709-712, 721-723
meshing, 697, 708, 712, 718
ratio between, 706-707
spur, 698, 699-701, 709
terminology, 697-699
worm, 698, 726-729
Gear trains, 707-708
Geometric tolerances, 491, 496-500, 503
Geometry Text tool, 51-52
Get Started panel, 1, 2
Gradient backgrounds, 29
Grid backgrounds, 29
Groove welds, 791-792
Grounded components, 224

H

Hatch tool, 426
Height of text, changing, 51
Hexagons
defining size of, 49
sketching, 48-49
Hex head bolts, 325-327
Hex head screws, 329, 340
Hidden lines, 169-170
Hole-basis tolerances, 476-478, 679-689
Hole dialog box, 320, 321
Holes
adding, 10-12, 17-19
blind holes, 98, 317-319, 321-322, 324-325
in cams, 803-805
centerlines for, 394-395
counterbores, 336-339, 411-412
countersunk, 333-337, 413
in cylinders, 128
diameter changes, 121
dimensioning, 397-399, 406-407, 411-412, 419-420
fastener size and, 490
in sheet metal drawings, 755-756, 760-761
through holes, 96-97, 320-321
tolerances and, 470-473
Hole tables, 419-420
Hole tool, 319-321
Home tool, 21
Horizontal dimensions, 394-395
Hubs, gear, 701-706, 719-721

Idler gears, 708
Insert option, in Constrain tool, 233
Interference fits, 474, 475
Intermittent fillet welds, 786
Internal rounded shapes, 422-423
Internal threads, 315-316
International Organization for Standardization (ISO), 167, 190, 389, 390
Irregular surface dimensioning, 423-424
ISO. See International Organization for Standardization (ISO)
Isometric drawings, 238-241
Isometric 3D view, 9
Isometric position, returning to, 21
Isometric views, 180-181

K

Keys, 616-622
defined, 426
dimensioning, 426-427
Pratt and Whitney, 622-628
square, 426, 617-622, 628
Woodruff, 629-632
Keyways
creating, 621-622, 625-628
defined, 426
dimensioning, 426-427
gears with, 709-712, 721-723
plain groove, 628
on shafts, 616-622
Knurls, 426

L

Lay, defined, 481
Lay symbols, 485-486
Leader lines, 391
Length of models, changing, 120-121
Limits/Fits Calculator, 475-476, 479
Limit tolerances, 455, 462-463
Linear dimensions, 391, 472-473
Lines
compound, 171-172
defining lengths of, 31-33
hidden, 169-170
precedence of, 170-171
Line tool, 29-31
LINKs, 264-267, 270-272, 275-277
Locating dimensions, 421-422
Loft tool, 141-143

M
Major diameter, of threads, 312
Mate option, in Constrain tool, 227-228
Material designations, 148-149

Maximum material condition (MMC), 493, 494, 507, 514-515
Meshing gears, 697, 708, 712, 718
Minor diameter, of threads, 312
Mirror Component tool, 285-286
Mirror tool, 59-60, 111-112
MMC. See Maximum material condition (MMC)

Model dimensions, 389, 393
Modeling. See 3D modeling
Module, in gears, 698
Mouse wheel, 224, 226
Move tool, 60-62
Multiple section views, 187

N

New File dialog box, 2
Nominal sizes, 474
Normal surfaces, 168-169
Number of teeth, in gears, 698, 699
Numbers, in assembly drawings, 241-243
Nuts, 328-332, 343-345

0

Oblique surfaces, 172
Oblique work planes, 136-137
Offset option, in Constrain tool, 229
Offset section views, 184
Offset tool, 67-68, 142, 143
Offset work planes, 132-134
Open dialog box, 175, 236
Open splines, 39
Ordinate dimensions, 415-417
O-rings, 643-648
Orthographic views, 167-193
auxiliary, 187-189
break, 186-187
centerlines and, 176-178
creating, 173-176
defined, 167
detail, 185-186
dimensioning, 393, 429-430
drawing standards for, 190-191
fundamentals of, 168-173
isometric, 181-182
section, 181-183, 187
third- and first-angle projections, 191-193
Outside diameter, 698
Overall dimensions, 395
Overdimensioning, 414-415, 466-467

P

Parallelism tolerances, 508
Part files, 3
Parts List tool, 243-245
Path, creating, 146
Pattern Component tool, 284-285

Patterns

circular, 57-58, 113-114
Mirror tool for, 59-60
rectangular, 55-57, 112-113
for 2D sketching, 55-60
Perpendicularity tolerances, 498-499, 505-508
Pins, 641-643
Pitch, of threads, 312-313, 319
Pitch diameter, 697, 699
Place Component dialog box, 223
Place Constraint dialog box, 227, 228, 231-233
Place Views tool, 239
Plain bearings, 671, 672-676
Plain groove keyways, 628
Plate, in assembly drawings, 272-275
Plus and minus tolerances, 455-462
Points, dimensioning to, 428-429
Point tool, 43
Polar dimensions, 424-425
Polygons, sketching, 48-49
Positional tolerances, 500-502, 512-513
Power Transmission panel, 625-628, 648
Pratt and Whitney keys, 622-628
Preferred clearance fits
cylindrical fits (hole basis), 828
cylindrical fits (shaft basis), 830
Preferred pitches, 698
Preferred transition and interference fits
hole basis, 829
shaft basis, 831
Presentation drawings, 235-237, 279-280
Presentation files, 3
Pressure angles, 699
Profile tolerances, 509-510
Punch tool, 762-768

R

Radius dimensions, 404-406
Rectangles
patterns of, 55-57, 112-113
sizing, 6-8
sketching, 4-6, 43-44
Rectangular dimensions, 470
Rectangular Pattern dialog box, 57
Rectangular Pattern tool, 112-113
Reference dimensions, 408
Regardless of feature size (RFS) application, 493, 494, 507
Release blocks, 255
Reliefs, in sheet metal drawings, 755
Restoring work planes, 129
Retaining rings, 611-616
Revision blocks, 256-258
Revolve tool, 94-96
RFS. See Regardless of feature size (RFS) application
Ribs (webs), 139-141

Rivets, 351-352
Root, of threads, 312
Root diameter, 698
Rotate Component tool, 226, 227
Rotate tool, 64-65
Rotating objects, 20-21
Roughness, defined, 481
Rounded surfaces, 172-173
Rounds, dimensioning, 422-423
Running and sliding fits (hole basis), 825
Runout tolerances, 510-512

S

Save As command, 12
Screen background, changing color of, 3, 179-180
Screws, 328-329, 332-336, 339, 340-341
Section views
aligned, 185
defined, 181
dimensioning, 429
drawing, 182-183
multiple, 187
offset, 184
Select Assembly dialog box, 236
Setscrews, 348-351, 638-641
Shaft-basis tolerances, 476-478, 679-681
Shafts, 605-651
collars and, 638-643
Design tab for, 648-651
interface, 675
keys and, 616-622
o-rings and, 643-648
retaining rings and, 611-616
with splines, 632-638
uniform shafts with chamfered ends, 606-610
Shaft tolerances, 672-673
Sheet metal drawings, 747-768
bend radii and, 751-753
corners in, 756-757
creating, 747-749
cuts in, 757-759
flanges and, 753-754
Flat Pattern tool for, 761
holes in, 755-756, 760-761
Punch tool for, 762-768
reliefs and, 755
tabs and, 754-755
thickness added to, 749-751
Sheet metal gauges, 823
Shell tool, 107-108
Simple holes, 96
Sketches. See also Drawings; 2D sketching
creating, 4-6, 146-148
defined, 90
editing, 88-89, 280-284
Sketch panel, 27-29, 621
Sketch planes, 114-119, 261

Slanted surfaces, 171
Sleeve bearings. See Plain bearings
Slots, 422
Solid modeling. See 3D modeling
Splines
defined, 39
editing, 39-40
shafts with, 632-638
sketching, 39
Split tool, 109-110
Springs, 563-604
in assembly drawings, 582-587
Belleville, 580-582
compression, 563-582
extension, 570-577
torsion, 577-580
Spur gears, 698, 699-701, 709
Square keys, 426, 617-622, 628
Squares
projecting, 143
sketching, 142
Standard tolerances, 465-466
Straightness tolerances, 492-495, 499-500
Style and Standard Editor dialog box, 396, 403, 460, 465
Subassemblies, 249-252
Supports
for bevel gears, 724-725
for worm gears, 728-729
Surface finishes, 480-486
Surface texture, 480
Sweep tool, 144-146
Symbols
datum, 505
dimensioning, 409-411, 427-428
surface control, 482-484
weldment drawings, 787-789
Symbols panel, 177, 178
Symmetric tolerances, 456

T

Tabs, in sheet metal drawings, 754-755
Tangent Arc tool, 37
Tangent option, in Constrain tool, 232
Tangent work planes, 127-128
Tapering, 87-90
T-brackets, 784
Text
dimensioning, 396-397, 406
font and text height changes, 51
positioning, 396-397
unidirectional, 395-396
Text tool, 49-52
Third-angle projections, 191-193
Threads, 311-322
accessing, 311
blind holes for, 317-319, 321-322, 324-325
callouts, 312-314
Hole tool for, 319-321
internal, 315-316
representations of, 314-315
terminology for, 312
3D dimensioning, 430-431
3D modeling, 85-149
Chamfer tool for, 104-105
Circular Pattern tool for, 113-114
Coil tool for, 146-148
default planes and axes in, 123-125
editing, 88-90, 120-123
Extrude tool for, 10, 12, 15-16, 85-87
Face Draft tool for, 105-106
Fillet tool for, 98-103
holes in, 10-12, 17-19, 96-98
Loft tool for, 141, 143
material designations for, 148-149
Mirror tool for, 111-112
Rectangular Pattern tool for, 112-113
Revolve tool for, 94-96
ribs (webs) in, 139-141
saving, 12
Shell tool for, 107-108
sketch planes and, 114-119
Split tool for, 109-110
starting, 9-12
Sweep tool for, 144-146
tapering in, 87-90
ViewCube and, 90-93
work axes in, 135, 138-139
work planes in, 125-134
work points in, 135-137
Three-point arc tool, 36-37
Three Point Rectangle tool, 44
Through holes, 96-97, 320-321
Thrust bearings, 671, 681-685
Title blocks, 246-248, 255-258
Tolerances, 455-521
analysis of, 469-470
angular, 463-465
angularity, 509
chain and baseline dimensions and, 468-470
circularity, 495
cylindricity, 495-496
datums and, 498, 504-505
defined, 455
design problems and, 486-487, 519-521
direct methods, 455-456
double dimensioning and, 466-467
expressions, 457
fastener size and, 490
fits, 474-476, 478-479
fixed condition and, 488-489, 517
flatness, 491
floating condition and, 487-488, 514-515
of form, 491
geometric, 491, 496-500, 503
hole and shaft, 478, 679-681
holes and, 470-473
limit, 455, 462-463
linear dimensions and, 472-473
nominal sizes and, 474
of orientation, 504
parallelism, 508
perpendicularity, 498-499, 505-508
plus and minus, 455-462
positional, 500-502, 512-513
profile, 509-510
rectangular dimensions and, 470
runout, 510-512
shaft, 672-673
standard, 465-466
straightness, 492-495, 499-500
surface finishes and, 480-486
virtual condition and, 514
Tolerances of form, 491
Tolerances of orientation, 504
Tolerance studies, 469-470
Top-down assemblies, 221, 260-280
Torsion springs, 577-580
Trails, hiding, 237
Transition fits, 474, 475
Transition locational fits, 826
Trim tool, 37, 65-66
Tweak Components tool, 236-237
2D sketching, 27-76
arcs, 36-38
chamfers, 46-48
circles, 33-35
Constrain panel in, 52-55
Copy tool in, 62-63
Dimension tool in, 34, 49, 52
editing, 68-69
ellipses, 40-42
Extend tool in, 66-67
fillets, 45
hexagons, 48-49
Line tool in, 29-31
Mirror tool in, 59-60
Move tool in, 60-62
Offset from Plane tool, 142, 143
Offset tool in, 67-68
patterns for, 55-60
Point tool in, 43
polygons, 48-49
rectangles, 4-6, 43-44
Rotate tool in, 64-65
Sketch panel for, 27-29
splines, 39
Text tool in, 49-52
Trim tool in, 37, 65-66
Two Point Rectangle tool, 43

U

U-brackets, 675-676
Undo tool, 9, 88
Unidirectional text, 395-396
Unified screw threads, 313-314
Uniform shafts, 606-610
Unilateral tolerances, 455-456
Units, dimensioning, 400-402

V

Variable fillets, 103
Vertical dimensions, 395-396
ViewCube, 90-93
Views. See Orthographic views
Virtual condition, 514

W

Washers, 345-348
Webs (ribs), 139-141
Weldment drawings, 779
creating, 792-793
defined, 779
fillet welds, 779-786, 789-790
groove welds, 791-792
symbols, 787-789
Whole depth, 698
Wire gauges, 823
Woodruff keys, 629-632
Work axes, 135, 138-139, 263-264, 271, 584-587
Working depth, 698
Work planes, 125-134
angled, 129-132
defined, 125
help features for, 125-126
hiding, 129
oblique, 136-137
offset, 132-134
restoring, 129
tangent, 127-128
Work points, 135-137, 263-264
Worm gears, 698, 726-729

[^0]: Left side view
 First-angle projection

