HTMLS5

Multimedia
DEVELOP AND DESIGN

HTML5
Multimedia
DEVELOP AND DESIGN

lan Devlin

Peachpit
sssss

HTML5 Multimedia: Develop and Design
Ian Devlin

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2012 by Ian Devlin

Editor: Rebecca Gulick

Development and Copy Editor: Anne Marie Walker
Technical Reviewer: Chris Mills

Production Coordinator: Myrna Vladic
Compositor: David Van Ness

Proofreader: Patricia Pane

Indexer: Valerie Haynes-Perry

Cover Design: Aren Howell Straiger

Cover Production: Jaime Brenner

Interior Design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identi-
fied throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-79393-5
ISBN-10: 0-321-79393-5

987654321

Printed and bound in the United States of America

www.peachpit.com

Dedicated to the memory of Paul Fallon

Td daoine a shitilann indr saolta agus shitllann amach astu go luath
Td daoine a fhanann ar feadh tamaill
Agus fdgann said rianta a gcos ar dr gcroithe

Agus casann dr n-anamacha port nua go deo deo

ACKNOWLEDGMENTS

v

HTML5 MULTIMEDIA

Writing a book is a time-consuming and difficult process, and one I knew noth-
ing about before embarking on this project. A number of people have helped me
through the book-writing process, and others have helped me through the HTML5
process, whether they know it or not. All deserve my thanks.

To Rebecca Gulick for giving me the opportunity to actually write this book
and for clearly explaining to me the steps involved.

To Anne Marie Walker for ensuring that my words are clear and understandable.

To Chris Mills for his editing and technical reviewing skills, and providing me
with many good suggestions and alterations throughout the text.

To Rich Clark for giving me the opportunity to curate for HTML5 Gallery (www.
htmlsgallery.com), which not only increased my interest in and knowledge of
HTMLs5, but it also led to me writing this book.

To Remy Sharp for first drawing my attention to HTML5 in an article in .net
magazine back in October 2009.

To you, the reader, for deciding to purchase this book with the intention of
learning. I hope you find it enjoyable and educational.

www.html5gallery.com
www.html5gallery.com

CONTENTS

CHAPTER 1

CHAPTER 2

Introduction

AN INTRODUCTION TO HTML5
What Is HTML5?

The Progression of HTML5
When Can You Use HTML5?
Main HTMLS5 Structural Elements
DOCTYPE and Charset

<header> and <footer>
<hgroup>

<article> and <section>

<nav>

<aside>

<figure> and <figcaption>
<script>

Wrapping Up

HTML5 MULTIMEDIA ELEMENTS
History of Web Multimedia

Media Players

HTML Elements

Welcome, Native Multimedia!

The Audio Element

The Video Element

The Source Element

The Track Element

Wrapping Up

xi

© © N A AN

12
13
17
18
19
21
21

22
24
24
28
31
32
35
38
40
43

CONTENTS V

Vi

HTML5 MULTIMEDIA

CHAPTER 3

CHAPTER 4

USING AUDIO 44

Audio Codecs and File Formats 46
Ogg Vorbis 46
MP3 47
WAV 48
AAC 48
MP4 48
Browser Support for Audio Formats 49
Encoding Your Audio File 50
Legacy Browser Fallback 51
Examples of Using the Audio Element 52
Playing an Audio File 52
Playing an Audio File with Different Sources 54
Playing an Audio File with Different Sources and Legacy Fallback .. 55
Wrapping Up 59
USING VIDEO 60
Video Codecs and File Formats 62
Theora Ogg 62
MP4 (H.264) 63
WebM 63
Browser Support for Video Formats 64
Encoding Your Video Files 65
Using the Video Elements 67
Playing a Video File 67
Playing a Video File with Different Sources 69

Playing a Video File with Different Sources and Legacy Fallback 72
Targeting Devices with Different Video Files Using Media Types and

Queries 75
Android and Video 80
Wrapping Up 82

CHAPTER §

CHAPTER 6

JAVASCRIPT APl AND CUSTOM CONTROLS
What Is JavaScript?

Exploring the API Attributes

Harnessing the API Events

Using the API Methods

Creating a Simple Video Player with Custom Controls
Adding Play/Pause and Stop Buttons

Adding Volume and Mute Buttons

Adding a Progress Bar

Adding Fast-Forward and Rewind Buttons
Adding a Seek Bar

Non-HTML5 Browsers

Wrapping Up

STYLING MEDIA ELEMENTS WITH CSS
Simple CSS Styling

Advanced Whizzyness with CSS3
Opacity

Gradient

Rounded Corners

Shadow

Sizing Your Content
WebKit-specific CSS3 Rules
Reflect

Mask

Wrapping Up

84
86
87
93
96
98
99
104
107
110
112
114
115

16
118
122
122
123
126
126
128
135
135
136
137

CcONTENTS VII

CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION 138

Using Transitions 140
Using Transitions with Audio and Video 143
Styling with CSS Transitions 144
Fading Transitions 146
Exploring 2D Transforms 148
Scaling a Video 148
Rotating a Video 150
Skewing a Video 151
Translating a Video 151
Playing with 3D Transforms 154
Working with Animations 158
@keyframes 158
Animated Video Cover 161
Animated Spin 167
Extending the Animated Video Cover to 3D 169
Wrapping Up 171
CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY 172
Media and Potential Accessibility Issues 174
A Brief Look at SRT 175
Introducing WebVTT 176
What Can WebVTT Do? 176
WebVTT File Format 177
The Track Element 185
Using WebVTT and the Track Element Now 188
Playr Example 189
Media Controls and Accessibility 192
Wrapping Up 195

VIII HTML5 MULTIMEDIA

CHAPTER 9

CHAPTER 10

USING VIDEO WITH CANVAS
The Canvas Element
The 2D API

Taking a Screen Shot of an HTML5 Video

Making a Copy of a Playing Video
Playing the Video Copy in Greyscale
Wrapping Up

USING VIDEO WITH SVG

A Brief Introduction to SVG
Browser Support

The svg Element

SVG Text

SVG Circle

SVG Ellipse

Using SVG with HTMLS5 Video
Adding a Text Mask to a Video
Adding an Ellipse Mask to a Video
Animating an SVG Video Mask
Moving an SVG Video Mask
Applying SVG Filters to HTML5 Video
Wrapping Up

196

198
200
202
206
208

213

214
216
217
217
218
219
220
221
221
226
228
230
233
237

CONTENTS

I1X

X

HTML5 MULTIMEDIA

CHAPTER M

FUTURE FEATURES
Audio APIs

Audio Data API

Web Audio API
getUserMedia API
PeerConnection API
Stream API

The MediaStream Object
WebSocket API

The WebSocket Interface
Using WebSockets
Wrapping Up

Index

238
240
240
245
247
249
250
250
252
252
254
259

260

INTRODUCTION

As a web developer or web designer, or those of you who just maintain your own
website, you know that the web is constantly changing, and the tools and methods
that are used to build websites are in constant development. Like sand dunes in
the Sahara, they shift constantly, but fortunately, usually in a forward direction.

The shift in web technologies has currently arrived at HTMLS, the latest ver-
sion of the language used to define and build web pages. With it comes an easier
method of adding multimedia to your web pages.

The goal of this book is to provide you with an introduction to adding audio
and video to your website, and to give you a glimpse of what else you can do with
HTML5 multimedia.

Throughout the book you'll find in-depth details of the various HTML5 mul-
timedia elements, as well as full code examples on how you can use them to add
audio and video to your website. Youw'll also learn about the accompanying JavaScript
API that allows you to create your own media controls.

In addition, you’ll find explanations and examples of how you can style the
HTML5 media elements with CSS, including some of the new features that CSS3
has to offer. You'll also learn about multimedia and accessibility, and how you can
add subtitles to your website video.

WHO THIS BOOK IS FOR

This book is aimed at those who are starting out with HTML5 and adding HTML5
audio and video to their websites, and those who are already familiar with HTML5
multimedia but want to learn more.

Some basic knowledge of HTML and CSS is assumed, and the later chapters
require at least a rudimentary knowledge of JavaScript. That said, all the examples
on the book’s accompanying website at www.htmlsmultimedia.com are complete.

INTRODUCTION

Xl

www.html5multimedia.com

Xl

HTML5 MULTIMEDIA

SCREEN SHOTS AND BROWSER VERSIONS

During the course of writing this book, some browser vendors released newer
versions of their products. Firefox is now on version 7, Chrome is on version 14,
and Safari has moved to 5.1. The screen shots in the book usually indicate which
browser and version it was taken from at the time the chapter was written. This, of
course, means that some of the screen shots are from older versions of the browser.
But rest assured that they still work just as well in the latest versions, and if they
don’t, it is clearly marked.

THE WEBSITE FOR THIS BOOK

All the code used in the examples in this book is on the accompanying website at
www.htmlsmultimedia.com. You can either download the files in their entirety or
navigate to the various files via the website and see them working online.

CONTACT

If you would like to contact me, you can do so at info@htmlsmultimedia.com.

BEFORE YOU BEGIN

In the later chapters of this book, some of what you’ll read is experimental due to
specifications that were still in development at the time of this writing and poor
or nonexistent support in browsers. This of course may have changed by the time
you have this book in your hands. The book’s website will indicate improved sup-
port where applicable.

It’s time to begin! Let’s start by taking a quick look at HTML5, what it is, and
where it comes from.

www.html5multimedia.com

This page intentionally left blank

4
USING VIDEO

The popularity of video-sharing sites such
as YouTube and Vimeo, combined with
bandwidth speeds that makes online video

feasible, have led to a huge demand for embedding video in web

documents. Yet until recently the only way was by using third-
party plugins such as Flash and QuickTime. HTML5 provides that
missing standard method for embedding videos in web documents.
Major browsers have begun to support it in their latest releases,
so you can be confident that modern browsers can handle your

video content.

This chapter covers the file formats and codecs supported by
HTML5 video, how to convert between formats, and solutions to
issues you might encounter. You'll also learn how to deliver video
to browsers that don’t support HTMLS5 video.

61

62

CHAPTER 4 USING VIDEO

VIDEO CODECS AND
FILE FORMATS

As with audio, HTML5 video has a number of different formats that you can use
to encode video content in due to browser vendors being unable to agree on a
standard. The video file formats available include Theora Ogg, MP4 (H.264), and
WebM. Let’s look at each in detail.

CODECS AND CONTAINERS

As mentioned in Chapter 3, a codec is a computer program that uses a com-
pression algorithm to encode and/or decode a digital stream of data, making
it more suitable for playback.

A container is a wrapper format whose specification describes how the differ-
ent data elements within the container exist and interact together within a
computer file.

THEORA OGG

Theora Ogg, as you've probably guessed, is also from the Xiph.Org Foundation
(www.xiph.org). Like its audio counterpart, Theora Ogg is free and open, and has
no licensing or royalty issues.

As with audio, Ogg is the name of the container format, and in this case Theora
refers to the video-compression format that it uses. Earlier versions of the Theora
codec showed it to be inferior to other similar codecs at the time, but it has improved
a great deal and is now considered comparable to YouTube’s H.264 output (before
YouTube started encoding high-definition video).

Theora Ogg uses the application/ogg MIME type and the video/ogg video
attribute type.

www.xiph.org

MP4 (H.264)

MPEG-4 Part 10, or MP4, is a compressed video format, which like the MP3 audio
format (see Chapter 3) was defined by the Moving Picture Experts Group (MPEG;
www.mpeg.org). It was developed to deliver DVD-quality video and audio in a small
package. This small file size makes MP4 files highly suitable for portable players,
and naturally, the web.

H.264 has been split into 17 different “profiles”; each of which provides addi-
tional features that usually increase the file size. Some are suitable for use with
HTML5 video, whereas others are not. The Baseline and Main profiles are usu-
ally used for HTML5 video. For a full list of these profiles, see en.wikipedia.org/
wiki/H.264#Profiles.

MP4 uses the video/mpeg MIME type and the video/mp4 video attribute type.

WEBM

WebM is a project (Wwwwebmproject.org) that is supported by web-industry giants,
such as Mozilla, Opera, Adobe, and Google. The aim of the project is to produce a
high-quality, royalty-free, open video format.

The video content is compressed with the VP8 codec, which was developed by
On2 Technologies (the company was acquired by Google in February 2010). The
codec tends to be used within the WebM container.

WebM uses the video/webm MIME type and the video/webm video attribute type.

VIDEO CODECS AND FILE FORMATS 63

www.mpeg.org
www.webmproject.org

BROWSER SUPPORT FOR
VIDEO FORMATS

When the first draft of the HTML5 specification was released, it recommended that
browsers should support the Theora Ogg video format. Knowing that all browsers
that supported HTML5 video would support a standard video format would have
allowed you to guarantee availability of your video content to users when you
served up a Theora Ogg video file. However, note the use of the phrase “would have.”

Unfortunately, like the audio specification, both Nokia and Apple objected to
the requirement to support Theora Ogg, which they regarded as not being widely
supported and not as open and free as the Xiph.Org Foundation claimed. So the
requirement was removed. As a result, you're back to having to supply your video
content in more than one format to guarantee coverage of all browsers that sup-
port HTMLS5 video.

Table 4.1 contains a list of which vendors support certain video formats in
their browsers.

TABLE 4.1 Video Formats and Browser Support

FORMAT BROWSER

Theora Ogg @ Firefox 3.5+ & Chrome 5+ O operatos+

MP4/H.264 @ safari 3+ & Chrome 5-? & IE9+ B ios Android 2+
WebM @ Firefox 4+ & Chrome 6+ () operan+ & IEg+ Android 2.3+

NOTE: Chrome currently supports MP4/H.264 but will drop support
for it soon. Internet Explorer 9 will support WebM as long as a third-party
plugin that can play it is installed.

In fact, you need to serve up at least two different formats, MP4 and WebM, in
order to support the latest versions of the major browsers. This isn’t too much of
a chore if you're only serving up a few videos, because it can be easily done using
the video and source elements mentioned in Chapter 2. For video-intensive sites,
it can unfortunately be a burden because many files need to exist in at least two
different formats, thus doubling the storage space required.

64 CHAPTER4 USING VIDEO

MOBILE DEVICES

Another good reason to use HTML5 video is Apple’s decision not to support
Flash in the iPhone and iPad. iOS, the operating system that runs on these
phones, has support for MP4 video.

Android phones also support MP4 (and WebM from version 2.3), Windows
Phone 7 has native support for both MP4 and WebM, and Blackberry sup-
ports MP4 from version 7 of its browser.

Because you’ll have your video file in one format, the easiest way of providing
the two formats is by converting from one format to the other.

Let’s take a quick look at how you’d convert your video content between the
different formats before diving into the code examples.

ENCODING YOUR VIDEO FILES

You might already have the video content that you want to display on your web
document, or you might still need to record it. Let’s assume that you already have
the content, and that it is in one of the aforementioned formats, although it could
just as easily not be. Either way it’s not a problem because there are plenty of
encoders on the market that you can use to convert your video content from one
format to another.

TIP: It’s wise to support at least MP4 and WebM to cover the

latest versions of the major browsers. Safari supports MP4; Firefox

and Opera support WebM; and Chrome and Internet Explorer g currently
support both MP4 and WebM, although Chrome will drop support for MP4
in the near future and IE9 needs a plugin for WebM. However, you might
also choose to support Theora Ogg, because WebM wasn’t supported by
Firefox until version 4, and Firefox doesn’t support MP4 at all.

BROWSER SUPPORT FOR VIDEO FORMATS 65

Here are three of my favourite encoders:

= Miro Video Converter (http://www.mirovideoconverter.com). As well as
converting between audio formats, this converter also supports conversion
of video files to Theora Ogg, MP4, and WebM. It really is all you need and
runs on both Windows and Mac.

= Handbrake (http://handbrake.fr). This open source converter allows you to
convert video files to MP4 and the Theora Ogg format. It runs on Windows,
Mac, and Linux.

= Media Converter (http://www.mediaconverter.org). This online conversion
application allows you to upload a file for conversion or provide the URL
of an existing file. It allows you to convert files to Theora Ogg, MP4, and
Flash FLV, among others.

Although you can choose from many other encoders, these are three solid
encoders that you can use to get started.

MP4 ENCODING AND DELAYED PLAYBACK

Sometimes the way an MP4 file is coded can cause problems with its play-
back. Namely, the file doesn’t start playing until it has downloaded com-
pletely. This is due to the encoding process placing the file index—with all
the metadata on file length and so on—at the end of the file rather than
the beginning.

If you find this is happening to your MP4 files, you can fix the problem by
running the files through the QTIndexSwapper (http://renaun.com/blog/
code/qtindexswapper) by Renaun Erickson of Adobe. QTIndexSwapper
simply moves the index to the beginning of the file.

Now that you’ve converted your files, you're ready to start using them within
your documents!

66 CHAPTER 4 USING VIDEO

http://www.mirovideoconverter.com
http://handbrake.fr
http://www.mediaconverter.org
http://renaun.com/blog/code/qtindexswapper
http://renaun.com/blog/code/qtindexswapper

USING THE VIDEO ELEMENTS

Let’s begin with some basic examples of embedding video files within a web docu-
ment. You'll have previously encountered all the elements and attributes used in
the examples in Chapter 2, so nothing should be new to you.

PLAYING A VIDEO FILE

The easiest example of them all is to play a simple video file of one format with
default media controls for the user.
To play a WebM file, you use:

<video src="snowy-tree.webm" controls></video>

The control attribute informs the browser that it should display a set of basic
video controls on top of the video player.

If you wanted the video to start playing as soon as the page loads, you could
simply add the autoplay attribute:

<video src="snowy-tree.webm" controls autoplay></video>

You might also want the video to start playing immediately and then keep play-
ing in a loop via the loop attribute:

<video src="snowy-tree.webm" controls autoplay loop></video>

It is, however, strongly advised not to do this: Not only is it annoying, but it can
be an accessibility nightmare because a looping video file might play over added
audio that’s inserted for accessibility reasons.

You could also mute the video file on startup by using the muted attribute. Of
course, if your video has no sound, this has no effect:

<video src="snowy-tree.webm" controls autoplay muted></video>

NOTES: None of the major browsers currently support the muted
attribute. However, you can set it via the Media JavaScript API,
which is discussed in Chapter 5.

All of the examples in this section and more can be found
on the accompanying website at www.htmlsmultimedia.com.

USING THE VIDEO ELEMENTS

www.html5multimedia.com

Wiewe Video
Cupy Yidew Loation

FIGURE 4.1 Restoring the
browser’s default media
controls via the browser
menu in Firefox s.

68 CHAPTER4 USING VIDEO

By default, the browser will start loading the entire video file when the page
loads. If you would prefer that the browser not do this (perhaps you think it’s
unlikely that users will want to view the video and don’t want to waste bandwidth
because they might be viewing your site over a mobile network), you can use the
preload attribute and set it to none:

<video src="snowy-tree.webm" controls preload="none"></video>

You can also request that the browser load the video’s metadata (e.g., file length)
by setting the preload attribute to metadata:

<video src="snowy-tree.webm" controls preload="metadata"></video>

Any setting of the preload attribute merely suggests to the browser what your
intentions are, but ultimately, the browser will decide what to do. The browser may,
for example, ignore your suggestion due to a user setting in the browser.

If you want to hardcode the width and height of the video rather than letting
the browser automatically decide for you, you can do so via the width and height
attributes:

<video src="snowy-tree.webm" controls width="300" height="210">
</video>

You can also remove the controls entirely by omitting the controls attribute:
<video src="snowy-tree.webm"></video>

Note that the user can restore the default controls in most browsers by right-
clicking on the video and selecting the controls from the displayed drop-down
menu Figure 4.1.

TIP: If you also specify autoplay, the preload setting will be
overridden because the video must be downloaded for it to play!

All of the preceding examples use just one video file format. But because you’ll
need to serve up more than one video file format to cover all major browsers, let’s
take a look at how to do that next.

PLAYING A VIDEO FILE WITH DIFFERENT SOURCES

Presenting different video file formats to the browser is quite easy using the source
element, which you also used in the audio examples in Chapter 3.
Here is the code you need to provide two different sources for the video to play:
<video controls>
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">
</video>
But let’s also support Theora Ogg, just in case a Firefox 3.5 or Opera 10.5 user
wants to view your video:
<video controls>
<source src="snowy-tree.ogv" type="video/ogg">
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">
</video>
NOTE: You probably won’t need to add support for

Theora Ogg, and you should only really bother if you know
that you need to support specific older versions of Firefox.

The examples in the previous section, “Playing a Video File,” where different
attributes were applied to show you how they work and what they do, also apply
to any video element that contains multiple source elements.

USING THE VIDEO ELEMENTS 69

70

THE type ATTRIBUTE

When you use the source element within the video element, you'll notice that the type attribute moves
from the video element to the source element. The reason is that the whole idea of serving up different
sources is because they use different formats, and each source element needs to specify the format the
source is in via its own type attribute.

The type attribute can also contain the actual codec that the video file is encoded in. For example:

<source src="snowy-tree.mp4" type='video/ogg; codecs="theora, vorbis"'>
<source src="snowy-tree.mp4" type='video/webm; codecs="vp8, vorbis"'»>

<source src="snowy-tree.mp4" type='video/mp4; codecs="mp4a.40.2""'>

Including the codec in the type attribute can be beneficial because it helps the browser decide if it can play
the file or not. It’s best to only include the codec if you know for certain which codec was used to encode
your video content.

Should you decide to include the codec, be very careful and ensure that you format the string correctly,
paying particular attention to the quotes used; otherwise, the browser won’t recognise the source.

In the preceding example, note how the entire string is enclosed within single quotes, the type and codecs
attributes are separated by a semicolon, and the codecs values are contained within a double quote.

If you want to autoplay and loop your video, you would add the autoplay and
loop attributes to the video element like this:

<video controls autoplay loop>
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">

</video>

You can of course also autoplay and remove the controls like this:

<video autoplay>
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">

</video>

CHAPTER 4 USING VIDEO

Notice that when autoplay is off, the first still from the video is displayed in
the browser as an image. You might want to use a different image if the first still
from the video isn’t what you want to display; it might be blank or just not the still
you want to show first.

If you want to use a different image, you can use the poster attribute to point
at an image file to use instead:

<video controls poster="snowy-tree-poster.gif" width="300"
height="210">

<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">
</video>

You can get an idea of how the poster attribute works in Figure 4.2.
Now that you know how to play video files, you might want to think about the

legacy browser fallback. How do you show video in legacy browsers? Let’s take a look.

FIGURE 4.2 The image on the
left displays the first still from
the video that the browser
shows by default; on the right,
the same video is shown but
with a defined poster image
displayed instead.

USING THE VIDEO ELEMENTS 71

72

PLAYING A VIDEO FILE WITH DIFFERENT
SOURCES AND LEGACY FALLBACK

Throughout this chapter I've recommended providing a fallback for legacy browsers,
such as Internet Explorer 6 to 8, that don’t support HTML5 and native multimedia.
This of course means reverting to an old third-party plugin that these browsers
understand, such as Flash.

Because browsers ignore what they don’t understand, legacy browsers will
ignore the video and source elements, and act as if they don’t exist. This of course
allows you to provide a simple link to the video file so it can be downloaded:
<video controls autoplay>

<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">

Download the video: snowy-tree.mp4

</video>
You might prefer to actually provide an image link rather than a simple text link:

<video controls autoplay>
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">
<figure>

<img src="snowy-tree.gif" alt="Branches of a fern tree
covered in snow" height="210" width="300" />

<figcaption>Download the video: snowy-tree.mp4
</figcaption>

</figure>

</video>

CHAPTER 4 USING VIDEO

. Lotk MP4 file might be displayed in
Internet Explorer 8.

- "_%1 puh,
1 e, 5 it I3 ! FIGURE 4.3 This is how the
-1 ‘ . . Thk | H image and link to download the
L _ 1o
A -

i

Download the video: snowy-tree.mpd

Figure 4.3 shows how this might look in Internet Explorer.

If you decide to support Flash and allow non-HTML5 browsers to play your
video via Flash, you can of course do so using either the embed or object elements.
You can then play the video using a downloaded Flash player (which you have
uploaded to your server) and the object element.

You can also take advantage of the fact that Flash can play MP4 files, so there’s
no need to create another file in a different format. The following code shows how
a Flash fallback can be achieved:
<video controls autoplay>

<source src="snowy-tree.mp4" type="video/mp4">

<source src="snowy-tree.webm" type="video/webm">

<object type="application/x-shockwave-flash"
data="player.swf?videoUrl=snowy-tree.mp4&autoPlay=true"
height="210" width="300">
<param name="movie"
value="player.swf?videoUrl=snowy-tree.mp4&autoPlay=true">

</object>

</video>
A non-HTML5 browser will ignore the two source elements because it doesn’t

know what to do with them. It will then recognise the object element, and provided
Flash is installed, will play the video through the Flash player.

USING THE VIDEO ELEMENTS 73

74

The same code using the embed element looks like this:

<video controls autoplay>
<source src="snowy-tree.mp4" type="video/mp4">
<source src="snowy-tree.webm" type="video/webm">
<embed type="application/x-shockwave-flash" wmode="transparent"
src="player.swf?videoUrl=snowy-tree.mp4&autoPlay=true"
height="210" width="300">
</video>

It’s better practice to use object instead of embed, because any content in the
object start and end tags will be rendered even if the browser doesn’t support the
plugin that the object element specifies in its type attribute. This allows you to
specify yet another fallback should you need to. As you can see in the previous
object example, the param element will be read by browsers that don’t understand
the value specified by the type attribute in the object element.

Of course, you still need to rely on the fact that users have the Flash player
installed on their computers, but this may not always be the case. Therefore, you
can also add the image download link mentioned earlier as a final fallback, just in
case Flash isn’t installed:
<video controls autoplay>

<source src="snowy-tree.mp4" type="video/mp4">

<source src="snowy-tree.webm" type="video/webm">

<object type="application/x-shockwave-flash"
data="player.swf?videoUrl=snowy-tree.mp4&autoPlay=true"
height="210" width="300">
<param name="movie"
value="player.swf?videoUrl=snowy-tree.mp4&autoPlay=true">

</object>

Download the video: snowy-tree.mp4

</video>

CHAPTER 4 USING VIDEO

The download link here isn’t a true fallback in the sense that if the browser falls
back to Flash, the download link will also be displayed, but that’s not necessarily
a bad thing because it just provides another way to access the file.

There’s plenty to think about when deciding which browsers you want to sup-
port and which fallbacks you want to provide to do so. Whatever you decide on,
HTML5 multimedia should enable you to get the job done.

VIDEO FOR EVERYBODY!

You can read an excellent article by Kroc Camen of Camen Design (http://
camendesign.com) on how to make video available to all without using
JavaScript or browser sniffing. Kroc’s site is definitely worth checking out for
future reading because he keeps it up to date with any new developments or
discoveries that he or others make.

You'll find the article at http://camendesign.com/code/video_for_everybody.

Of course, these days it isn’t just modern and legacy desktop browsers that you
need to worry about supporting. You also need to make your content available to
users of modern mobiles, tablets, and other alternative browsing devices with
video-playing capabilities. To optimise your web content for such devices, you also
need to learn about media types and media queries, which is what you'll look at next.

TARGETING DEVICES WITH DIFFERENT VIDEO
FILES USING MEDIA TYPES AND QUERIES

Let’s say you wanted to serve up a different video file depending on the browser’s
capabilities and size. For example, you might want to play a smaller video, in both
dimensions and file size, to a mobile phone that will have a small screen and pos-
sibly be retrieving data over a 3G connection. Is this even possible? It is if you use
a combination of media types and media queries, and the media attribute in the
source element.

Media types were introduced in CSS2 (www.w3.org/TR/CSS2/media.html) to
enable you to target different devices with specific styling and/or style sheets.
Table 4.2 (on the next page) lists the media types.

USING THE VIDEO ELEMENTS 75

www.w3.org/TR/CSS2/media.html
http://camendesign.com
http://camendesign.com
http://camendesign.com/code/video_for_everybody

76

CHAPTER 4 USING VIDEO

TABLE 4.2 Media Types

TYPE DEFINITION

all Suitable for all devices.

braille Aimed at Braille tactile feedback devices.

embossed Aimed at paged braille printers.

handheld Intended for handheld devices, such as mobile phones.

print Targets paged material and material for display in print preview mode.
projection Suitable for projected presentations.

screen Suitable for displaying on a colour computer screen.

speech Intended for speech synthesisers.

tty Aimed at devices with a fixed-pitch character grid, such as a terminal.
tv Intended for a television-type device.

You may have come across some of the media types listed in Table 4.2 before,
although most of them are probably alien to you. If you've ever created a style sheet
for printing content, you'll be familiar with the print media type; if you've ever
attempted to target a mobile phone, the handheld type will also be familiar to you.

But it is the handheld type that has caused particular issues as technology has
moved on. Initially, phones didn’t have browsers that were capable of rendering
HTML sites, so developers largely ignored them. When phones became “smarter”
and came with improved browsers, the handheld media type wasn’t being used
in websites. Vendors then chose to ignore it and default to the screen media type
instead. But something was needed to help combat this because website configu-
rations that were meant for full-screen browsers were now rendering on phones,
causing many an annoying scroll bar. This is where media queries come in.

Media queries were created by the W3C and have a complete specification of
their own (see www.w3.org/TR/css3-mediaqueries). They are an extension to CSS3
media types that allow you to check for conditions of particular media features,
such as width, height, and orientation, to deliver either different content or
styling. You can check for a number of device features, the list of which appears
in Table 4.3.

www.w3.org/TR/css3-mediaqueries

TABLE 4.3 Media Query Device Features

FEATURE
width

height
device-width
device-height
orientation
aspect-ratio
device-aspect-ratio
resolution
color
color-index
grid
monochrome

scan

MIN/MAX PREFIXES
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes

No

DEFINITION
The width of the target display area.

The height of the target display area.

The width of the device’s rendering area.

The height of the device’s rendering area.

Orientation of the rendering device: portait or landscape.

Ratio of target width to the height.

Ratio of device-width to the device-height.

Density of pixels in the device.

Number of bits per colour component.

Number of entries in colour lookup table.

Tests if the device is grid-based or not.

Number of bits per pixel in monochrome device.

For TV browsing: progressive or scan.

The great thing is that you can combine media types and media queries to target

certain devices using the and keyword:

screen and (min-device-width:300px)

You can also target all devices that don’t match particular settings by using the

logical not operator keyword:

not screen and (max-width:800px)

The only keyword can also be used to hide the settings from older browsers:

only screen and (max-width:800px)

USING THE VIDEO ELEMENTS 77

78

Of course, these settings don’t work on their own and need to be assigned to
the media attribute of the required source element within the video container:

<source src="myVideo.webm" media=" screen and

(min-device-width:300px)">

The following code example serves a different video to all media types that
have a maximum width of 600 pixels. Both WebM and MP4 formats are provided.
Anything that doesn’t match these features will move on to the succeeding source
definitions:

<video controls>

<source src="snowy-tree-small.mp4" type="video/mp4"
media="all and (max-width:600px)">

<source src="snowy-tree-small.webm" type="video/webm"
media="all and (max-width:600px)">

<source src="snowy-tree-medium.webm" type="video/webm">
<source src="snowy-tree-medium.mp4" type="video/mp4">
</video>
If you want to also provide a medium-sized video file based on a larger maxi-
mum display width of 800 pixels, you can do so like this:
<video controls>

<source src="snowy-tree-small.mp4" type="video/mp4"
media="screen and (max-width:600px)">

<source src="snowy-tree-small.webm" type="video/webm"
media="screen and (max-width:600px)">

<source src="snowy-tree-medium.webm" type="video/webm"
media="screen and (max-width:800px)">

<source src="snowy-tree-medium.mp4" type="video/mp4"
media="screen and (max-width:800px)">

<source src="snowy-tree-large.webm" type="video/webm">
<source src="snowy-tree-large.mp4" type="video/mp4">

</video>

CHAPTER 4 USING VIDEO

TESTING WITH MEDIA TYPES AND QUERIES

You might be wondering how on earth you would
test media types and queries if you don’t have
specific devices available to you.

With the examples that I've provided, simply
changing the size of the browser window and then
refreshing the page will usually result in the desired
outcome.

You can also use the ProtoFluid application
(http://app.protofluid.com), which allows you to
load a website (even those running on your local

server) and change the view to that of a handful of
phones (such as Blackberry and iPhone) and moni-
tors of various sizes, among other devices.

You can see how the code in the section “Target-
ing Devices with Different Video Files Using Media
Types and Queries” works in ProtoFluid in Figure 4.4
and Figure 4.5.

Of course, nothing beats testing your code on the
real thing, but that isn’t always a viable option
given the sheer number of devices on the market.

NOTE: Firefox completely ignores media queries, so changing the browser window size

will have no effect. | suggest using Opera, which does exactly what it’s supposed to.

FIGURE 4.4 Selecting the iPhone size in ProtoFluid displays the

smaller video file.

deosvideorm bl

FIGURE 4.5 Selecting the desktop
800x600 size in ProtoFluid displays
the medium video file.

USING THE VIDEO ELEMENTS

79

http://app.protofluid.com

Again, any device that has a maximum display size that is larger than 600 pixels
or 800 pixels will ignore the smaller sizes and play whichever one of the WebM or
MP4 larger videos that it is capable of playing.

These are just some simple examples of what you might want to achieve when
targeting different devices. By combining media types and queries, you can target
any device to meet your specific requirements. Unfortunately, none of the previous
examples discussed will work with Android.

ANDROID AND VIDEO

The implementation of HTML5 video in Android is nothing short of shockingly
poor. For this reason, it deserves its own small section to prevent you from tear-
ing your hair out.

Android supports MP4 files from version 2.0 and WebM from version 2.3.

You shouldn’t use the type attribute with the video or source element when
defining the video file you want Android to use. For some reason, this confuses
Android and it ignores the source.

In addition, Android will completely ignore the controls attribute, and youw’ll
have to either implement your own controls via the JavaScript API (which is the
subject of Chapter 5), or to achieve autoplay, play the video via the API on page load.

Android also won’t show the first frame of the video as an image; it instead dis-
plays a video icon. It does however recognise and understand the poster attribute,
so if you specify an image with that attribute, it will display that image correctly.

The code for specifying a video for Android follows, along with the JavaScript
required to play the video on Android when the user presses the video icon. I'll defer
the explanation of this JavaScript for now but will discuss it in detail in Chapter 5:

TIP: Peter Gasston, a web developer and author of many articles and
a book on CSS3, provides an in-depth tutorial on how to make HTMLs
video work on Android phones. Be sure to check out what he has to say at
www.broken-links.com/2010/07/08/making-htmls-video-work-on-android-phones
if you have problems working with HTMLs video on Android phones.

80 CHAPTER4 USING VIDEO

www.broken-links.com/2010/07/08/making-html5-video-work-on-android-phones

<!DOCTYPE html>
<html>

<head>

<title>Playing a Video File: Media Query Android</title>

<script>

function play() {

var video = document.getElementById('video');

video.addEventListener('click',function(){

video.play();
},false);
}
</script>
</head>
<body onload="play();">

<video controls>

<source src="snowy-tree-small.mp4" media="screen and

(max-width:800px)">

<source src="snowy-tree-large.mp4" type="video/mp4">

</video>
</body>
</html>

The preceding issues mentioned only affect the default browser that comes
with Android. If the user uses another mobile browser, such as Opera Mobile, the
preceding code isn’t necessary. It’s a good bet that Google will improve Android’s
implementation of HTML5 video in a future release. And by the time you read this,

it may have already been updated.

USING THE VIDEO ELEMENTS 81

82

CHAPTER 4 USING VIDEO

WRAPPING UP

You should now be aware of just how easy it is to add video to your website using
HTML5 native multimedia. You are probably also aware that there are still a number
of details you need to consider before doing so. For example:

= Which browsers should you support?
= Will you support legacy browsers?
= Should you support mobile devices? If so, which ones?

These are just some of the questions you may need to ask before forging ahead.

Once you've made those decisions, however, harnessing the power of HTML5
multimedia to deliver video to your users is relatively simple. With the standardised
method of delivery the multimedia part of the HTML5 specification brings, you
know which viewers you’ll reach and what kind of experience they will have.

So far you've been leaving it up to the browser to provide the video (and audio)
controls. And these controls vary from one browser to the next.

In the next chapter you’ll learn how to use the HTML5 multimedia JavaScript
APIs included as part of the HTMLS5 specification to create your own custom con-
trols for both audio and video. Let’s go!

This page intentionally left blank

INDEX

260

INDEX

NUMBERS

2D API, 199—200. See also canvas element
2D drawing context, using, 199
2D Transforms. See also transforms
matrix() function, 153
rotating videos, 150
scaling videos, 148-150
skewing videos, 151
support for, 148
translating videos, 151-153
X and Y equivalents, 153
3D Transforms. See also transforms
perspective property, 154, 156
rotating elements, 154, 156—157
using, 154-157
W3C definition, 154
3D video cover, 169-170

SYMBOLS

& (ampersand) character, including in video

cues, 183

< (left angle bracket), including in video
cues, 183

> (right angle bracket), including in video
cues, 183

A

AAC (Advanced Audio Coding) audio
format, 48

browser support for, 49
accessibility
audience for, 174
checkKey() function, 194
improving for custom controls, 192—194
progress bar, 194
SRT file format, 175
WebVTT (Web Video Text Tracks), 176

Adobe Flash media player, 25—26, 29
in Internet Explorer 8, 5758
using embed element, 56
all media type, 76
ampersand (&) character, including in video
cues, 183
Android video support, 64—65, 80—81

animateMotion element, using with SVG
video masks, 231

animating SVG video masks, 228-229
animation-fill-mode property, using,
164-165

APIs. See also JavaScript API
Audio Data, 240-244
getUserMedia API, 247-248
PeerConnection, 249
Stream, 250—251
Web Audio, 245-246
WebSocket, 252—258

applet element, using with plugins, 28

application/ogg MIME type, 62

article element, 10, 13—16

aside element, 18

audio browser support, 49—51

audio codecs, defined, 46

audio controls, 34

Audio Data API
accessing data, 241
framebuffer data, 242—243
JavaScript code, 242
loadedmetadata event, 241
mozChannels attribute, 241
mozCurrentSampleOffset() method, 243
mozFrameBufferLength attribute, 241
mozSampleRate attribute, 241
mozSetup() method, 243
mozWriteAudio() method, 243
play function, 244
reading audio data, 240-243
writing audio data, 243

audio declaration, 34
audio element

autoplay attribute, 33
controls attribute, 33, 52-53
crossorigin attribute, 33
loop attribute, 33
mediagroup attribute, 33

browsers
compatibility, 20
encoding audio files, 50
legacy, 51

button CSS class name, 10

C

muted attribute, 33
. Camen, Kroc, 75
muting files, 53
canvas element. See also 2D API

attributes, 198
browser support for, 198

playing audio files, 52
preload attribute, 32, 53
src attribute, 32 .

L. . . . clearing contents of, 203
using in native multimedia, 32-34 .

. .. . defining, 198
using transitions with, 143-144 .
drawing context, 199
fillRect() function, 199—201
getting handle to, 199
height attribute, 198

overriding default dimensions, 202

audio files
encoding, 50
playing, 52—58
audio formats
AAC (Advanced Audio Coding), 48-49

website, 212
browser support for, 49-51

width attribute, 198

MP3, 47, 49
MP4, 4849 X and Y axes, 198

’ Captionator JavaScript library, 188
MPEG, 47 P J p v,

captions, element for, 19

Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)

Ogg Vorbis, 46, 49
WAV (Waveform Audio File Format),

48—49 . .3
character encoding, providing, 9

charset element, 9

B

backwards compatibility, 5

Chrome

enabling Web Audio APl in, Web
Audio API, 246

opacity consideration, 146

Berners-Lee, Tim, 4

black and white filter, applying, 235-236

Blender Foundation, 162 playbackRate attribute, 111

blur, adding to video, 236 video support, 64

braille media type, 76 circle-animate-motion.svg file, 230
browser support codec
defined, 62

including in type attribute, 70

audio formats, 49-51

canvas element, 198

SVG (Scalable Vector Graphics), 217
video formats, 64-66, 114-115

colour saturation matrix filter, applying, 234
container, defined, 62

INDEX 261

262

INDEX

content CSS class name, 10

control attribute, using with video files, 67

controls. See also JavaScript API
accessibility of, 192-194
fast forward button, 110—111
Mute button, 104—107
Play/Pause button, 98—102
progress bar, 107-109
removing from videos, 100
rewind button, 110111
seek bar, 112113
Stop button, 98-102
Volume button, 104-107
copying playing video, 205-207
copyright CSS class name, 10
createElement() function, using, 208
crossorigin attribute, 36
CSS (Cascading Style Sheets), 118
interpreting, 9
quirks mode, 9
standards mode, 9
CSS class names
button, 10
content, 10
copyright, 10
footer, 10
header, 10
menu, 10
nav, 10
small, 10
text, 10
title, 10
CSS styling
div for video title, 119—120
title added to video, 119
video example, 118121

CSS Transitions, styling with, 144—145. See

also transitions
CSS2 website, 75

CSS3. See also WebKit-specific CSS3 rules
gradient, 123-125
linear gradients, 125
object-fit property, 129-131
object-position property, 132-134
opacity property, 122
rounded corners, 126—127
shadow, 126—128
sizing content, 128—134
specification, 122
CSS3 Animations
3D video cover, 169—170
defining, 160
from property, 159
Keyframes function, 158—161
properties, 160
spin, 167-168
to property, 159
video cover, 161-166
W3C specification, 158
CSS3 Transitions specification, 147
currentTime setting, capturing, 108-109
custom controls. See also JavaScript API
accessibility of, 192-194
fast forward button, 110111
Mute button, 104—107
Play/Pause button, 98—102
progress bar, 107-109
removing from videos, 100
rewind button, 110-111
seek bar, 112-113
Stop button, 98-102
Volume button, 104-107

D

DirectShow media player, 25
div element, 13
DOCTYPE element, 7—-8

downloads. See websites

drawImage() function, using, screen
shot, 202

drop shadow, adding to video, 144-145, 155

DTD (Document Type Definition),
defined, 223

Durian Open Movie Project, 162

E

elements
applet, 28
article, 13-16
aside, 18
charset, 9
charset, 9
DOCTYPE, 8-9
embed, 28
figcaption, 19
figure, 19
footer, 11
h, 16
header, 11
hgroup, 12
naming, 10
nav, 17
object, 28
param, 30
for plugins, 28
range, 104
script, 20
section, 13—-16
svg, 217218
wmode, 30

Elephant’s Dream
cue subtitle, 180—181
Playr video player, 190
subtitle cue, 179
updating canvas element, 206
video-cue text, 182—183

ellipse mask

adding to video, 226—227

mask element, 227

use element, 227
embed element, using with plugins, 28
embossed media type, 76
encoders for audio

Media Converter, 50

Miro Video Converter, 50
English subtitles, specifying, 186
event listener, adding for keypress event, 194
events in JavaScript API

abort, 93

canplay, 93

canplaythrough, 94

durationchange, 94

emptied, 93

ended, 94

error, 93

keypress, 194

listening for, 102—104

loadeddata, 89, 93

loadedmetadata, 93, 202

loadstart, 93

onclick, 106, 110

pause, 94, 104

pause and play, 102-103

play, 94

playing, 94

progress, 93

ratechange, 94

seeked, 94

seeking, 94

stalled, 93

suspend, 93

timechange, 95

timeupdate, 94-95

volumechange, 94

waiting, 94
eXtensible Markup Language (XML), 4

INDEX

263

264

INDEX

F

fast forward button, adding, 110-111
feColorMatrix filter, 233
feGaussianBlur filter, applying, 236
figcaption element, 19

figure element, 19

fill attribute, setting to freeze, 231

fillRect() function, using with canvas,
199—202

filter element definition, 233—237
Firefox
audio support, 49
video support, 64
Flash fallback, using with video files, 73
Flash file playback, providing, 55
Flash Player, 25-26, 29
in Internet Explorer 8, 57—58
using embed element, 56
Flash Player 10.2
lack of support for, 27
vulnerability in, 27
footer element, 10-11
Fraunhofer patent, 47
functions in JavaScript API
addEventListener(), 102
addTextTrack(), 97
canPlayType(), 97
changePlaybackSpeed(), 110
changeVolume(), 105
clearInterval() function, 206
createElement(), 208
drawImage(), 201
fillRect(), 201202
findPos(), 113
getImageData(), 209
load(), 97
Math.floor(), 105
pause(), 97, 101

play(), 96—97, 101
playvideo(), 96
putImageData(), 209
setInterval() function, 205
setPlayPosition(), 112113
toggleMute(), 106
togglePlay(), 101, 103
using, 96

G

Gasston, Peter, 80
Gaussian blur, applying to video, 236
German subtitles, specifying, 186
getImageData() function, using, 209
getUserMedia API, 247—248
audio parameter, 247
errorCallback parameter, 248
microphone access, 248
options parameter, 247
successCallback parameter, 248
video parameter, 247
Google Chrome

enabling Web Audio API in, Web
Audio APJ, 246

opacity consideration, 146
playbackRate attribute, 111
video support, 64
gradients
using in CSS3, 123-125
using with video, 123-125
greyscale video, playing, 208—212

H

h element, using in header, 16
H.264 (MP4) video format, 63

Handbrake video encoder,
downloading, 66

handheld media type, 76
header element, 10—11
hgroup element, 12
Hickson, Ian, 6, 10
HTML (HyperText Markup Language), 4
HTML controls, specifying tab order of, 192
HTML5

availability of, 7

backwards compatibility, 5

versus HTML4.01, 4

progression of, 4—6

range element, 193

tabindex attribute, 192—193

video support, 65

W3C specification, 4—-6

WHATWG specification, 4-6
HTMLS5 elements

applet, 28

article, 13-16

aside, 18

charset, 9

DOCTYPE, 7-8

embed, 28

figcaption, 19

figure, 19

footer, 11

h, 16

header, 11

hgroup, 12

naming, 10

nav, 17

object, 28

param, 30

for plugins, 28

range, 104

script, 20

section, 13-16

svg, 217-218

wmode, 30

html5shim script, downloading, 20
hue rotation filter, applying, 234

image links, using with video files, 7275
ImageData object contents

data attribute, 209

height attribute, 209

width attribute, 209
innerHTML, setting, 20
innerShiv script, downloading, 20
Internet Explorer 9, native multimedia in, 42
Internet Explorer (IE), 5

browser compatibility, 20

video support, 64
i0S video support, 64

J

JavaScript API. See also APIs; custom
controls

audio attributes, 87—-91

audioTracks attribute, 90

autoplay attribute, 87

buffered attribute, 89

checking video looping, 92
controller attribute, 90

controls attribute, 88

crossOrigin attribute, 88
currentSrc attribute, 88
currentTime attribute, 90, 92, 95, 101
defaultMuted attribute, 90
defaultPlaybackRate attribute, 90
duration attribute, 87

ended attribute, 87
getElementsByTagName() function, 92
grabbing handle to video object, 92
height video attribute, 91
initialTime attribute, 90

INDEX

265

266

INDEX

JavaScript API (continued)

loop attribute, 88

mediaGroup attribute, 90
muted attribute, 88
networkState attribute, 88
paused attribute, 87
playbackRate attribute, 87
played attribute, 90

poster video attribute, 91
preload attribute, 89
readyState attribute, 89
seekable attribute, 90
seeking attribute, 89

src attribute, 88
startOffsetTime attribute, 90
startTime attribute, 88
textTracks attribute, 90
TimeRange object, 91

title attribute, 101

tutorial, 86

video attributes, 87—90
videoHeight video attribute, 91
videoTracks attribute, 90
videoWidth video attribute, 91
volume attribute, 87

Web Audio, 240

width video attribute, 91

JavaScript API events

abort, 93

canplay, 93
canplaythrough, 94
durationchange, 94
emptied, 93

ended, 94

error, 93

keypress, 194
listening for, 102104
loadeddata, 89, 93
loadedmetadata, 93, 202

loadstart, 93
onclick, 106, 110
pause, 94, 104
pause and play, 102—103
play, 94

playing, 94
progress, 93
ratechange, 94
seeked, 94
seeking, 94
stalled, 93
suspend, 93
timechange, 95
timeupdate, 94-95
volumechange, 94
waiting, 94

JavaScript API methods

addEventListener(), 102
addTextTrack(), 97
canPlayType(), 97
changePlaybackSpeed(), 110
changeVolume(), 105
clearInterval() function, 206
createElement(), 208
drawImage(), 201
fillRect(), 201202
findPos(), 113
getImageData(), 209
load(), 97

Math.floor(), 105

pause(), 97, 101

play(), 96—97, 101
playvideo(), 96
putImageData(), 209
setInterval() function, 205
setPlayPosition(), 112113
toggleMute(), 106
togglePlay(), 101, 103
using, 96

JavaScript libraries
Captionator, 188
LeanBack Player, 188
MediaElement]JS, 188
Playr, 188
jQuery, using, 20
js_videosub, downloading, 188
jscaptions, downloading, 188
JW Player, downloading, 55

K

Kaltura, downloading, 188
Keyframes function
removecover, 165, 169
using, 158-161
using with video cover, 164
keypress event, adding event listener for, 194

L

“Last Call” stage, 6
LeanBack Player JavaScript library, 188

left angle bracket (<), including in video
cues, 183

lineto command, using with SVG video
masks, 231

“Links and Anchors,” 5
loadedmetadata event, using, 202
luminance to alpha filter, applying, 235

M

Macromedia media players, 25
makeItGrey() function
calling, 212
defining, 210
masks. See also SVG video masks
adding over video, 136-137
applying to video element, 222—223
defining in SVG, 221

Media Converter, downloading, 50, 66
media players. See also plugins

Adobe Flash, 25-26

Adobe Flash media player, 29
DirectShow, 25

plugins, 27

QuickTime, 26

RealAudio, 24

security issues, 27
Shockwave, 25

Windows Media Player, 25—26

media queries

aspect-ratio device feature, 77
color device feature, 77
color-index device feature, 77
combining with media types, 77
device features, 77
device-aspect-ratio feature, 77
device-height feature, 77
device-width feature, 77

grid device feature, 77

height device feature, 77
monochrome device feature, 77
orientation device feature, 77
resolution device feature, 77
scan device feature, 77
specification, 76

testing with, 79

using, 75-78, 80

width device feature, 77

media types

all, 76

braille, 76

combining with media queries, 77
embossed, 76

handheld, 76

print, 76

projection, 76

screen, 76

INDEX

267

268

INDEX

media types (continued)
speech, 76
testing with, 79
tty, 76
tv, 76
using, 75-78, 80
MediaElement]JS JavaScript library, 188
mediagroup attribute, 36
MediaStream objects
input and output, 250
LocalMediaStream object, 251
obtaining, 249
record() method, 251
using, 250—251
menu CSS class name, 10
methods in JavaScript API
addEventListener(), 102
addTextTrack(), 97
canPlayType(), 97
changePlaybackSpeed(), 110
changeVolume(), 105
clearInterval() function, 206
createElement(), 208
drawImage(), 201
fillRect(), 201—202
findPos(), 113
getImageData(), 209
load(), 97
Math.floor(), 105
pause(), 97, 101
play(), 96—97, 101
playvideo(), 96
putImageData(), 209
setInterval() function, 205
setPlayPosition(), 112113
toggleMute(), 106
togglePlay(), 101, 103
using, 96

Microsoft plugins, 26

MIDI (Musical Instrument Digital Interface)
format, 24

MIME (Multipurpose Internet Mail
Extension), 29, 47

application/ogg type, 62
video/mpeg type, 63
video/webm type, 63
Miro Video Converter, downloading, 50, 66

Modernizr detection library,
downloading, 115

Mozilla Firefox
audio support, 49
video support, 64

Mozilla’s Audio Data API
accessing data, 241
framebuffer data, 242—243
JavaScript code, 242
loadedmetadata event, 241
mozChannels attribute, 241
mozCurrentSampleOffset() method, 243
mozFrameBufferLength attribute, 241
mozSampleRate attribute, 241
mozSetup() method, 243
mozWriteAudio() method, 243
play function, 244
reading audio data, 240-243
writing audio data, 243

MP3 audio format, 47, 49

MP4 (H.264), 48
browser support, 49, 64—65
encoding delayed playback, 66
video format, 63

MPEG (Moving Picture Experts Group), 47, 63

multimedia. See media players; native
multimedia

Mute button, adding, 104-107
muted attribute, setting, 67
muting files, 53

N

native multimedia
audio element, 32, 52
benefits, 31
in Internet Explorer 9, 42
in Safari, 42
source element, 38—39
track element, 40—41
video element, 35-37
nav element, 10, 17
node.js website, 254

0

object element, using with plugins, 28-29
Ogg Vorbis audio format, 46, 49
browser support for, 49
using, 52
opacity value
fading, 146—147
using in CSS3, 122
Opera video support, 64, 133
Outlining Algorithm, 16

P

param element, using with plugins, 30

path element, using with SVG video
masks, 231

PeerConnection API, 249

perspective property, using with 3D
Transforms, 154

Pfeiffer, Silvia, 184

pixelData object, manipulating data in,
210-211

pixels, setting transparency for, 235

playing video, copying, 205—207. See also
video copy

Play/Pause button, adding, 98-102
Playr JavaScript library, 188-191
plugins. See also media players
applet element, 28
embed element, 28
object element, 28
param element, 30
using with media players, 27
wmode element, 30
print media type, 76
progress bar
adding, 107-109
adding for accessibility, 194
updateProgress() function, 108-109
using range element as, 193
projection media type, 76
ProtoFluid application, downloading, 79
putImageData() function, using, 209

Q

QuickTime multimedia player, 26
quirks mode, 9

R

range element, using as progress bar, 193

rastar graphics, 216

RealAudio player, 24

reflection, specifying on HTML elements,
135136

rewind button, adding, 110-111

RGB channels, converting, 235

right angle bracket (>), including in video
cues, 183

rotate transform, using, 150, 164
rotate3d() transform, using, 167-168
rounded corners, using in CSS3, 126—127

INDEX

269

270

INDEX

S sites (continued)

Blender Foundation, 162

Safari]
Camen Design, 75

audio support, .
PP 49 canvas basics, 200, 212

native multimedia in, 42 . s
4 Captionator JavaScript library, 188
CSS2, 75

CSS3 linear gradients, 125

playbackRate attribute, 111
video support, 64
Scalable Vector Graphics (SVG)

CSS3 specification, 122
advantages, 216—217, 222

CSS3 Transitions specification, 147

browser support, 21 .
PP 7 drawImage() function, 202

circle element, 219 Durian Open Movie Project, 162
getUserMedia API, 247
Handbrake, 66

HTML5 Document Outlines, 16

html5shim script, 20

ellipse element, 220
fil1 attribute for text colour, 218
text element, 218
scale transform, using, 148-150
screen media type, 76

innerShiv script, 20
screen shot

. JavaScript tutorial, 86
drawImage() function, 202-203
fillRect() function, 201-202
loadedmetadata API event, 202

ratio variable, 202

js_videosub, 188
jscaptions, 188
JW Player, 55
Kaltura, 188

function, 20 -
snap() function, 203 LeanBack Player JavaScript library, 188

taking of HTMLS5 video, 201-204
script element, 20

“Links and Anchors,” 5

mask property, 137

section element, 1316 .
3 Media Converter, 50, 66

seek bar, adding, 112-113 . .
media queries, 76

h, ingi 26-12.
shadows, using in CSS3, 126-128 MediaElement]S JavaScript library, 188

Sharp, Remy, 20, 2. . .
P Y 54 Miro Video Converter, 50, 66

Shock ,2 . S
Ockwave, 25 Modernizr detection library, 115
MPEG (Moving Picture Experts Group), 63

node.js, 254

Sintel video cover animation, 162
sites
2D AP, 199

object-fit property, 134
2D Transforms, 153 . s
" object-position property, 134

D Transforms, 154, 1 .
3 24,157 PeerConnection API, 249

A S
ndroid video support, 80 Playr JavaScript library, 188

animate element, 22 . ..
9 ProtoFluid application, 79

animateMotion element, 231
reflect property, 137

animation-play-state property, 160
Audio Data API, 244

Sintel video cover animation, 162
Stream API, 250

SubRip program, 175
SVG filters, 233
SVG text element attributes, 218
Theora Ogg, 62
transforms, 157
transition properties, 142
WebSocket API, 252
WebSocket servers, 254
WebVTT Working Group Charter, 176
Working Group Charter, 184
Xiph.Org Foundation, 62
skew transform, using, 151
small CSS class name, 10
snap() function
using with screen shot, 203
using with video copy, 205—206
source element
media attribute, 39
src attribute, 39
type attribute, 39
speech media type, 76
spin Keyframes function, defining, 167-168
SRT file format, 175, 188
standards mode, 9
Stop button, adding, 98-102
Stream API, 252
goal of, 250
MediaStream object, 250-251
SubRip program, downloading, 175
subtitles
adding to videos, 189-191
English, 186
German, 186
using, 175
SVG (Scalable Vector Graphics)
advantages, 216—217, 222
browser support, 217
circle element, 219

ellipse element, 220
fill attribute for text colour, 218
text element, 218
SVG and HTMLs5 video, 220. See also videos
adding ellipse masks, 226—227
adding text masks, 221-225
svg element, 217-218, 224
SVG filters
applying to HTMLS5 video, 233—237
black and white, 235—236
colour saturation matrix, 234
feColorMatrix, 233
feGaussianBlur, 236
hue rotation, 234
luminance to alpha, 235
merging, 237
SVG text element attributes, fill attribute
for text colour, 218

SVG video masks. See also masks
animate element, 229
animateMotion element, 231
animating, 228-229
attributeName attribute, 229
circle element, 231
circle-animate-motion.svg file, 230
defs element, 224
doctype declaration, 224
ellipse element, 228
fill attribute, 231
lineto command, 231
moving, 230—-233
mpath element, 232
path element, 231
text.svg file, 224
x1ink document definition, 224

SWEF file format, 25

INDEX

27

T U

tab order, specifying for controls, 192-193 UTE-8 character encoding, 9

text CSS class name, 10
text mask, adding to video, 221225 V

Theora Ogg video compression format, 62,

6465, 69 vector graphics, 216

title CSS class name, 10 version, determining, 7-8

track element video browser support, 64—66, 114-115

attributes, 185 video controls, 37

chapter listings, 187 video copy. See also playing video

default attribute, 41, 185-186
English subtitles, 186
[hh:]mm:ss.msmsms attribute, 185
kind attribute, 41, 185

label attribute, 41, 185

purpose, 185

ruby attribute, 185

clearInterval() function, 206
getImageData() function, 209
makeItGrey() function, 210, 212
pixelData object, 210-211
playing in greyscale, 208—212
setInterval() function, 205, 212
setting background canvas, 208

src attribute, 41, 185 setting red, green, and blue values, 211

srclang attribute, 41, 185 snap() function, 205-206

using with WebVTT, 188-191 video cover
animating, 161-166

divs, 162-163

video subtitles example, 186
transforms. See also 2D Transforms; 3D

Transforms extending to 3D, 169170
defined, 148 Keyframes function, 164
rotate, 164 video cues, special characters in, 183
rotate3d(), 167-168 video element

translate, 164 adding controls attribute to, 99

transitions. See also CSS Transitions autoplay attribute, 35
creating, 141-143 controls attribute, 35
fading, 146-147 crossorigin attribute, 36
properties, 141 height attribute, 36
using with audio, 143-144 loop attribute, 35
using with video, 143-144 mediagroup attribute, 36
W3C definition, 140

translate transform, using, 151-153, 164

muted attribute, 35

poster attribute, 35
transparency, setting for pixels, 235 preload attribute, 35
tty media type, 76 src attribute, 35

tv media type, 76 using source element in, 70

272 INDEX

using transitions with, 143-144 fading, 146-147

width attribute, 36 rotating with 2D Transforms, 150

video files scaling with 2D Transforms, 148-150
applying masks to, 136—137 skewing with 2D Transforms, 151
autoplay attribute, 67, 70 taking screen shots of, 201-204
changing images, 71 translating with 2D Transforms, 151-153
control attribute, 67—68 video/webm MIME type, 63
embed element, 73-74 Volume button, adding, 104-107
encoding, 65—-66 .vtt extension, using with WebVTT, 177
Flash fallback, 73
height attribute, 67 W

image download link, 74-75 . .
W3C (World Wide Web Consortium), 4

WAV (Waveform Audio File Format), 48—49
Web Audio API, 240
AudioContext() constructor, 246
AudioNode objects, 246
enabling in Chrome, 246

image links, 7273
legacy fallback, 72-75
loop attribute, 67, 70
making available, 75
object element, 73-74
object-fit property, 129-131
. s goal of, 245
object-position property, 132-134 X
. modular routing, 246

playback from varying sources, 69-75

. Web Forms 2.0, 5
playing, 67—68 o
Web Hypertext Application Technology

Group (WHATWG), 5-6

WebKit-specific CSS3 rules. See also CSS3
mask-box-image property, 136—137

poster attribute, 71
preload attribute, 68
removing controls, 68

removing default controls from, 100 reflect property, 135-136

WebM files, playing, 67
WebM video format, 63—65
websites

2D AP, 199

2D Transforms, 153

restoring default controls, 68
type attribute, 70
using drop shadow with, 144-145
using gradients with, 123-125
width attribute, 67

video formats
MP4 (H.264), 63
Theora Ogg, 62
WebM, 63

video/mpeg MIME type, 63

videos. See also SVG and HTML5 video
adding blur to, 236
adding drop shadows to, 155
adding subtitles to, 189-191

3D Transforms, 154, 157

Android video support, 80

animate element, 229
animateMotion element, 231
animation-play-state property, 160
Audio Data API, 244

Blender Foundation, 162

Camen Design, 75

INDEX 273

274

INDEX

websites (continued)

canvas basics, 200, 212
Captionator JavaScript library, 188
CSS2, 75

CSS3 linear gradients, 125

CSS3 specification, 122

CSS3 Transitions specification, 147
drawImage() function, 202

Durian Open Movie Project, 162
getUserMedia API, 247
Handbrake, 66

HTML5 Document Outlines, 16
html5shim script, 20

innerShiv script, 20

JavaScript tutorial, 86

js_videosub, 188

jscaptions, 188

JW Player, 55

Kaltura, 188

LeanBack Player JavaScript library, 188
“Links and Anchors,” 5

mask property, 137

Media Converter, 50, 66

media queries, 76

MediaElement]S JavaScript library, 188
Miro Video Converter, 50, 66
Modernizr detection library, 115

MPEG (Moving Picture Experts Group), 63

node.js, 254

object-fit property, 134
object-position property, 134
PeerConnection API, 249
Playr JavaScript library, 188
ProtoFluid application, 79
reflect property, 137

Sintel video cover animation, 162
Stream API, 250

SubRip program, 175

SVG filters, 233

SVG text element attributes, 218
Theora Ogg, 62
transforms, 157
transition properties, 142
WebSocket API, 252
WebSocket servers, 254
WebVTT Working Group Charter, 176
Working Group Charter, 184
Xiph.Org Foundation, 62
WebSocket API, 252—258
bufferedAmount attribute, 253
close() method, 253
enabling WebSockets, 252
error event, 254
extensions attribute, 253
onclose event, 254
onmessage event, 254
onopen event, 254
overhead, 252
protocols attribute, 253
readyState attribute, 253
send() method, 253-254
WebSocket connection, storing, 255
WebSocket constructor
protocols parameter, 252
url parameter, 252
WebSocket server
setting up, 254
using, 255
WebSockets
close() method, 256
closeConnection() function, 256
connect () function, 255-256
displayMsg() function, 256
div for data display, 255
HTML for connection, 255
input field, 255
JavaScript code, 255-256
send() function, 257

setStatus() function, 256
using, 254-258

WebVTT (Web Video Text Tracks), features

of, 176-177

WebVTT file format

A:value cue setting, 179

b text tag, 181

bold tag, 181

c text tag, 181

class text, 181

CSS class names, 182

cue settings, 178

cue settings, 179—-180
D:value cue setting, 179
future developments, 184
[hh:]mm:ss.msmsms text tag, 181
i text tag, 181

idstring, 177

italics tag, 181

line position cue setting, 179
L:value cue setting, 179
ruby text tag, 181

special characters, 183
subtitle cue, 179

S:value cue setting, 179
text cue settings, 179

text tags, 181

TextLineN, 178

timestamp ranges, 178-179
timestamp tag, 181
T:value cue setting, 179

u text tag, 181

underline tag, 181

using with track element, 188—-191
v text tag, 181

voice content tag, 181

.vtt extension, 177

WHATWG (Web Hypertext Application
Technology Group), 5—6

Windows Media Player, 25-26

wmode element, using with plugins, 30
Working Group Charter website, 184
World Wide Web Consortium (W3C), 4

X

XHTML

Strict, 4-5

Transitional, 4-5
Xiph.Org Foundation website, 62
XML (eXtensible Markup Language), 4

INDEX 275

	Contents
	Introduction
	CHAPTER 1 AN INTRODUCTION TO HTML5
	What Is HTML5?
	The Progression of HTML5
	When Can You Use HTML5?

	Main HTML5 Structural Elements
	DOCTYPE and Charset
	<header> and <footer>
	<hgroup>
	<article> and <section>
	<nav>
	<aside>
	<figure> and <figcaption>
	<script>

	Wrapping Up

	CHAPTER 2 HTML5 MULTIMEDIA ELEMENTS
	History of Web Multimedia
	Media Players
	HTML Elements

	Welcome, Native Multimedia!
	The Audio Element
	The Video Element
	The Source Element
	The Track Element

	Wrapping Up

	CHAPTER 3 USING AUDIO
	Audio Codecs and File Formats
	Ogg Vorbis
	MP3
	WAV
	AAC
	MP4

	Browser Support for Audio Formats
	Encoding Your Audio File
	Legacy Browser Fallback

	Examples of Using the Audio Element
	Playing an Audio File
	Playing an Audio File with Different Sources
	Playing an Audio File with Different Sources and Legacy Fallback

	Wrapping Up

	CHAPTER 4 USING VIDEO
	Video Codecs and File Formats
	Theora Ogg
	MP4 (H.264)
	WebM

	Browser Support for Video Formats
	Encoding Your Video Files

	Using the Video Elements
	Playing a Video File
	Playing a Video File with Different Sources
	Playing a Video File with Different Sources and Legacy Fallback
	Targeting Devices with Different Video Files Using Media Types and Queries
	Android and Video

	Wrapping Up

	CHAPTER 5 JAVASCRIPT API AND CUSTOM CONTROLS
	What Is JavaScript?
	Exploring the API Attributes
	Harnessing the API Events
	Using the API Methods
	Creating a Simple Video Player with Custom Controls
	Adding Play/Pause and Stop Buttons
	Adding Volume and Mute Buttons
	Adding a Progress Bar
	Adding Fast-Forward and Rewind Buttons
	Adding a Seek Bar
	Non-HTML5 Browsers

	Wrapping Up

	CHAPTER 6 STYLING MEDIA ELEMENTS WITH CSS
	Simple CSS Styling
	Advanced Whizzyness with CSS3
	Opacity
	Gradient
	Rounded Corners
	Shadow
	Sizing Your Content

	WebKit-specific CSS3 Rules
	Reflect
	Mask

	Wrapping Up

	CHAPTER 7 TRANSITIONS, TRANSFORMS, AND ANIMATION
	Using Transitions
	Using Transitions with Audio and Video
	Styling with CSS Transitions
	Fading Transitions

	Exploring 2D Transforms
	Scaling a Video
	Rotating a Video
	Skewing a Video
	Translating a Video

	Playing with 3D Transforms
	Working with Animations
	@keyframes
	Animated Video Cover
	Animated Spin
	Extending the Animated Video Cover to 3D

	Wrapping Up

	CHAPTER 8 MULTIMEDIA AND ACCESSIBILITY
	Media and Potential Accessibility Issues
	A Brief Look at SRT
	Introducing WebVTT
	What Can WebVTT Do?
	WebVTT File Format

	The Track Element
	Using WebVTT and the Track Element Now
	Playr Example

	Media Controls and Accessibility
	Wrapping Up

	CHAPTER 9 USING VIDEO WITH CANVAS
	The Canvas Element
	The 2D API
	Taking a Screen Shot of an HTML5 Video
	Making a Copy of a Playing Video
	Playing the Video Copy in Greyscale
	Wrapping Up

	CHAPTER 10 USING VIDEO WITH SVG
	A Brief Introduction to SVG
	Browser Support
	The svg Element
	SVG Text
	SVG Circle
	SVG Ellipse

	Using SVG with HTML5 Video
	Adding a Text Mask to a Video
	Adding an Ellipse Mask to a Video
	Animating an SVG Video Mask
	Moving an SVG Video Mask
	Applying SVG Filters to HTML5 Video

	Wrapping Up

	CHAPTER 11 FUTURE FEATURES
	Audio APIs
	Audio Data API
	Web Audio API

	GetUserMedia API
	PeerConnection API
	Stream API
	The MediaStream Object

	WebSocket API
	The WebSocket Interface
	Using WebSockets

	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

