
L A R R Y U L L M A N

T O B Y D O N A L D S O N

Python

Third Edition

 LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

Peachpit Press

V I S U A L Q U I C K S TA R T G U I D E

Python
TOBY DONALDSON

Visual QuickStart Guide

Python, Third Edition
Toby Donaldson

Peachpit Press

www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2014 by Toby Donaldson

Editor: Scout Festa

Production Editor: Katerina Malone

Compositor: David Van Ness

Indexer: Valerie Haynes Perry

Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press

Interior Design: Peachpit Press

Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the

publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has

been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the

instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services

identified throughout this book are used in editorial fashion only and for the benefit of such companies with no

intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey

endorsement or other affiliation with this book.

ISBN-13: 978-0-321-92955-6

ISBN-10: 0-321-92955-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com
http://www.minesf.com

Acknowledgments
Thanks to Clifford Colby and Scout Festa for their expertise and

patience in bringing this edition of the book to life; to the many students

at SFU who continue to teach me how best to learn Python; to John

Edgar and the other computer science teachers at SFU with whom I’ve

had the pleasure to work; and to Bonnie, Thomas, and Emily for rec-

ommending I avoid using the word blithering more than once in these

acknowledgments. And a special thank you to Guido van Rossum and

the rest of the Python community for creating a programming language

that is so much fun to use.

iv Contents at a Glance

Contents at a Glance

Chapter 1 Introduction to Programming 1

Chapter 2 Arithmetic, Strings, and Variables 9

Chapter 3 Writing Programs . 31

Chapter 4 Flow of Control . 43

Chapter 5 Functions . 67

Chapter 6 Strings . 83

Chapter 7 Data Structures . 101

Chapter 8 Input and Output . 123

Chapter 9 Exception Handling 143

Chapter 10 Object-Oriented Programming 153

Chapter 11 Case Study: Text Statistics 177

Appendix A Popular Python Packages 195

Appendix B Comparing Python 2 and Python 3 199

Index . 203

Table of Contents v

Table of Contents

Chapter 1 Introduction to Programming 1

The Python Language . 2

What Is Python Useful For? 3

How Programmers Work 4

Installing Python . 6

Chapter 2 Arithmetic, Strings, and Variables 9

The Interactive Command Shell 10

Integer Arithmetic . 11

Floating Point Arithmetic 13

Other Math Functions 16

Strings . 17

String Concatenation . 19

Getting Help . 20

Converting Between Types 22

Variables and Values . 24

Assignment Statements 26

How Variables Refer to Values 28

Multiple Assignment . 29

Chapter 3 Writing Programs . 31

Using IDLE’s Editor . 32

Compiling Source Code 35

Reading Strings from the Keyboard 36

Printing Strings on the Screen 39

Source Code Comments 41

Structuring a Program 42

Chapter 4 Flow of Control . 43

Boolean Logic . 44

If-Statements . 49

Code Blocks and Indentation 51

Loops . 54

vi Table of Contents

Comparing For-Loops and While-Loops 59

Breaking Out of Loops and Blocks 64

Loops Within Loops . 66

Chapter 5 Functions . 67

Calling Functions . 68

Defining Functions . 70

Variable Scope . 73

Using a main Function 75

Function Parameters . 76

Modules . 80

Chapter 6 Strings . 83

String Indexing . 84

Characters . 87

Slicing Strings . 89

Standard String Functions 92

Regular Expressions . 98

Chapter 7 Data Structures . 101

The type Command . 102

Sequences . 103

Tuples . 104

Lists . 108

List Functions . 110

Sorting Lists . 113

List Comprehensions . 115

Dictionaries . 118

Sets . 122

Chapter 8 Input and Output . 123

Formatting Strings . 124

String Formatting . 126

Reading and Writing Files 128

Examining Files and Folders 131

Processing Text Files 134

Processing Binary Files 138

Reading Webpages . 141

Table of Contents vii

Chapter 9 Exception Handling 143

Exceptions . 144

Catching Exceptions 146

Clean-Up Actions . 150

Chapter 10 Object-Oriented Programming 153

Writing a Class . 154

Displaying Objects . 156

Flexible Initialization 160

Setters and Getters . 162

Inheritance . 168

Polymorphism . 171

Learning More . 175

Chapter 11 Case Study: Text Statistics 177

Problem Description 178

Keeping the Letters We Want 180

Testing the Code on a Large Data File 182

Finding the Most Frequent Words 184

Converting a String to a Frequency Dictionary 187

Putting It All Together 188

Exercises . 190

The Final Program . 192

Appendix A Popular Python Packages 195

Some Popular Packages 196

Appendix B Comparing Python 2 and Python 3 199

What’s New in Python 3 200

Index . 203

This page intentionally left blank

4
Flow of Control

In This Chapter
Boolean Logic 44

If-Statements 49

Code Blocks and Indentation 51

Loops 54

Comparing For-Loops and While-Loops 59

Breaking Out of Loops and Blocks 64

Loops Within Loops 66

The programs we’ve written so far are

straight-line programs that consist of a

sequence of Python statements executed

one after the other. The flow of execution is

simply a straight sequence of statements,

with no branching or looping back to previ-

ous statements.

In this chapter, we look at how to change

the order in which statements are executed

by using if-statements and loops. Both are

essential in almost any nontrivial program.

Both if-statements and loops are controlled

by logical expressions, and so the first part

of this chapter will introduce the idea of

Boolean logic.

Read the sample programs in this chapter

carefully. Take the time to try them out and

make your own modifications.

44 Chapter 4

Boolean Logic
In Python, as in most programming lan-

guages, decisions are made using Boolean
logic. Boolean logic is all about manipulat-

ing so-called truth values, which in Python

are written True and False. Boolean logic

is simpler than numeric arithmetic, and is

a formalization of logical rules you already

know.

We combine Boolean values using four

main logical operators (or logical con-
nectives): not, and, or, and ==. All deci-

sions that can be made by Python—or any

computer language, for that matter—can

be made using these logical operators.

Suppose that p and q are two Python vari-

ables each labeling Boolean values. Since

each has two possible values (True or

False), altogether there are four different

sets of values for p and q (see the first two

columns of Table 4.1). We can now define

the logical operators by specifying exactly

what value they return for the different

truth values of p and q. These kinds of

definitions are known as truth tables, and

Python uses an internal version of them to

evaluate Boolean expressions.

TABLE 4.1 Truth Table for Basic Logical Operators

p q p == q p != q p and q p or q not p

False False True False False False True

False True False True False True True

True False False True False True False

True True True False True True False

Flow of Control 45

Logical equivalence
Let’s start with ==. The expression p == q
is True only when p and q both have the

same truth value—that is, when p and q
are either both True or both False. The

expression p != q tests if p and q are not

the same, and returns True only when they

have different values.

>>> False == False

True

>>> True == False

False

>>> True == True

True

>>> False != False

False

>>> True != False

True

>>> True != True

False

Logical “and”
The Boolean expression p and q is True
only when both p is True and q is True. In

every other case it is False. The fifth col-

umn of Table 4.1 summarizes each case.

>>> False and False

False

>>> False and True

False

>>> True and False

False

>>> True and True

True

Logical “or”
The Boolean expression p or q is True
exactly when p is True or q is True, or

when both are True. This is summarized

in the sixth column of Table 4.1. The only

slightly tricky case is when both p and q
are True. In this case, the expression p or
q is True.

>>> False or False

False

>>> False or True

True

>>> True or False

True

>>> True or True

True

Logical negation
Finally, the Boolean expression not p is

True when p is False, and False when p
is True. It essentially flips the value of the

variable.

>>> not True

False

>>> not False

True

46 Chapter 4

Evaluating larger Boolean
expressions
Since Boolean expressions are used to

control both if-statements and loops, it is

important to understand how they are eval-

uated. Just as with arithmetic expressions,

Boolean expressions use both brackets and

operator precedence to specify the order in

which their sub-parts are evaluated.

To evaluate a Boolean
expression with brackets:
Suppose we want to evaluate the expres-

sion not (True and (False or True)).

We can do it by following these steps:

■ not (True and (False or True))

Expressions in brackets are always

evaluated first, and so we first evalu-

ate False or True, which is True.

This makes the original expres-

sion equivalent to this simpler one:

not (True and True).

■ not (True and True)

To evaluate this expression, we again

evaluate the expression in brackets

first: True and True evaluates to True,

which gives us the equivalent expres-

sion: not True.

■ not True

Finally, to evaluate this expression, we

simply look up the answer in the last

column of Table 4.1: not True evaluates

to False. Thus, the entire expression

not (True and (False or True))
evaluates to False. You can easily

check that this is the correct answer in

Python itself:

>>> not (True and (False or
➝ True))

False

Flow of Control 47

To evaluate a Boolean
expression without brackets:
Suppose we want to evaluate the expres-

sion not True and False or True. This is

the same as the previous one, but this time

there are no brackets.

■ not True and False or True

We first evaluate the operator with

the highest precedence, as listed in

Table 4.2. In this case, not has the high-

est precedence, and so not True is

evaluated first (the fact that it happens

to be at the start of the expression is a

coincidence). This simplifies the expres-

sion to False and False or True.

■ False and False or True

We again evaluate the operator with the

highest precedence. According to Table

4.2, and has higher precedence than

or, and so False and True is evalu-

ated first. The expression simplifies to

False or True.

■ False or True

This final expression evaluates to True,

which is found by looking up the answer

in Table 4.1. Thus the original expres-

sion, False and not False or True,

evaluates to True.

Writing complicated Boolean expressions

without brackets is usually a bad idea because

they are hard to read and evaluate—not all

programmers remember the order of prece-

dence of Boolean operators!

One exception is when you use the same
logical operator many times in a row. Then it

is usually easier to read without the brackets.

For example:

>>> (True or (False or (True or
➝ False)))
True
>>> True or False or True or False
True

TABLE 4.2 Boolean Operator Priority
(Highest to Lowest)

p == q

p != q

not p

p and q

p or q

48 Chapter 4

Short-circuit evaluation
The definition of the logical operators

given in Table 4.1 is the standard definition

you would find in any logic textbook. How-

ever, like most modern programming lan-

guages, Python uses a simple trick called

short-circuit evaluation to speed up the

evaluation of some Boolean expressions.

Consider the Boolean expression False
and X, where X is any Boolean expres-

sion. It turns out that no matter whether X
is True or X is False, the entire expres-

sion is False. The reason is that the initial

False makes the whole and-expression

False. The value of False and X does not

depend on X—it is always False. In such

cases, Python does not evaluate X at all—it

simply stops and returns the value False.

This can speed up the evaluation of Bool-

ean expressions.

Similarly, Boolean expressions of the form

True or X are always True, no matter

the value of X. The precise rules for how

Python does short-circuiting are given in

Table 4.3.

Most of the time you can ignore short-

circuiting and just reap its performance

benefits. However, it is useful to remem-

ber that Python does this, since every

once in a while it could be the source of a

subtle bug.

It’s possible to use the definitions of and
and or from Table 4.3 to write short and tricky

code that simulates if-statements (which we

will see in the next section). However, such

expressions are usually quite difficult to read,

so if you ever run across such expressions in

other people’s Python code (you should never

put anything so ugly in your programs!), you

may need to refer to Table 4.3 to figure out

exactly what they are doing.

TABLE 4.3 Definition of Boolean Operators
in Python

Operation Result

p or q if p is False, then q, else p

p and q if p is False, then p, else q

Flow of Control 49

If-Statements
If-statements let you change the flow of

control in a Python program. Essentially,

they let you write programs that can

decide, while the programming is running,

whether or not to run one block of code

or another. Almost all nontrivial programs

use one or more if-statements, so they are

important to understand.

If/else-statements
Suppose you are writing a password-

checking program. The user enters their

password, and if it is correct, you log them

in to their account. If it is not correct, then

you tell them they’ve entered the wrong

password:

password1.py

pwd = input('What is the password? ')

if pwd == 'apple': # note use of == #
➝ instead of =

 print('Logging on ...')

else:

 print('Incorrect password.')

print('All done!')

It’s pretty easy to read this program: If

the string that pwd labels is 'apple', then

a login message is printed. But if pwd is

anything other than 'apple', the message

incorrect password is printed.

An if-statement always begins with the

keyword if. It is then (always) followed

by a Boolean expression called the

if-condition, or just condition for short.

After the if-condition comes a colon (:).

As we will see, Python uses the : token

to mark the end of conditions in

if-statements, loops, and functions.

50 Chapter 4

Everything from the if to the : is referred

to as the if-statement header. If the con-

dition in the header evaluates to True,

then the statement print('Logging
on ...') is immediately executed, and

print('Incorrect password.') is

skipped and never executed.

If the condition in the header evalu-

ates to False, then print('Logging on
...') is skipped, and only the statement

print('Incorrect password.') is

executed.

In all cases, the final print('All done!')
statement is executed.

The general structure of an if/else-statement

is shown in A.

We will often refer to the entire multiline

if structure as a single if-statement.

You must put at least one space after

the if keyword.

The if keyword, the condition, and the

terminating : must appear all on one line

without breaks.

The else-block of an if-statement is

optional. Depending on the problem you are

solving, you may or may not need one.

A This flow chart shows the general format and behavior of an if/else-statement.

The code blocks can consist of any number of Python statements (even other

if-statements!).

Flow of Control 51

Code Blocks and
Indentation
One of the most distinctive features of

Python is its use of indentation to mark

blocks of code. Consider the if-statement

from our password-checking program:

if pwd == 'apple':

 print('Logging on ...')

else:

 print('Incorrect password.')

print('All done!')

The lines print('Logging on ...') and

print('Incorrect password.') are two

separate code blocks. These ones happen

to be only a single line long, but Python

lets you write code blocks consisting of

any number of statements.

To indicate a block of code in Python, you

must indent each line of the block by the

same amount. The two blocks of code in

our example if-statement are both indented

four spaces, which is a typical amount of

indentation for Python.

In most other programming languages,

indentation is used only to help make

the code look pretty. But in Python, it is

required for indicating what block of code

a statement belongs to. For instance, the

final print('All done!') is not indented,

and so is not part of the else-block.

Programmers familiar with other languages

often bristle at the thought that indentation

matters: Many programmers like the free-

dom to format their code how they please.

However, Python’s indentation rules follow

a style that many programmers already use

to make their code readable. Python simply

takes this idea one step further and gives

meaning to the indentation.

IDLE is designed to automatically indent

code for you. For instance, pressing Return

after typing the : in an if-header automatically

indents the cursor on the next line.

The amount of indentation matters: A

missing or extra space in a Python block could

cause an error or unexpected behavior. State-

ments within the same block of code need to

be indented at the same level.

52 Chapter 4

If/elif-statements
An if/elif-statement is a generalized if-

statement with more than one condition.

It is used for making complex decisions.

For example, suppose an airline has the

following “child” ticket rates: Kids 2 years

old or younger fly for free, kids older than 2

but younger than 13 pay a discounted child

fare, and anyone 13 years or older pays a

regular adult fare. This program determines

how much a passenger should pay:

airfare.py

age = int(input('How old are you? '))

if age <= 2:

 print(' free')

elif 2 < age < 13:

 print(' child fare)

else:

 print('adult fare')

After Python gets age from the user, it

enters the if/elif-statement and checks

each condition one after the other in the

order they are given. So first it checks if

age is less than 2, and if so, it indicates

that the flying is free and jumps out of the

elif-condition. If age is not less than 2, then

it checks the next elif-condition to see if

age is between 2 and 13. If so, it prints the

appropriate message and jumps out of the

if/elif-statement. If neither the if-condition

nor the elif-condition is True, then it

executes the code in the else-block.

elif is short for else if, and you can use

as many elif-blocks as needed.

Each of the code blocks in an if/elif-

statement must be consistently indented the

same amount.

As with a regular if-statement, the else-

block is optional. In an if/elif-statement with
an else-block, exactly one of the if/elif-blocks

will be executed. If there is no else-block, then

it is possible that none of the conditions are

True, in which case none of the if/elif-blocks

are executed.

Flow of Control 53

Conditional expressions
Python has one more logical operator that

some programmers like (and some don’t!).

It’s essentially a shorthand notation for if-

statements that can be used directly within

expressions. Consider this code:

food = input("What's your favorite
➝ food? ")

reply = 'yuck' if food == 'lamb'
➝ else 'yum'

The expression on the right-hand side of

= in the second line is called a conditional
expression, and it evaluates to either

'yuck' or 'yum'. It’s equivalent to the

following:

food = input("What's your favorite
➝ food? ")

if food == 'lamb':

 reply = 'yuck'

else:

 reply = 'yum'

Conditional expressions are usually shorter

than the corresponding if/else-statements,

although not always as flexible or easy

to read. In general, you should use them

when they make your code simpler.

54 Chapter 4

Loops
Now we turn to loops, which are used to

repeatedly execute blocks of code. Python

has two main kinds of loops: for-loops and

while-loops. For-loops are generally easier

to use and less error prone than while-

loops, although not quite as flexible.

For-loops
The basic for-loop repeats a given block

of code some specified number of times.

For example, this snippet of code prints the

numbers 0 to 9 on the screen:

count10.py

for i in range(10):

 print(i)

The first line of a for-loop is called the for-
loop header. A for-loop always begins with

the keyword for. After that comes the loop
variable, in this case i. Next is the key-

word in, typically (but not always) followed

by range(n) and a terminating : token. A

for-loop repeats its body, the code block

underneath it, exactly n times.

Each time the loop executes, the loop

variable i is set to be the next value. By

default, the initial value of i is 0, and it

goes up to n - 1 (not n!) by ones. Starting

numbering at 0 instead of 1 might seem

unusual, but it is common in programming.

If you want to change the starting value of

the loop, add a starting value to range:

for i in range(5, 10):

 print(i)

This prints the numbers from 5 to 9.

Lingo Alert
Programmers often use the variable i
because it is short for index, and is also

commonly used in mathematics. When

we start using loops within loops, it is

common to use j and k as other loop

variable names.

Flow of Control 55

If you want to print the numbers from 1

to 10 (instead of 0 to 9), there are two common

ways of doing so. One is to change the start

and end of the range:

for i in range(1, 11):
 print(i)

Or, you can add 1 to i inside the loop body:

for i in range(10):
 print(i + 1)

If you would like to print numbers in

reverse order, there are again two standard

ways of doing so. The first is to set the range
parameters like this:

for i in range(10, 0, -1):
 print(i)

Notice that the first value of range is 10, the

second value is 0, and the third value, called

the step, is −1. Alternatively, you can use a sim-

pler range and modify i in the loop body:

for i in range(10):
 print(10 - i)

For-loops are actually more general than

described in this section: They can be used

with any kind of iterator, which is a special

kind of programming object that returns

values. For instance, we will see later that for-

loops are the easiest way to read the lines of

a text file.

56 Chapter 4

While-loops
The second kind of Python loop is a while-
loop. Consider this program:

while10.py

i = 0

while i < 10:

 print(i)

 i = i + 1 # add 1 to i

This prints out the numbers from 0 to 9 on

the screen. It is noticeably more compli-

cated than a for-loop, but it is also more

flexible.

The while-loop itself begins on the line

beginning with the keyword while; this line

is called the while-loop header, and the

indented code underneath it is called the

while-loop body. The header always starts

with while and is followed by the while-
loop condition. The condition is a Boolean

expression that returns True or False.

The flow of control through a while-loop

goes like this: First, Python checks if the

loop condition is True or False. If it’s

True, it executes the body; if it’s False, it

skips over the body (that is, it jumps out of

the loop) and runs whatever statements

appear afterward. When the condition

is True, the body is executed, and then

Python checks the condition again. As long

as the loop condition is True, Python keeps

executing the loop. B shows a flow chart

for this program.

The very first line of the sample program

is i = 0, and in the context of a loop it is

known as an initialization statement, or

an initializer. Unlike with for-loops, which

automatically initialize their loop variable, it

is the programmer’s responsibility to give

initial values to any variables used by a

while-loop.

B This is a flow chart for code that counts from 0

to 9. Notice that when the loop condition is False
(that is, the no branch is taken in the decision box),

the arrow does not go into a box. That’s because

in our sample code there is nothing after the

while-loop.

Flow of Control 57

The last line of the loop body is i = i + 1.

As it says in the source code comment, this

line causes i to be incremented by 1. Thus,

i increases as the loop executes, which

guarantees that the loop will eventually

stop. In the context of a while-loop, this

line is called an increment, or incrementer,
since its job is to increment the loop

variable.

The general form of a while-loop is shown

in the flow chart of C.

Even though almost all while-loops need

an initializer and an incrementer, Python

does not require that you include them. It

is entirely up to you, the programmer, to

remember these lines. Even experienced

programmers find that while-loop initial-

izers and incrementers are a common

source of errors.

C A flow chart for the general form of a while-loop. Note that the

incrementer is not shown explicitly: It is embedded somewhere in

body_block, often (but not always) at the end of that block.

58 Chapter 4

While-loops are extremely flexible. You

can put any code whatsoever before a while-

loop to do whatever kind of initialization is

necessary. The loop condition can be any
Boolean expression, and the incrementer can

be put anywhere within the while-loop body,

and it can do whatever you like.

A loop that never ends is called an infi-
nite loop. For instance, this runs forever:

while True:
 print('spam')

Some programmers like to use infinite

loops as a quick way to write a loop. However,

this is generally considered to be poor style

because such loops often become complex

and hard to understand.

Many Python programmers try to use for-

loops whenever possible and use while-loops

only when absolutely necessary.

While-loops can be written with an else-

block. However, this unusual feature is rarely

used in practice, so we haven’t discussed

it. If you are curious, you can read about it

in the online Python documentation—for

example, http://docs.python.org/3/reference/

compound_stmts.html.

http://docs.python.org/3/reference/compound_stmts.html
http://docs.python.org/3/reference/compound_stmts.html

Flow of Control 59

Comparing For-Loops
and While-Loops
Let’s take a look at a few examples of how

for-loops and while-loops can be used to

solve the same problems. Plus we’ll see a

simple program that can’t be written using

a for-loop.

Calculating factorials
Factorials are numbers of the form 1 × 2
× 3 × … × n, and they tell you how many

ways n objects can be arranged in a line.

For example, the letters ABCD can be

arranged in 1 × 2 × 3 × 4 = 24 different

ways. Here’s one way to calculate factori-

als using a for-loop:

forfact.py

n = int(input('Enter an integer
➝ >= 0: '))

fact = 1

for i in range(2, n + 1):

 fact = fact * i

print(str(n) + ' factorial is ' +
➝ str(fact))

Here’s another way to do it using a

while-loop:

whilefact.py

n = int(input('Enter an integer
➝ >= 0: '))

fact = 1

i = 2

while i <= n:

 fact = fact * i

 i = i + 1

print(str(n) + ' factorial is ' +
➝ str(fact))

continues on next page

60 Chapter 4

Both of these programs behave the same

from the user’s perspective, but the inter-

nals are quite different. As is usually the

case, the while-loop version is a little more

complicated than the for-loop version.

In mathematics, the notation n! is used to

indicate factorials. For example, 4! = 1 × 2 × 3 ×

4 = 24. By definition, 0! = 1. Interestingly, there

is no simple formula for calculating factorials.

Python has no maximum integer, so you

can use these programs to calculate very large

factorials. For example, a deck of cards can be

arranged in exactly 52! ways:

Enter an integer >= 0: 52
52 factorial is 80658175170943878571
➝ 6606368564037669752895054408832778
➝ 24000000000000

Flow of Control 61

Summing numbers from the user
The following programs ask the user to

enter some numbers, and then prints their

sum. Here is a version using a for-loop:

forsum.py

n = int(input('How many numbers to
➝ sum? '))

total = 0

for i in range(n):

 s = input('Enter number ' +
➝ str(i + 1) + ': ')

 total = total + int(s)

print('The sum is ' + str(total))

Here’s a program that does that same thing

using a while-loop:

whilesum.py

n = int(input('How many numbers to
➝ sum? '))

total = 0

i = 1

while i <= n:

 s = input('Enter number ' +
➝ str(i) + ': ')

 total = total + int(s)

 i = i + 1

print('The sum is ' + str(total))

Again, the while-loop version is a little

more complex than the for-loop version.

These programs assume that the user

is entering integers. Floating point numbers

will be truncated when int(s) is called.

Of course, you can easily change this to

float(s) if you want to allow floating point

numbers.

62 Chapter 4

Summing an unknown
number of numbers
Now here’s something that can’t be done

with the for-loops we’ve seen so far. Sup-

pose we want to let users enter a list of

numbers to be summed without asking

them ahead of time how many numbers

they have. Instead, they just type 'done'
when they have no more numbers to add.

Here’s how to do it using a while-loop:

donesum.py

total = 0

s = input('Enter a number (or
➝ "done"): ')

while s != 'done':

 num = int(s)

 total = total + num

 s = input('Enter a number (or
➝ "done"): ')

print('The sum is ' + str(total))

The idea here is to keep asking users to

enter a number, quitting only when they

enter 'done'. The program doesn’t know

ahead of time how many times the loop

body will be executed.

Flow of Control 63

Notice a few more details:

■ We must call input in two different

places: before the loop and inside the

loop body. This is necessary because

the loop condition decides whether or

not the input is a number or 'done'.

■ The ordering of the statements in the

loop body is very important. If the loop

condition is True, then we know s is

not 'done', and so we assume it is an

integer. Thus we can convert it to an

integer, add it to the running total, and

then ask the user for more input.

■ We convert the input string s to an

integer only after we know s is not the

string 'done'. If we had written

s = int(input('Enter a number
➝ (or "done"): '))

as we had previously, the program would

crash when the user typed 'done'.

■ There is no need for the i counter

variable anymore. In the previous sum-

ming programs, i tracked how many

numbers had been entered so far. As

a general rule, a program with fewer

variables is easier to read, debug, and

extend.

64 Chapter 4

Breaking Out of
Loops and Blocks
The break statement is a handy way for

exiting a loop from anywhere within the

loop’s body. For example, here is an alter-

native way to sum an unknown number of

numbers:

donesum_break.py

total = 0

while True:

 s = input('Enter a number (or
➝ "done"): ')

 if s == 'done':

 break # jump out of the loop

 num = int(s)

 total = total + num

print('The sum is ' + str(total))

The while-loop condition is simply True,

which means it will loop forever unless

break is executed. The only way for break
to be executed is if s equals 'done'.

An advantage of this program over

donesum.py is that the input statement is

not repeated. But a disadvantage is that

the reason for why the loop ends is buried

in the loop body. It’s not so hard to see it in

this small example, but in larger programs

break statements can be tricky to see. Fur-

thermore, you can have as many breaks as

you want, which adds to the complexity of

understanding the loop.

Flow of Control 65

Generally, it is wise to avoid the break
statement, and to use it only when it makes

your code simpler or clearer.

A relative of break is the continue state-

ment: When continue is called inside

a loop body, it immediately jumps up to

the loop condition—thus continuing with

the next iteration of the loop. It is a little

less common than break, and generally it

should be avoided altogether.

Both break and continue also work

with for-loops.

66 Chapter 4

Loops Within Loops
Loops within loops, also known as nested
loops, occur frequently in programming.

For instance, here’s a program that prints

the times tables up to 10:

timestable.py

for row in range(1, 10):

 for col in range(1, 10):

 prod = row * col

 if prod < 10:

 print(' ', end = '')

 print(row * col, ' ', end = '')

 print()

Look carefully at the indentation of the

code in this program: It’s how you tell what

statements belong to what blocks. The

final print() statement lines up with the

second for, meaning it is part of the outer

for-loop (but not the inner).

Note that the statement if prod < 10 is

used to make the output look neatly for-

matted. Without it, the numbers won’t line

up nicely.

When using nested loops, be careful with

loop index variables: Do not accidentally reuse

the same variable for a different loop. Most of

the time, every individual loop needs its own

control variables.

You can nest as many loops within

loops as you need, although the complexity

increases greatly as you do so.

As mentioned previously, if you use

break or continue with nested loops,

break only breaks out of the innermost

loop, and continue only “continues” the

innermost loop.

This page intentionally left blank

Index 203

Index

Numbers
2to3 tool, using for Python conversions, 201

5 vs. 5.0, 13

Symbols
'+ file module, meaning of, 134, 137

== operator, 44

+ (addition) operator, 12

= (assignment) operator, example of, 24

\ (backward slash)

using with pathnames, 130

writing, 130

) (closed round bracket), using with

tuples, 29

% conversion specifier, meaning of, 125

@ (decorators), using, 163

/ (division) operator, 12

// (division) operator, 11

" (double quote), using with strings, 17

__ (double underscore), use of, 20–21

'' and "" (empty strings), using, 18

\" escape character, 88

\\ escape character, 88

\' escape character, 88

** (exponentiation) operator, 12

// (integer division) operator, 11–12

% (mod) function, using with strings, 84

* (multiplication) operator, 12

(number sign), using with comments, 36

((open round bracket), using with

tuples, 29

% (remainder) operator, 12

() (round brackets)

using with functions, 68

using with regular expressions, 99

using with tuples, 104

>>> (shell prompt), 10

' (single quote), using with strings, 17

[] (square brackets)

using with lists, 108

using with strings, 84

− (subtraction) operator, 12

A
'a file module, meaning of, 134

addition (+) operator, 12

aggregate data structures, strings as, 83

and operator, 44–45

append function, using with lists, 110–111

append mode, using with text files, 134, 136

area function

calling, 70–71

parts of, 71

return statement, 72

arithmetic operators. See also floating point

arithmetic; integer arithmetic; math

functions

addition (+), 12

division (/), 12

exponentiation (**), 12

integer division (//), 11–12

multiplication (*), 12

remainder (%), 12

subtraction (−), 12

ASCII (American Standard Code for Information

Interchange), 87

assignment (=) operator, example of, 24

assignment statements

diagrams, 28

example of, 24

initialization statement, 26

labeling values, 28

left-hand side, 26

multiple, 29

operator, 26

right-hand side, 26

associative arrays. See dictionaries

204 Index

case-changing functions

s.capitalize(), 94

s.lower(), 94

s.swapcase(), 94

s.title(), 94

s.upper(), 94

catching exceptions, 146–149

ceil(x) function, 16

character codes, finding, 87

character length, determining, 178

characters

accessing with for-loop, 86

escape, 88

getting rid of unwanted, 180–181

whitespace, 88

Cheetah templating package, 126

child class, explained, 170

chr function, using, 87

circle, calculating area of, 70

class diagram, example of, 170

class hierarchy, example of, 170

classes

defined, 153

deriving, 169–170

extending, 169–170

and methods, 154

and objects, 153

reusing, 168–170

self parameter, 155

subclasses of, 169–170

writing, 154–155

clean-up actions

finally code block, 150

with statement, 151

closed round bracket ()), using with tuples, 29

code blocks

breaking out of, 64–65

indenting, 51–53

indicating, 51

command line

calling Python from, 33–34

environment variables, 34

path variable, 34

running programs from, 33

command shell

interacting with, 10

shell prompt, 10

B
'b file module, meaning of, 134, 138

backward slash (\)

using with pathnames, 130

writing, 130

base class, explained, 169–170

bill.txt file, using, 182–183, 189

bin built-in function, printing doc string for, 21

binary files, processing, 138–140

binary mode, indicating, 134

binary vs. text files, 128–129

blocks of code

breaking out of, 64–65

indenting, 51–53

indicating, 51

Boolean logic

== operator, 44

and operator, 44–45, 48

with brackets (()), 46

definition of operators, 48

evaluating expressions, 46–47

explained, 44

False values, 44

logical equivalence, 45

logical negation, 44

logical operators, 44

not operator, 44–46

operator priority, 47

or operator, 44–45

or operator, 48

short-circuit evaluation, 48

True values, 44

truth table, 44

truth values, 44

without brackets (()), 47

Bottle framework, 196

brackets, preceding word counts with, 186

break statement, using, 64–65

C
calculating

area of circle, 70

factorials, 59–60

powers, 68

case sensitivity, explained, 25

case study. See text statistics case study

Index 205

self-referential, 109

sequences, 103

sets, 122

sorting lists, 113–114

tuples, 104–107

type command, 102

writing, 139

data types

checking with type command, 102

converting between, 22–23

converting numeric types, 22

explained, 9

floats to strings, 22

implicit conversions, 22–23

integers to floats, 22

integers to strings, 22

strings, 9

strings to floats, 22

decorators (@), using 163

degrees(x) function, 16

derived class, explained, 169–170

dictionaries

converting to, 184, 187

converting to list of tuples, 185–186

defined, 118

extracting information from, 185

key restrictions, 119

and sets, 122

unique keys, 119

dictionary functions

d.clear(), 120

d.copy(), 120

d.fromkeys(), 120

d.get(key), 120

d.items(), 120–121

d.keys(), 120–121

d.popitem(), 120–121

d.pop(key), 120

d.setdefault(), 120

d.update(), 120

d.values(), 120–121

dir ('') command, entering, 37

dir function, using, 92

directory

current working, 130–132

default, 130

dir(m) function, using, 20

command window, opening, 34

comments

defined, 36

using, 41–42

compiled code. See object code

compiling source code, 35

complex numbers, 15

concatenating

strings, 19

tuples, 107

conditional expressions, 53

constructors, explained, 154

continue statement, using, 64–65

conversion specifiers

% character, 125

base 8 value, 125

base 16, 125

float, 125

integers, 125

lowercase float exponential, 125

lowercase hexadecimal, 125

octal value, 125

string, 125

uppercase hexadecimal, 125

uppercase float exponential, 125

converting

floats to integers, 23

floats to strings, 22

integers to floats, 22

integers to strings, 22

strings to floats, 22

strings to numbers, 23

cost(x) function, 16

count function, using with lists, 110

current working directory

cwd_size_in_bytes function, 132

explained, 130

D
d conversion specifier, meaning of, 125

data structures

defined, 101

dictionaries, 118–121

list comprehensions, 115–117

list functions, 110–112

lists, 108–109

reading, 139

206 Index

F
F conversion specifier, meaning of, 125

factorials, calculating, 59–60

factorial(x) function, 16

file modules, 134

file_stats, calling, 183

files

examining, 131–133

functions, 131

reading, 128–130

text vs. binary, 128–129

writing, 128–130

finally code block, adding, 150

find function vs. index, 93

float, conversion specifier for, 125

float literals, 13

floating point arithmetic. See also arithmetic

operators

5 vs. 5.0, 13

complex numbers, 15

decimal points, 13

errors, 15

examples, 13

limited precision, 14–15

overflow, 14

scientific notation, 13

silent errors, 14

truncating, 61

floats

converting integers to, 22

converting strings to, 22

converting to integers, 23

converting to strings, 22

float(s) conversions, making, 23

flow of control

backing out of blocks, 64–65

backing out of loops, 64–65

Boolean logic, 44–48

code blocks, 51–53

explained, 43

for-loops vs. while-loops, 59–63

if-statements, 49–50

indentation, 51–53

loops, 54–58

nested loops, 66

display method, using, 157, 159

division (// and /) operators, 11–12

Django framework, 196

documentation strings

accessing for functions, 71

benefits, 71

formatting convention, 71

printing, 21

documentation website, accessing, 133

dot notation, using with objects, 155

double quote ("), using with strings, 17

double underscore (__), use of, 20–21

E
e conversion specifier, meaning of, 125

E conversion specifier, meaning of, 125

Easter egg example, 82

eat_vowels example, 117

editor window, opening in IDLE, 32

elif (else if) statements, 52

else statements, 49–50

empty lists, denoting, 108

empty strings ('' and ""), using, 18, 39

ending lines of text, 88

environment variables, 34

errors, handling, 143

escape characters

\", 88

\', 88

\\, 88

\n, 88

\r, 88

\t, 88

exceptions

built-in, 145

catching, 146–149

checking for, 146

defined, 143

IOError, 143

outputting tracebacks, 144

raising, 143–145

syntax errors, 145

throwing, 144

executable code. See object code

exponentiation (**) operator, 12

exp(x) function, 16

Index 207

defining, 70–72

files and folders, 131

listing built-in, 21

listing in modules, 20

main(), 75

vs. methods, 154

modules, 80–81

naming, 70

not returning values, 69

ord, 87

side effects, 72

using, 133

using round brackets (()) with, 68

variable scope, 73–74

G
generator expressions

explained, 117

searching for, 132

getters and setters

avoiding setters, 167

decorators, 163

name and age values, 162

private variables, 166

property decorators, 163–165

syntax, 167

using, 162–167

global variables, explained, 74

H
hapax legomenon, explained, 190

hash tables. See dictionaries

hashing, using with dictionaries, 118

help

documentation, 21

listing functions in modules, 20

utility, 21

help(f) function, using, 21

hexadecimal numbers, explained, 138

Human class, writing, 169

I
i (index) variable, use of, 54, 63

identifiers, explained, 24

IDLE (integrated development environment), 4

folders

backward slash (\), 130

functions, 131

pathnames, 130

structure, 130

for-loops

accessing characters with, 86

changing starting value of, 54

headers, 54

i (index) variable, 54, 63

printing numbers, 55

using iterators with, 55

vs. while-loops, 58–63

format function

using, 94

using with strings, 124

format strings

named replacement, 126

using, 126–127

using curly braces ({}), 127

formatting functions for strings. See
string-formatting functions

formatting parameters, specifying, 127

f.read(), calling, 137–138

frequency dictionaries, converting strings

to, 187

f.seek(), calling, 137

function names, reassigning, 69

function parameters

default values, 78

keyword parameters, 79

pass by reference, 76–77

pass by value, 76

state of memory, 76

functional programming style, 72

functions. See also string functions; tuple

functions

accessing doc strings for, 71

append, 110–111

availability to strings, 37

as black boxes, 68

calculating powers, 68

calling, 68–69

chr, 87

count, 110

defined, 67

208 Index

integer arithmetic. See also arithmetic

operators; math functions

defined, 11

division, 11

operators, 12

order of evaluation, 12

unlimited size, 12

integer division (//) operator, 11–12

integers

conversion specifier, 125

converting floats to, 23

converting to floats, 22

converting to strings, 22

lack of maximum, 60

interactive command shell, 10

interpreter, playing with examples in, 178

int(s) conversions, making, 23

I/O (input and output)

console, 123

examining files, 131–133

examining folders, 131–133

explained, 123

formatting strings, 124–125

processing binary files, 138–140

processing text files, 134–137

reading files, 128–130

reading webpages, 141

string formatting, 126–127

writing files, 128–130

IOError, raising, 143

isa terminology, using with inheritance, 169

iterators, using with for-loops, 55

J
join function

using, 97

using with list comprehensions, 117

K
keywords

restriction for variables, 25

using, 79

L
len function, using with characters, 178

letters, keeping desired, 180–181

lexicographical ordering, 113

IDLE editor

alternatives, 33

starting screen, 6

using, 32–34

IDLE shortcuts

opening editor window, 32

opening files for editing, 32

redoing last undo, 32

running programs, 32

saving programs, 32

undoing actions in IDLE, 32

if/elif-statements, 52

if/else-statements, 49–50

if-statements

explained, 49

flow chart, 50

headers, 50

structure, 50

immutable objects, 167

importing

modules, 16, 81

this module at command line, 82

indenting code blocks, 51–53

index function vs. find, 93

indexing

beginning at 0, 84

negative, 85, 91

strings, 84–86

using % (mod) function for, 84

infinite loops, 58

inheritance

defined, 153, 168–169

Human class, 169

isa terminology, 169

overriding methods, 170

Player class, 168–169

__init__ function, using, 155, 160–161

initialization, flexibility of, 160–161

initialization statement, explained, 26

input built-in function

explained, 36–37

using, 123

installing Python

on Linux systems, 7

on Macs, 7

on Windows systems, 6

int function, documentation for, 146

Index 209

math functions. See also arithmetic operators;

integer arithmetic

importing modules, 16

return values, 16

math module

ceil(x) function, 16

cost(x) function, 16

degrees(x) function, 16

exp(x) function, 16

factorial(x) function, 16

log(x) functions, 16

pow(x) function, 16

radians(x) function, 16

sin(x) function, 16

sqrt(x) function, 16

tan(x) function, 16

using, 16

methods

vs. functions, 154

overriding, 170

mod (%) function, using with strings, 84

modules

creating, 80

importing, 16, 81

listing functions in, 20

namespaces, 82

pickle, 140

shelve, 140

sqlite3, 140

urllib, 141

using, 81

webbrowser, 141

move functions, implementing for Undercut

game, 172–173

multiplication (*) operator, 12

N
\n (newline) character, explained, 39, 88

n! notation, using, 60

name clashes, preventing, 82

namespaces

explained, 82

preventing name clashes, 82

negative indexing, 85, 91

nested loops

break statement, 66

continue statement, 66

using, 66

lines of text, ending, 88

Linux, installing Python on, 7

list comprehensions

examples, 116

explained, 115

filtering, 117

generator expressions, 117

list functions

mutating, 110

s.append(), 110–111

s.count(), 110

s.extend(), 110

s.index(), 110

s.insert(), 110

s.pop(), 110

s.remove(), 110, 112

s.reverse(), 110, 112

s.sort(), 110

lists. See also tuples

[] (square brackets), 108

containing elements vs. pointing, 109

empty, 108

lexicographical ordering, 113

mutability, 109

pointing to values, 109

pop and push, 111–112

self-referential data structure, 109

sorting, 113–114

using, 108

local variable, explained, 73

log(x) functions, 16

loops

breaking out of, 64–65

infinite loops, 58

for-loops, 54–55

nesting, 66

while-loops, 56–58

lowercase float exponential, conversion

specifier for, 125

lowercase hexadecimal, conversion specifier

for, 125

M
^M character, handling, 88

Macs, installing Python on, 7

main() function, using, 75

maps. See dictionaries

210 Index

operators. See arithmetic operators;

assignment operator

or operator, 44–45

ord function, using with character codes, 87

order of evaluation, 12

ordered sequences, 103

os.chdir() function, 131

os.getcwd() function, 131

os.listdir() function, 131

os.path.isdir() function, 131

os.path.isfile() function, 131

os.stat() function, 131, 133

overflow errors, 14

P
packages

Bottle, 196

Django, 196

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

SciPy, 197

Tkinter, 196

Twisted, 197

parent class, explained, 170

partition function, using, 95

pass by reference, explained, 76

pass by value, explained, 76

path variable, 34

pathnames, using with folders, 130

Person class

adding method to, 156

creating, 154

Person objects

with name and age, 160–161

working with, 158

pi calculation, doing, 70

pickle module

restriction, 140

using, 139

PIL (Python Imaging Library) package, 196

play_undercut function, analyzing, 174

Player class, creating, 168

polymorphism

defined, 153

power of, 174

Undercut game, 171–174

pop, using on lists, 111–112

new keyword, using with constructors, 154

newline (\n) character, explained, 39

None value, using with functions, 72

normalize() function, using, 180

not operator, 44–46

number sign (#), using with comments, 41

numbers

converting strings to, 23

floating point, 38

immutable quality, 28

integers, 38

reading from keyboard, 38

as strings, 38

summing, 62

summing from users, 61

types of, 38

O
o conversion specifier, meaning of, 125

object code

converting source code to, 5

explained, 35

object serialization, explained, 139

objects

and classes, 153

creating, 159

defined, 153

displaying, 156–159

dot notation, 155

immutable, 167

string representation of, 159

using, 155

octal values, conversion specifier for, 125

OOP (object-oriented programming), 2

classes, 153–155

constructors, 154

explained, 153

getters, 162–167

inheritance, 168–170

initialization, 160–161

objects, 156–159

polymorphism, 171–174

setters, 162–167

open function

documentation, 146

using, 135

open round bracket ((), using with tuples, 29

Index 211

string interpolation, 200

xrange function, 200

Python 3

dividing integers, 200

format strings, 200

input function, 200

print function, 200

range function, 200

Python components

compiler, 35

interpreter, 35

virtual machine, 35

Python language

calling from command line, 33–34

design, 2

download page, 6

education, 3

installing on Linux, 7

installing on Macs, 7

installing on Windows, 6

libraries, 2

maintainability, 2

origin of name, 2

scientific computing, 3

scripts, 3

text processing, 3

uses, 3

website development, 3

Python packages

Bottle, 196

Django, 196

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

SciPy, 197

Tkinter, 196

Twisted, 197

pythonintro website, accessing, 133

Q
quotes (' and "), using with strings, 17

quotes, triple, 17

R
'r' file module, meaning of, 134

\r escape character, 88

radians(x) function, 16

powers, calculating, 68

pow(x) function, 16

print statement

using, 39–40, 135

using string interpolation with, 151

printing

documentation strings, 21

numbers in for-loops, 55

strings on screen, 39–40

private variables, 166–167

problems, understanding, 178

programming

process, 4–5

requirements, 4

source code, 5

programming problems, understanding, 178

programs

checking output, 5

defined, 31

flow of execution, 43

managing variables, 167

running, 5

running from command line, 33

running with IDLE, 32

storing, 32

straight-line, 43

structuring, 42

tracing, 36–37

writing in IDLE, 32

property decorators, using, 163–165

public variables, 166

push, using on lists, 111

.py files

versus .pyc files, 35

contents of, 5

listing, 132

running, 35

.pyc files

contents, 35

explained, 4

Pygame 2D animation package, 197

PyPI (Python Package Index) package, 197

Python 2

classes, 200

converting into Python 3, 201

dividing integers, 200

vs. Python 3, 40, 200–201

raw_input function, 200

212 Index

size restriction, 103

serialization, explained, 139

sessions. See shell transcripts

sets

calling dir(set), 122

and dictionaries, 122

explained, 122

immutable frozensets, 122

mutable, 122

online documentation, 122

setters and getters

avoiding setters, 167

decorators, 163

name and age values, 162

private variables, 166

property decorators, 163–165

syntax, 167

using, 162–167

shell prompt (>>>), 10

shell transcript, explained, 10

shelve module, explained, 140

side effects, relationship to functions, 72

sin(x) function, 16

single quote ('), using with strings, 17

slicing strings

explained, 89

with negative indexes, 91

shortcuts, 90–91

software. See object code

sort function, using with lists, 114

sorting

lists, 113–114

tuples, 114

source code

comments, 36, 41–42

compiling, 35

converting to object code, 5

writing, 5

split function, using, 96, 178–179

splitting functions for strings. See string-

splitting functions

sqlite3 module, explained, 140

sqrt(x) function, 16

square brackets ([])

using with lists, 108

using with strings, 84

standard error (stderr), explained, 39

re module, accessing documentation for, 100

reading

files, 128–130

text files as strings, 135

webpages, 141

regular expressions

examples, 98–99

matching with, 99

operators, 98

using, 181

using round brackets (()) with, 99

x* operator, 98

x|y operator, 98

x+ operator, 98

xy? operator, 98

remainder (%) operator, 12

remove function, using with lists, 112

replace function, using with strings, 96, 180

__repr__ method, using, 158–159

return statement, using with area function, 72

return values, using, 16

reverse function, using with lists, 112

round brackets (())

using with functions, 68

using with regular expressions, 99

using with tuples, 104

rpartition function, using, 95

S
s conversion specifier, meaning of, 125

saving programs with IDLE, 32. See also IDLE

(integrated development environment)

scientific notation, using, 13

SciPy scientific computing package, 197

scope. See variable scope

scripts. See programs

searching functions for strings. See string-

searching functions

self parameter, using with classes, 155

sentences, splitting into words, 179

sequence types

lists, 103

strings, 103

tuples, 103–107

sequences. See also values

defined, 103

ordered, 103

Index 213

conversion specifiers, 125

converting floats to, 22

converting integers to, 22

converting to floats, 22

converting to formats, 180–181

converting to frequency dictionaries, 187

converting to numbers, 23

creating, 19

defined, 17

empty, 18

escape characters, 88

extracting substrings from, 89

formatting, 124–127

immutable quality, 28

indexing, 84–86

indicating, 17

inserting at start of files, 137

lengths, 18

number of characters in, 18

printing on screen, 39–40

reading from keyboard, 36–38

regular expressions, 98–100

representations of objects, 159

returning list of, 131

slicing, 89–91

splitting, 178–179

square brackets ([]) for indexing, 84

uses of, 9

using quotes (' and ") with, 17

using strip() function with, 37

as words, 179

string-searching functions

s.find(), 93

s.index(), 93

s.rfind(), 93

s.rindex(), 93

string-splitting functions

s.partition(), 95

s.rpartition(), 95

s.rsplit(), 95

s.split(), 95

s.splitlines(), 95

string-stripping functions

s.lstrip(), 95

s.rstrip(), 95

s.strip(), 95

standard input (stdin), explained, 39

standard output (stdout), explained, 39

stop words, creating set of, 190

string functions. See also functions

case-changing, 94

for contents of substrings, 92

s.count(), 97

for searching, 93

s.encode(), 97

s.endswith(), 92

s.find(), 93

s.index(), 93

s.isalnum(), 92

s.isalpha(), 92

s.isdecimal(), 92

s.isdigit(), 92

s.isidentifier(), 92

s.islower(), 92

s.isnumeric(), 92

s.isprintable(), 92

s.isspace(), 92

s.istitle(), 92

s.isupper(), 92

s.join(), 97

s.maketrans(), 97

split, 95–96

s.rfind(), 93

s.rindex(), 93

s.startswith(), 92

s.translate(), 97

for stripping, 95–96

s.zfill(), 97

for testing, 92

string interpolation, 124, 151

string literals, writing, 17

string-formatting functions

s.center(), 94

s.format(), 94

s.ljust(), 94

s.rjust(), 94

string-replacement functions

s.expandtabs(), 96

s.replace(), 96

strings

as aggregate data structures, 83

characters, 86–88

concatenating, 19

214 Index

regular expressions, 181

strings to frequency dictionary, 187

testing code on data file, 182–183

text vs. binary files, 128–129

this module, importing at command line, 82

Tkinter package, 196

tracebacks, outputting, 144

tracing programs, 36–37

transcripts, explained, 10

True values, returning for paths, 131

try/except blocks

adding finally code block to, 150

examples of, 146–148

in Undercut game, 172

tuple functions. See also functions

len(), 106

tup.count(), 106

tup.index(), 106

x in tup, 106

tuples. See also lists

concatenating, 107

creating list of, 185–186

defined, 103

example of, 95

immutability, 105

round brackets (()), 104

singleton, 104

sorting, 114

trailing commas, 104

writing values as, 29

Twisted network programming package, 197

type command, using, 102

types. See data types

U
Undercut game

implementing, 171–174

move functions, 172–173

playing, 173–174

try/except blocks, 172

Unicode, rise of, 87

uppercase float exponential, conversion

specifier for, 125

uppercase hexadecimal, conversion specifier

for, 125

urllib module, using, 141

string-testing functions

for contents of substrings, 92

s.endswith(), 92

s.isalnum(), 92

s.isalpha(), 92

s.isdecimal(), 92

s.isdigit(), 92

s.isidentifier(), 92

s.islower(), 92

s.isnumeric(), 92

s.isprintable(), 92

s.isspace(), 92

s.istitle(), 92

s.isupper(), 92

s.startswith(), 92

strip() function, using with strings, 37

subclasses, using with classes, 169–170

substrings, extracting from strings, 89

subtraction (−) operator, 12

summing

numbers, 62

numbers from users, 61

syntax errors, causing, 145

T
't file module, meaning of, 134, 137

tan(x) function, 16

templating packages, using, 126

testing functions. See Boolean logic; string-

testing functions

text files

appending to, 136

closing, 134

opening, 134

processing, 134–137

reading as strings, 135

reading line by line, 134–137

writing to, 136

text mode, indicating, 134

text statistics case study

completing, 188–189

converting strings to formats, 180–181

final program, 192–193

finding frequent words, 184–186

normalize() function, 180–181

problem description, 178–179

Index 215

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

Python download page, 6

pythonintro, 133

re module documentation, 100

SciPy, 197

templating packages, 126

Tkinter, 196

Twisted, 197

Unicode home page, 87

while-loops

flexibility of, 58

flow of control, 56

vs. for-loops, 58–63

form of, 57

incrementers, 57

initializers, 57

sample program, 56

try/except block in, 146

whitespace characters, handling, 88

Windows, installing Python on, 6

with statement, using, 151

word counts, preceding with brackets, 186

words

creating set of stop words, 190

finding frequent, 184–186

getting sorted list of, 185–186

splitting sentences into, 179

strings as, 179

writing

data structures, 139

files, 128–130

opening text files for, 134

to text files, 136

X
x = expr, 28

x conversion specifier, meaning of, 125

X conversion specifier, meaning of, 125

Z
zfill function, using, 97

V
ValueError example, 146–147

values. See also sequences

assigning in parallel, 30

assigning to variables, 27

displaying multiple, 29

referring variables to, 28

replacing by position, 126

and variables, 24–25

writing as tuples, 29

variable names

case sensitivity, 25

first character, 25

keywords, 25

lengths, 25

rules for, 25

variable scope

explained, 73

global variables, 74

local variables, 73

variable values, swapping, 30

variables

adding multiple, 29

assigned values, 27

assigning values to, 27

explained, 9

pointing to values, 27

private vs. public, 166–167

referring to values, 28

terminology, 27

and values, 24–25

virtual machine, explained, 35

von Rossum, Guido, 2

W
'w file module, meaning of, 134

web browsers, creating, 141

webbrowser module, explained, 141

webpages, reading, 141

websites

2to3 conversion for Python, 201

Bottle, 196

Django, 196

online documentation, 133

Unlimited online access to all Peachpit, Adobe
Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

	Table of Contents
	Chapter 4 Flow of Control
	Boolean Logic
	If-Statements
	Code Blocks and Indentation
	Loops
	Comparing For-Loops and While-Loops
	Breaking Out of Loops and Blocks
	Loops Within Loops

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

