Publishers of technology books, eBooks, and videos for creative people

Home > Articles > Digital Audio, Video > Adobe After Effects

Like this article? We recommend

Interpolation Types

With the exception of hold interpolation, After Effects uses the same methods to calculate both spatial and temporal interpolation. This section describes how each interpolation type is expressed spatially, in a motion path, and temporally, in a speed graph.

No interpolation

No interpolation is applied to properties that have no keyframes and aren’t animated. Static properties display an I-beam icon (rather than keyframes) in the layer outline, and the Stopwatch icon isn’t selected.

Linear

Linear interpolation dictates a constant rate of change from one keyframe to the next. Between two keyframes, linear interpolation defines a straight path; temporally, it results in a constant speed. When a keyframe’s incoming and outgoing interpolation are linear, a corner is created in the motion path. Temporally, speed changes instantly at the keyframe (Figures 9.7 and 9.8).

Figure 9.7 Spatially, linear interpolation defines a corner at each keyframe and a straight path between keyframes. The ball in the classic Pong game, for example, moves in perfectly straight lines and ricochets in sharp corners.

Figure 9.8 Temporally, linear interpolation results in a constant rate of change between keyframes. When speed differs between pairs of keyframes, the change is instantaneous.

Auto Bézier

Auto Bézier interpolation automatically reduces the rate of change equally on both sides of a keyframe.

Spatially, a keyframe set to auto Bézier is comparable to a smooth point, with two equal direction lines extending from it. It results in a smooth, symmetrical curve in a motion path. A satellite in an elliptical orbit, for example, takes even, round turns (Figure 9.9). (In addition, the satellite may auto-orient its rotation according to the direction of its movement. See “Orienting Rotation to a Motion Path Automatically,” in Chapter 7.)

Figure 9.9 Auto Bézier interpolation creates a curved path with equal incoming and outgoing interpolation. The keyframes of an orbital path may use perfectly symmetrical curves.

Temporally, auto Bézier interpolation reduces the rate of change equally before and after a keyframe, creating a gradual deceleration that eases into and out of the keyframe (Figure 9.10).

Figure 9.10 Temporally, auto Bézier interpolation yields gradual, even speed changes and a curved graph. For example, the blade of a fan goes from a lower speed to a higher speed gradually (not instantaneously).

Continuous Bézier

Like auto Bézier, continuous Bézier interpolation reduces the rate of change on both sides of a keyframe. However, continuous Bézier interpolation is set manually, so it doesn’t affect the incoming and outgoing rates of change equally. In the motion path, continuous Bézier interpolation results in a smooth and continuous, but asymmetrical, curve. Typically, the path of a thrown ball follows an arc that’s continuous but asymmetrical; or imagine the ball rolling over a hill that’s steeper on one side than the other (Figure 9.11).

Figure 9.11 You might use continuous Bézier interpolation to show the path of a ball rolling over a hill that’s less steep on one side than the other.

Temporally, continuous Bézier interpolation reduces the rate of change unequally before and after a keyframe (Figure 9.12).

Figure 9.12 Temporally, rate of change is reduced smoothly—but unevenly—on either side of a continuous Bézier keyframe. A rolling ball may decelerate gradually as it crests a hill but accelerate more sharply on its descent.

Bézier

Like continuous Bézier, you set Bézier interpolation manually, but the change is discontinuous. Bézier interpolation causes an abrupt decrease or increase in the rate of change on either or both sides of a keyframe.

Spatially, Bézier keyframes are comparable to a corner point in a mask path. As in a corner point, the direction lines extending from the keyframe are unequal and discontinuous. In a motion path, Bézier interpolation creates a discontinuous curve, or cusp, at the keyframe. Bézier interpolation can achieve the discontinuous curve of a ball’s bouncing path (Figure 9.13).

Figure 9.13 Bézier interpolation can allow the motion path to follow discontinuous curves, such as the one that describes the path of a ball’s bounce.

In the value graph, Bézier interpolation can reduce or increase the rate of change before and after a keyframe (Figure 9.14). For example, you can use Bézier interpolation to create a sharp acceleration at a keyframe (such as when a ball falls and bounces).

Figure 9.14 Temporally, Bézier interpolation can create sudden acceleration and deceleration. The bouncing ball accelerates until the moment of impact and then suddenly decelerates as it ascends.

Hold

Although you can observe its effects both spatially and temporally, hold interpolation is a strictly temporal type of interpolation, halting changes in a property’s value at the keyframe. The value remains fixed until the current frame of the composition reaches the next keyframe, where the property is set to a new value instantly. For example, specifying hold keyframes for a layer’s Position property causes the layer to disappear suddenly and then reappear in different places. Instead of a dotted motion path, a thin solid line connects hold keyframes, indicating not the motion path but the order of keyframed positions (Figure 9.15). Similarly, nonspatial properties proceed instantly from one held keyframed value to another. Whereas using linearly interpolated keyframes to change a layer’s opacity value from 0 to 100 is comparable to using a dimmer light, using hold keyframes is more like using a light switch. In the speed graph, hold keyframes appear as keyframes with a speed of 0 (Figure 9.16).

Figure 9.15 In this figure, the layer’s position property uses hold keyframes. The layer remains in the position defined by a keyframe until the next keyframe is reached, at which time the layer instantly appears in its new position. A thin solid line between keyframes isn’t a motion path; it indicates the order of keyframed positions.

Figure 9.16 Keyframes of other properties that use hold interpolation retain their current value until the next keyframe.

Mixed incoming and outgoing interpolation

A keyframe can use different interpolation types for its incoming and outgoing interpolation. A keyframe’s incoming and outgoing spatial interpolation can be a mix of linear and Bézier. A keyframe’s temporal interpolation may use any combination of linear, Bézier, and hold for its incoming and outgoing interpolation. As usual, the shape of the motion path or graph in the Graph Editor indicates mixed interpolation. In the standard view of the time graph (rather than in the Graph Editor view), keyframe icons also indicate the temporal interpolation type.

Keyframe icons and interpolation

The Graph Editor shows interpolation explicitly in the form of a value or speed graph. Regardless of the interpolation type, keyframe icons appear as small boxes, or control points, on the graph. Roving keyframes always appear as small dots.

But as you saw in Chapter 7, keyframe icons look different when you’re not using the Graph Editor. In the standard view of the time ruler, an expanded property’s keyframes appear as relatively large icons. Because no graph is visible, each icon’s shape helps indicate the incoming and outgoing interpolation (Figure 9.19). If you expand a heading only, any individual property’s keyframes appear as small dots to indicate their presence and position.

Figure 9.19 Though the standard view of the timeline doesn’t graph interpolation, the shape of each keyframe’s icons indicates the type of interpolation.

Peachpit Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Peachpit and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Peachpit products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email ask@peachpit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.peachpit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020