Publishers of technology books, eBooks, and videos for creative people

Home > Articles > Web Design & Development > PHP/MySQL/Scripting

Shooting

We know how to chase the player, evade him, and keep an eye on his position. We have even predicted his future actions. So, now it's time to work on the mechanics of shooting. We need to learn when is it a good idea to shoot at the player in different contexts. We also need to know whether we are handling a machine gun, a sniper rifle, or a catapult. As you will soon see, each one requires slightly different approaches to the problem of targeting.

Before starting, I need to give some personal words of warning. The same way I enjoyed movies like Star Wars, Alien, and Saving Private Ryan, I think games with a fighting/shooting element should be recognized as enjoyable experiences. I don't have any moral problem with that, and I think any healthy person can differentiate between the fictitious violence shown by games/movies/books and real violence. On the other hand, I'd recommend that people play many different games, not all of them with a combat/violence component, just as I'd go to see different types of movies. That said, the following sections deal with the specifics of shooting, so they necessarily focus on the algorithms required to target and shoot down enemies.

Infinite-Speed Targeting

The first approach we will explore is shooting with a weapon that has infinite speed, or in practical terms, very high speed compared to the speed of the target. This can be the case of a laser gun, which would advance at light speed, for example. Then, we can assume the time it takes for the projectile to reach the target is virtually zero. Thus, the selection of the shooting moment is really easy. All you have to do is make sure you are well aligned with the target at the moment of shooting. As the velocity is very high, we will have a sure hit because the target will have very little time to move and avoid the collision with the bullet. Clearly, it is not a good idea to abuse infinite-speed weapons because they can unbalance your game. If you build these weapons into the game, make sure you balance them well in terms of gameplay. For example, the firing rate can be very low, the ammunition limited, or the weapon might be really hard to get.

Real-World Targeting

What happens with a real-world firing device? Even a real gun shoots projectiles at a limited speed (approximately 300-600 meters per second). This means shooting a fast moving target is harder than shooting one that stands still. Thus, most weapons must be modeled as finite-speed devices, where some careful planning is used. I will explain two popular approaches.

Version A: The Still Shooter

The still shooter targets the enemy and only shoots whenever the enemy is standing still for a certain period of time. The reason is simple. If the bullet takes one second to hit the target, and the target has been standing still for a certain period of time, it is a good hypothesis to assume the target will stand still for another second, thus making it a good moment to attempt shooting.

An enhancement to this algorithm is to watch the target for specific actions that indicate restrictions in his ability to move. For example, if the target is standing still, he might begin walking in any given moment, thus making it an unsafe target. But what happens if he sits down or if he is tying one of his shoes? Clearly, we have a better aim here because we know for sure he won't be going anywhere in the next few seconds. This would be the kind of reasoning that would drive a sniper-style AI. He looks for very safe shoots that hit the target most of the time. By shooting only when a safe hit is granted, the shooter ensures one kill while not giving away his position easily. The disadvantage is that maybe the shooter will have very few opportunities to actually shoot, so it is a good idea to make him less restrictive. The way to do this is to introduce errors in his processing. He might sense time incorrectly, confuse animations, and so on. So sometimes he will shoot when he's not supposed to. When done carefully, this can accurately model fatigue and morale, affecting the ability of the sniper to stay focused.

As a summary, here is the algorithm in detail:

Global variables: 
Timestill 		 time since the enemy began standing still 
StandingStill	 1 if standing still, 0 otherwise 


When it begins standing still 
	StandingStill=1 
	Timestill=now If 
                    
StandingStill and more than X seconds have elapsed since 
Timestill 
    Shoot 

Version B: The Tracker

The tracker AI also tries to model the behavior of a sniper. In this case, he will shoot moving targets, not just those who are standing still. Shooting a moving target is really hard. We need to combine the shooting behavior with a target tracking routine, and there is a predictive component going on as well. If the gun has a finite speed, we need to target not the current position, but the position where the target will be when the bullet hits him.

The idea is simple: Compute the distance from the sniper to the target, use the projectile velocity to compute how long it will take for the projectile to reach the target, and predict where the target will be in the future, exactly when the projectile arrives. This way you can aim at that spot and get a safer shoot, especially in distant or fast-moving targets. The algorithm in full is depicted in Figure 7.7.

float d=distance (sniper, target) 
float time=d/bulletspeed 
point pos=predictposition(target,time) 
if aiming at pos shoot() 
else target at pos;

Figure 7.7Figure 7.7 Predictive shooter.

Whether predictive or still shooters, we have focused so far on single-shot firing devices, where each shot is considered an individual AI decision. But other weapons, such as machine guns, offer the possibility of shooting bursts of bullets at high frequency but with reduced precision. The AI logic for such weapons is a completely different subject, and thus deserves its own separate discussion.

Machine Guns

Machine guns offer fast firing rates at the cost of inferior precision. Shots cause the cannon to shake due to recoil, making it hard to aim accurately. Thus, their main use is found not in targeting people, but areas. The machine gun is aimed in the right direction, and short bursts are fired to hit anyone in the area.

The first type of gun we will examine is the fixed machine gun. This kind of behavior is exhibited by gunners in bunkers, trenches, and so on. Some classic guns would be the MG-42 used by the German army in World War II, the M60 used in Vietnam, and so on. Here are some stats from the former:

    MG-42 (with lightweight tripod)

      Firing rate: 25 rounds per second

      Range: 1000 meters

      Muzzle velocity: 820 meters per second

      Weight: 11.6 Kg

    MG-42 (with Lafette tripod)

      Firing rate: 25 rounds per second

      Range: 1000 meters

      Muzzle velocity: 820 meters per second

      Weight: 31.1 Kg

From these statistics, several lessons can be extracted. First, these guns hardly ever moved, but instead kept on targeting and shooting down enemies from a fixed position. Second, these guns did not have a lot of autonomy, the standard feed type for the MG-42 was a 50/250 metal belt. Thus, a burst could not last longer than 10 seconds, followed by a pause to change the metal belt. These guns were thus used for performing short firing bursts. Their algorithm is relatively straightforward. By default, the soldier stands still, waiting for new enemies to arrive. Then, as they begin to get closer, the gunner must rotate the gun to face the enemy. Rotation must somehow be penalized for slower models. When the angular difference between the gunner and the enemy is smaller than a certain threshold, the gunner will hold down the trigger while trying to refine his aiming. Keep in mind each shot introduces some distortion to the aiming due to recoil, so the gunner must re-aim every time. As a result, fixed gunners do not usually aim carefully; they aim at an area. Thus, these gunners are especially useful when we need to stop a wave composed of many soldiers. By pure chance, some bullets shot by the gunner will reach their target.

A common mistake is to forget about feed sizes. Many World War II games display machine guns that seem to have infinite ammunition.

Let's now examine the problem of a moving character carrying a light machine gun, such as an AK-47 or an M-16. As a rule of thumb, only movie characters use moving machine guns to shoot long bursts. Recoil makes it impossible to aim, especially if standing up. So, ammunition is wasted because most projectiles will be lost. Besides, these guns do not have long cartridges, so ammunition must be used with care. Here are some stats from the World War II Thompson submachine gun, aka the "Tommy gun":

    Thompson

      Firing rate: 10–12 rounds per second

      Range: 50 meters

      Muzzle velocity: approximately 400 meters per second

      Weight: 5 Kg

The gun came with 30 bullet cartridges, and a soldier in World War II usually carried three such magazines. As you can see, ammunition was still more of an issue than with heavy, fixed machine guns. Thus, the most common practice is to treat these assault guns as rifles with very high firing rates. Bullets are shot one by one or in very short bursts. The only situation where a moving gunner can effectively waste ammo is in a fantasy setting, such as space ship games. Here we can forget about realism and make the tie fighter or other ship of your choice shoot long firing bursts.

Peachpit Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Peachpit and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Peachpit products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email ask@peachpit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.peachpit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020