Publishers of technology books, eBooks, and videos for creative people

Home > Articles > Design

Drawing Skeletons in Maya

📄 Contents

  1. Drawing Skeletons in Maya
  2. About This Article
Chris Maraffi walks you through the drawing of skeletons in Maya as part of the process of setting up or rigging a character for animation.
Like this article? We recommend

Skeletons are a special kind of deformer found in the Animation module (press F2) and are specifically designed for animating characters. Like other deformers, skeletons affect the component structure of your models. By assigning and animating the skeletons, vertices on the skin move, and your character models change shape over time. Skeletons usually have length, which you create by drawing a skeleton from point A to point B. Most skeletons have at least two joints: a root joint and an end joint. A bone connects each joint. Although you can create single-joint skeletons, multiple-joint skeletons are most common in characters.

The most basic way to manipulate skeletons is to rotate their joints, which is called Forward Kinematics (FK) (see Figure 1). It is not desirable to translate any joints other than the root joint. Translating a joint in the skeleton chain causes the previous joint's center to no longer be oriented down the length of the bone, which can cause rotation problems on your controls. By rotating the joints, you can avoid this problem. Rotating the joints also enables you to animate the skeletons to bend in any direction. As the name implies, you animate with FK by starting at the root joint, and progressively rotate each joint down the skeleton chain.

Figure 1Figure 1 The most basic way to animate a skeleton, called Forward Kinematics, is to rotate the joints.

The other way to manipulate skeletons is to use Inverse Kinematics (IK), which constrains the skeleton to bend in a single direction by assigning it an IK solver. You manipulate the skeleton by translating an IK handle, which is created when you assign the solver. Translating the handle causes all the joints to rotate that are constrained by the solver. Usually the IK handle is on the last joint in the skeleton chain, so that translating it affects the joints higher up in the chain—hence the name Inverse Kinematics.

Understanding skeletons is important if you want to create effective character controls. If you display the center on a skeleton joint by choosing Display, Component Display, Local Rotation, notice that the local center of a joint is not set to the global orientation. When using the default joint creation settings, the X-axis always points down the bone to the next joint (see Figure 2), enabling you to rotate easily around a joint's local center to twist a bone. You will want to do this in several parts of your character (to make a forearm twist, for example). Also notice that the Z-axis points toward you in the view in which you created the skeleton, because the Z-axis is the preferred rotation axis if IK is attached to the skeleton.

Figure 2Figure 2 The default orientation of joints has the local X-axis pointing toward the next joint in the skeleton chain.

You can set the skeleton joint creation options to create IK automatically when you draw a skeleton, or you can add the IK manually after you have drawn the skeleton. In either case, draw your skeletons in a particular way when you know they will be constrained with an IK solver. IK bends in only one direction, which is based on the preferred angle of the joints. The preferred angle is the direction the joints are pointing when they are initially drawn. Draw your leg skeletons in the side view with a slight bend toward the front of the knees, for instance, to ensure that they have the correct preferred angle when their IK is activated (see Figure 3). Usually this requires you to draw the skeletons in a particular orthographic view, which is perpendicular to the axis that the joint should rotate in. The main axis of rotation on a normal IK skeleton is always the Z-axis.

Figure 03Figure 3 Draw the IK leg skeletons with a slight bend toward the front of the knee to set the preferred angle.

There are some obvious advantages and disadvantages to using IK or FK on your skeletons. One advantage of IK is that it is faster to set and edit translation keys on a single IK handle, than to set and edit rotation keys on multiple joints. It also is easier to target the end of a limb in 3D space when you are animating (to make the feet target the floor, for instance). On the other hand, IK is constrained to bend in only one direction, whereas FK can bend in any direction. This makes IK more suitable for hinge joints, such as the elbows and knees. FK, on the other hand, is more suitable for joints that move more like ball joints, such as the backbone vertebrae.

Another limitation of IK is that all the joints in a solver move when the IK handle is animated, making it impossible to isolate the rotation of a single joint in the chain. You must be able to rotate a child joint without rotating the parent if you want to create a swinging-type motion on the arms or legs (see Figure 4). This motion type usually occurs only as an unconscious movement while walking, throwing, or kicking. Because many limb motions are conscious, however, it is still better to use IK on the arms and legs most of the time. For the times when you need to create a swinging motion, however, you must have controls for switching between IK and FK in the middle of your animation.

Figure 4Figure 4 A swinging motion on the limb joints is not possible when IK is constraining a skeleton.

All the tools for drawing skeletons and creating IK are under the Skeleton menu in the Animation module. Before you create a skeleton, check the settings in the Joint Tool options box by choosing Skeleton, Joint Tool []. Here you can constrain a skeleton to rotate in a specific way, by turning off the Degrees of Freedom for a particular axis. You also can change the way Maya orients the local centers on joints by setting the Auto Joint Orient to something other than XYZ. For most skeletons, however, it is best to use the default settings. The only setting you will frequently change is the Create IK Handle option (see Figure 4.5).

Figure 5Figure 5 Open the Joint Tool options box to turn on or off the automatic creation of an IK handle on a skeleton.

You can add IK to your skeleton automatically when you draw it, or you can add it later after you draw the skeleton by choosing IK Handle Tool in the Skeletons menu. The available options are the same in either case. The main difference is that IK, if added automatically, always constrains the entire skeleton with the solver; if added manually, however, IK enables you to specify what joints will be constrained. You also can add more than one IK handle to different parts of the same skeleton if you add the IK manually. Like the joint options, you usually use the default IK handle option settings. Keep in mind that you also can adjust most of the joint and IK handle options in the Attribute Editor after you create a joint or IK handle.

One IK handle option you will occasionally change is whether the current solver is a Single Chain (SC) or a Rotate Plane (RP) solver. The difference between these two solvers is how they control the overall twist orientation of the skeleton. The SC solver forces the skeleton to twist when the IK handle is rotated. The RP solver, on the other hand, has a separate twist channel for twisting the skeleton, and the IK handle affects the skeleton only through translation (see Figure 6). You get more flexibility by separating the Twist attribute from the Rotation attributes of the IK handle, and the separation enables you to control the twist channel with a separate object by using a pole vector constraint. Because of this, you will be using an RP solver most of the time. The arms and leg skeletons of your character, for instance, will use RP solvers so that you can control where the elbows and knees point by using pole vector constraints.

Figure 6Figure 6 When you create an IK handle with an RP solver, a separate twist channel controls the overall orientation of the skeleton.

When drawing skeletons, it is best to click and drag with the left mouse button held down. This action enables you to place joints precisely while drawing them. Correct placement is important, because modifying skeletons after they have been drawn creates values in the joint's rotation channels, which can be undesirable. If you place a joint in the wrong place while drawing the skeleton, you can press the Z key to undo, and proceed to redraw the joint. When all the joints are drawn, press the Enter key to set the skeleton.

One thing to consider when drawing skeletons is whether you want to attach multiple branches to a single joint. Do this by first clicking a joint within an already existing skeleton when drawing a new skeleton. When you finish drawing the new branch, notice that rotating the joint you clicked rotates both branches together (see Figure 7). This joint rotation occurs because the two joints have merged into one joint. Although you can create an entire character skeleton as one piece this way, this method provides limited flexibility for animation because it prevents you from being able to animate branches separately from each other.

Figure 7Figure 7 Attaching two skeletons creates a single parent joint for two separate branches. You cannot rotate the two branches separately from one another.

Instead of attaching skeleton branches, draw the joints separately, and parent the branches to a single joint or control object. Doing this enables you to animate the branches together by animating the parent object, or separately by animating the child joints, giving you more flexibility when animating. To draw a skeleton branch so that it starts on a joint but is not attached to the joint, avoid directly clicking the already existing joint. Instead, after clicking, drag the new joint on top of the previously created joint, and continue drawing the branch. You can then parent the joints under a control object or group node.

When parenting joints, notice that a bone is always drawn between the parent joint and the root joint of the branch. Keep in mind this can sometimes clutter your interface with crisscrossing joints on a complex skeleton. To keep this from happening, you have to put two group nodes between the joints. Do this by parenting the two joints, and then select the child root joint and press Ctrl+G twice. After doing this, notice that the connecting bone disappears. Also be aware that this hasn't changed the functionality of the skeletons.

Getting your skeletons drawn is just the beginning of getting a good character rig created. But doing it right at this point will make for less work and greater functionality later on.

Peachpit Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Peachpit and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Peachpit products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email ask@peachpit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.peachpit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020